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Abstract 

In inquiry-based learning tasks students are actively involved in 
learning knowledge and skills through experimentation. The success 
of these activities largely depends on student’s inquiry practices. 
While traditional assessment infers student competency from their 
responses and problem-solving steps, the pauses between these 
actions provide a valuable source of information. Pauses during 
inquiry tasks capture a wide range of productive and unproductive 
activities such as planning, reasoning and mind-wandering. We 
present efforts to characterize the pause behaviors during a science 
inquiry task using hidden Markov modeling. We explore how theory 
can inform data driven modeling approaches, describe initial 
evidence of meaningful pause states, and consider the limitations of 
this approach for supporting inferences about students’ science 
inquiry practices. 

Keywords: Science inquiry, Pauses, Process modeling, 
Hidden Markov modeling. 

Introduction 
Several probabilistic and data mining approaches have been 
used to infer student knowledge and skills from process data 
(Levy & Mislevy, 2016). Most of these approaches focus on 
the correctness of the steps that students perform (Yudelson, 
Koedinger & Gordon, 2013). While effective in domains 
where correctness is clearly defined, these approaches have 
limited application in inquiry-based interactive tasks in 
which students discover and apply relevant knowledge and 
skills, form and test hypotheses, and then reflect on the 
outcome of those tests. For these tasks, considering the 
problem-solving process and the cognitive mechanisms 
underlying those actions are important when making valid 
inferences about students’ science inquiry practices. While 
we can draw inferences about the problem-solving process 
through modeling the actions students take, modeling the 
pauses between actions can also support inferences about 
underlying cognitive processes supporting those actions. The 
goal of our current research is to identify methods for 
characterizing pauses in the problem-solving process and 
establish what these pauses contribute to the measurement of 
inquiry skill. We explore how theory can inform data driven 
approaches and describe initial evidence, while weighing the 
limitations of this approach for supporting inferences about 
students’ science inquiry practices. 

Evaluating Pauses in Educational Activities 
Early studies on pause behaviors during problem solving 
indicate that pauses between actions provide insight into the 
processes supporting task completion (e.g., VanLehn, 1991). 
Given the variability in the number and length of pauses 
between students, there have been several attempts to use this 

information to characterize the proficiency of the student 
(Pelanek, 2014; Dang, Yudelson, & Koedinger, 2017). In an 
expansion of Bayesian Knowledge Tracing (BKT), Pelanek 
(2014) incorporates timing into the approach to improve 
estimates of skill level of students using a tutoring system. In 
this work longer pauses decrease the probability that the 
student has mastered the skill. This assumption may be 
correct when fluency is the goal of learning but is less 
appropriate when pausing reflects productive behaviors. For 
example, in their model of diligence, Dang, Yudelson, and 
Koedinger (2017) propose the use of both time and 
performance to separate the impact of productive and 
unproductive pauses on their measure. Other studies take a 
more unstructured approach and use pauses as input for 
machine learning algorithms predicting different constructs 
such as carefulness (Banawan, Andres, & Rodrigo, 2017). A 
similarity across all these approaches is that they aggregate 
pauses within the problem-solving process to create general 
measures of time on task rather than considering the 
occurrence of these pauses within the process data.  

Pauses at different points throughout an educational 
activity are indicative of different cognitive activities. Prior 
research using pauses to identify periods of wheel-spinning, 
gaming the tutor and productive persistence rely on expert 
qualitative coding and the structure of the tutor environment 
to identify when a pause is likely to indicate these behaviors 
(Paquette et al., 2014; Aleven et al., 2004). While these 
pauses are informative for modeling student behavior, they 
require human coding and, for this reason, tend to be used to 
characterize pauses in tutors with a limited space of actions.   

Inquiry Learning Activities 
Inquiry-based learning environments support students in 
learning concepts through the exploration and development 
of general learning behaviors and strategies.  Inquiry learning 
activities are popular in science education as a means of 
teaching scientific principles through the application of the 
scientific method. Interactive science simulation 
environments require students to interact in an open-ended 
task to generate responses that help support the collection of 
evidence about what students know (declarative knowledge) 
and can do (procedural knowledge). Pauses within inquiry 
learning environments can reflect a blend of productive and 
off-task behaviors. The nature of these pauses can be inferred 
by using the process data to understand the context in which 
the pause occurs. However, within open-ended tasks this type 
of inference is non-trivial because students can produce a 
wide range of distinct actions and the underlying cognitive 
processes of these actions are not directly observable 
(Ercikan & Pelligrino, 2017). 



Prior attempts to model student pause behavior in scientific 
inquiry activities include both data-driven approaches for 
identifying behavioral patterns and theory-based approaches 
that model the reasoning and learning involved in scientific 
inquiry-based tasks. In their work studying student 
experimentation with an electrical circuit simulation, Perez 
and colleagues (2017) used coded log data to compare 
sequences. They found no difference in overall pause 
frequency across low and high performing students; however, 
high performing students paused more than low performing 
students before and after running experiments. This method 
requires careful coding of the log data and assumes no 
measurement error, which can be problematic in situations 
where there is both variability and the potential for 
interruptions in strategy execution. Theory based approaches 
have the flexibility to capture the variation in behavior within 
a simulation environment. In their Simulated Psychology Lab 
(SPL) task, Schunn and Anderson (1998), created an 
environment where people could design research studies, 
collect simulated data and manipulate that data to draw 
conclusions. Using the SPL environment Schunn and 
Anderson compared the actions of human subjects to actions 
of their cognitive model of scientific discovery.  This SPL 
model was able to capture variation in scientific inquiry 
behaviors due to the structure of the environment and prior 
experience. While the SPL model was not used to predict 
timing data, it provides insight into the activity that occurs 
during the pauses between actions in a scientific inquiry task. 

Current Study 
In the current study, we model the pause behaviors of 
students as they interact with a science simulation task 
designed to assess students’ science inquiry practices in 
relation to the concept of saturation (i.e., maximum 
concentration) and control-of-variable strategy (Figure 1).  
This environment provides students with the tools to run 
experiments, organize data, and report conclusions. The 
interactive nature of this environment provides students with 
considerable variability in how they complete the task(e.g., 
number of trials, strategy use, timing of actions). This 
variability while likely capturing meaningful differences in 
science inquiry ability also makes comparison across 
students challenging.  
  We use hidden Markov models (HMMs) as an exploratory 
technique to distinguish different pausing behaviors as they 
occur in the context of student actions. HMMs capture the 
probabilistic transition between latent states in sequential 
time steps. The strength of these models is the Markovian 
assumption that the probability of the current state is driven 
by the previous state and the currently observed behavior. 
HMMs have been used in the educational data mining 
community to identify behavioral patterns that can be linked 
to meaningful cognitive states (e.g., BKT) and strategies 
(Tenison & MacLellan, 2014). We are not aware of any prior 
work using HMMs to model pause behaviors within student 
process data from adaptive learning and assessment 
environments.  

The focus of our modeling effort is to characterize 
student’s pause behavior in a science inquiry task. We 
hypothesize that the pauses observed during inquiry represent 
distinct cognitive activities. We further propose that optimal 
characterization of the processing occurring during pauses 
will provide useful information to improve our assessment of 
knowledge skills and abilities of students. We use HMMs to 
address the challenge of characterizing pauses from 
individual process data. We use theory to guide our 
construction of these models but allow data to drive the 
models we fit. To evaluate the descriptiveness of the model, 
we use three metrics: 1) sensitivity to group differences, 2) 
prediction of correct conclusions from patterns of pauses 
during the scientific inquiry activity, and 3) agreement with 
validated external measures of scientific inquiry skills.  

 

 
Figure 1. A screenshot of question 1 in the concentration 
simulation: a) Science inquiry screen, b) Answer screen. 

Methods 

Participants 
Two-hundred-seventy-three students in 6th and 8th grades 
were tested with a concentration simulation task. Six students 
were excluded from the analysis due to process data 
problems. The final data included 134, 6th grade students 
(NFemale= 72) and 131, 8th grade students (NFemale= 67). Two 
students had no grade information associated with their data. 



Materials 
The concentration simulation task we used was originally 
developed by PhET (Wieman et al., 2008) and modified for 
the purpose of the study to include selected and constructed 
response questions (see Finn, 2018 for a more detailed task 
description). The simulation was an HTML5 application 
written in JavaScript and delivered through a standard web 
browser. In total, there were 7 questions in the task. In the 
scope of this study, we focus on students’ science inquiry 
behavior (i.e., observable actions and pauses between 
actions) as students complete the first question within the 
task, together with, their submitted answers to that question. 

This question asks students to run experiments to 
investigate whether the concentration of a solution increases 
when the amount of solute increases. Students were 
instructed to click the next button when they had enough data 
to answer the question (see Figure 1a). The open-ended 
nature of the task allowed students to prepare and run 
experiments by: (i) running as many trials as necessary to 
give an answer, (ii) setting any value between 0 and 200g for 
both solute and water amounts, (iii) using different strategies 
during investigation (e.g., control-of-variable; varying, 
increasing, or decreasing both variables at the same time). For 
each student run simulation, results are updated in a ‘data-
table’. Students can manipulate this data by reordering or 
deleting experimental records from their data-table. While 
interacting with the data-table is not required, it is meant as a 
workspace for students to organize the results of their 
investigations when drawing conclusions about properties of 
the concentration solution. After clicking the next button, the 
answer options for the question together with a constructed 
response box asking students to justify their selected response 
appeared on the second screen (see Figure 1b). 

Process Data Representation 
The representation of the student’s scientific inquiry 
activities that we use to fit our model impacts the 
descriptiveness of that model. The raw data logfiles the 
system produced recorded detailed information about 
specific student actions and system events. From these logs, 
we identified 10 general categories that capture the actions 
corresponding to the subcomponents of the concentration 
simulation task (Table 1). We chose these categories to align 
with the top-level goal structure of Schunn and Anderson’s 
SPL model (1998). For simplicity, we refer to these 
categories as ‘Actions’ but use labels that indicate whether or 
not these actions were produced by the student or the 
interface. 

Actions generated by the simulation environment 
introduce new information to the student. These actions 
represent standard instructions along with updates to the data 
collection table based on the experiments that students run. 
Student actions are changes made to the environment in 
response to the information the environment provides them. 
These actions unfold over time. Actions are separated by 
variable periods where no activity is logged. We refer to these 
periods as ‘Pauses’. In our analysis, we are interested in 

characterizing the types of pauses that reflect periods of 
inactivity that are within the control of the student. We do not 
analyze the pauses that reflect the time it takes for the 
simulation environment to run the simulation (e.g., the pauses 
between the start and end of the animation).  
 

Table 1: Average Percentage (SE) of Session Comprised 
by Actions types and a Sample Action Sequence.  

 
Representation of Actions Percentage  
Experiment Preparation 31.8 (1.2) 
Experiment Run 8.6 (.23) 
Table Manipulation 4.1 (.5) 
Answering Questions 6.7 (.43) 
Collect More Data 0.63 (.06) 
Done 2.3 (.15) 
Interface: Error Message 0.45 (.12) 
Interface: Load First Page 2.3 (.15) 
Interface: Load Second Page 2.6 (.13) 
Interface: Update Table 8.6 (.23) 
Sample Action Sequence: 
Interface_Load_FirstPage -> Long_Pause -> 
Experiment_Prep -> Med_Pause -> 
Experiment_Prep -> Experiment_Prep -> … 

 
The action sequence representation (Table 1, bottom row) 

captures the sequence in which actions occur: however, it 
does not capture specific temporal information about when 
these events occur. Prior work using pauses to model 
cognitive processing and proficiency suggests that the length 
of the pause is an especially important indicator of what is 
occurring during that period (Paquette et al., 2014). We 
explored several different methods of representing the data to 
capture differences in pause length in HMMs. We considered 
representing actions as a binned timeseries: however, under 
this representation pauses dominated the sequences and 
previous research has indicated HMMs are sensitive to over 
dispersion (Olteanu & Ridgway, 2012).  

Instead, we chose to assign pauses to ordinal categories 
based on length. Pauses less than 250 ms were ignored 
because on average motor preparation takes 250 ms 
(Anderson, 2007) and if an action is preceded by such a 
pause, it was unlikely to reflect meaningful cognitive activity. 
For pauses longer than 250 ms, we used the 25th and 75th 
percentiles as cut-points to categorize pause durations 
(Figure 2). Pauses between 250 ms and 1.3s were labeled 
“Short Pauses”, pauses between 1.3s and 6.2s seconds were 
considered “Medium Pauses”, and pauses greater than 6.2s 
seconds were labeled “Long Pauses”. In Figure 2, we 
illustrate the distribution of pauses longer than 250 ms across 
all sequences with vertical lines indicating category cut-offs. 
On average, pauses lasted 6.4 s (SD = 12.8). Pauses 
accounted for 27.4% of the action sequences described in 
Table 1 (Short: 7.2% (.38), Medium: 16.6% (.45) and Long: 
8.2% (.23)). 



 

 
Figure 2: Histogram of the duration of pauses (log-

seconds). Vertical lines indicate cut-points. 

Hidden Markov Models 
Our aim in fitting the HMM to the student’s action sequences 
is to identify hidden states that help us characterize distinct 
categories of pauses from the context in which they appear 
and provide us with useful descriptive information about how 
pauses are expressed in the problem-solving process. We 
used the R package seqHMM (Helske & Helske, 2017) to fit 
our HMM models. We use random priors to initialize our 
emission and transition probabilities, with the exception of 
the done state which was given a 0 probability of the model 
starting in that state and a 0 probability of transitioning from 
that state to any other state. This means the model has no 
expectation about the types of states present nor any 
expectation about how people might be moving between 
these states. For each model we ran the EM algorithm 10 
times with randomized starting values for the transition and 
emission probabilities to avoid fitting local optima.  

Results 

Models of Pausing Behavior 
We fit HMMs with between 3 and 25 states to the data. We 
used Bayesian Information Criteria (BIC) to determine which 
model best fit the data while also penalizing for added 
parameters to avoid overfitting (Figure 3), lower values 
indicate better model fits. We found that a 16-state model best 
fit the data (BIC 40504.3, log likelihood -17,6661.5). The 
next best fitting model (18 state) has a BIC 544.6 points 
higher than the 16-state model. Typically, a BIC difference 
greater than 10 is considered strong evidence against the 
higher BIC value. 

 
Figure 3: Model fit (BIC) for 3 through 25 state models. 

Interpreting Hidden States 
We illustrate the structure of the best fitting HMM in Figure 
4. The nodes represent the hidden states, the colors of the 
nodes reflect the probability of that hidden state emitting 
action events (color coded in the legend of Figure 4). Hidden 
states emitting pauses show the greatest division across 
different observable actions. The arrows between nodes 
represent the transition probabilities, with labels and density 
reflecting specific probability. For readability we grouped 
related action states and do not display transition probabilities 
less than .05.  

 
Figure 4: 16-State HMM. 

 
Action states. We can distinguish the states our HMM fits 
into two categories, action states and pause states. Our 16-
State model fits several states that have a high probability of 
emitting the same action but fit very distinct transition 
probability profiles. All of these states had a probability 
greater than or equal to 95% of emitting to a single state. The 
only exception, a table-manipulation state, has a 7.6% 
probability of also emitting a short pause. While these hidden 
states are likely to emit a single action, the model does make 
an interesting separation of experiment-preparation and 
table-manipulation states. For both types of actions the model 
separates action states that have a high transition probability 
back into themselves and action states that have a high 
transition probability into pause states. This distinguishes 
actions that are swiftly executed as part of a sequence as 
opposed to actions separated by pauses. This distinction of 
‘swift’ and ‘thoughtful’ actions could reflect differences in 
when planning or strategy selection occurs (before or during 
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task execution), or various maladaptive behaviors (e.g. 
wheel-spinning, mind-wandering).  
Pause states. Our primary interest in this work is to explore 
whether this modeling approach can be used to separate pause 
states that represent periods of distinct cognitive processing. 
Our model fit four distinct pause states. We characterize these 
pauses as they appear in Figure 4 from left to right: 
1. Processing new information and goal setting: This 

state captures the pauses that occur immediately after the 
task starts (96%), and after simulation results are added 
to the data-collection table (80%). Other states with over 
a 40% chance of transitioning into this state include a 
table-manipulation state and the state capturing the 
decision to run more experiments. From this pause state, 
students have a high probability of transitioning into an 
experimental preparation state (75%) or deciding they 
have collected enough data to progress with the task 
(14% probability of loading 2nd page). This state consists 
primarily of medium and long pauses, and an analysis of 
pause durations of this state indicates an average pause 
length of 10.4s (SE = 3.9). Given the transition 
probabilities and length of these pauses, we hypothesize 
that this state captures an amalgam of processing of new 
information, deciding to run an experiment or continue 
to the second page, and planning the experiment. 

2. Experimental Investigation: This pause state connects 
to action states involved in preparing and running 
experiments. These pauses however are relatively short 
(M = 1.6s, SE = 0.43s). This state may distinguish 
thoughtful (or aimless) experimental preparation from 
swift experimental preparation. 

3. Data Manipulation: This pause state has a high 
probability of transitioning to (80%) and from (54%) one 
of the table-manipulation states. As with experiment 
running this distinguishes thoughtful and swift table-
manipulation states. Pauses in this state are relatively 
short (M = 2.0s, SE = 0.7).  

4. Reflection on Questions: Our final pause state connects 
activities on the second part of the science inquiry task 
(question answering, finishing, and deciding to collect 
more data). The longer length of these pauses (M = 8.6s, 
SE = 5.2s) likely capture the time participants spend 
encoding the answer options, reading and reflecting on 
responses to the two questions on this page.  

Our HMM distinguishes between the scientific inquiry and 
question answering activities as well as between planning 
activities, which take longer and capture the switch between 
high-level task goals and task execution decisions that tend 
to be much shorter and distinguish thoughtful and swift 
actions. While this information provides us with a compelling 
descriptive account of how students complete this inquiry 
task, we are still limited in our ability to infer the specific 
cognitive processes that occur during these pause states. 

The Role of Pauses in Scientific Inquiry 
Our goal in characterizing the different pause states present 
within the process data of students is to use this information 

to improve our assessment of scientific inquiry. In our first 
step to determine if this behavior characterization is 
informative, we consider 1) whether we see differences in 
pause behavior between our 6th and 8th grade cohorts, 2) 
whether the occurrence of different types of pauses are 
predictive of students answering the question correctly, and 
3) whether pauses explain variance in validated measures of 
scientific inquiry.  

We compared the relative proportions of activity spent in 
the four different pause states of 6th and 8th graders in our 
sample. We used an independent 2-group Mann-Whitney U 
test to account for non-normality of the data. Using this test, 
we found no significant differences in the proportion of 
activity spent in the four pause states, other than a marginally 
significant difference in the Data Manipulation Pause state 
(W = 9648.5, p = .055), which was more frequently observed 
in 6th graders compared (1.6%) with 8th graders (.9%).  

The scientific inquiry activity we modeled includes a 
multiple-choice question that asked students to judge whether 
the concentration of the mixture always increases. This 
question measures student understanding of the principle of 
saturation which could result from either their inquiry 
practices or prior domain knowledge. We tested whether the 
proportion of the time spent in the different pause states 
during the inquiry activity were predictive of whether 
participants got the answer of the multiple-choice question 
correct. Using a logistic regression, we included all four 
pause states as factors to predict score on that item. The 
overall variance explained by this model is low (McFadden 
pseudo R2 = .02). Two of the pause states were marginally 
significant: Information Processing (OR: .003, b= -5.8 , z = -
1.7, p = .086) and Experimental Investigation (OR: .25, b= 
3.3 , z = 1.8, p = .078). These low odds ratios indicate students 
with greater pause activity are more likely to draw the wrong 
conclusion.  

 Prior to interacting with the task, students were 
administered the Waves Benchmark Assessment (WBA) as 
part of the SimScientists assessment suite developed by 
WestEd (Quellmalz, Timms, & Buckley, 2010). This 
measure uses a different science domain but attempts to 
evaluate the inquiry skills of students. As a first step in 
determining if the pause states identified by our HMM could 
provide information about the inquiry skills of the student, 
we look at the concordance between the pause behaviors and 
the WBA measure. We fit a linear regression model to 
measure how much of the variance in the WBA measure we 
could capture using the proportion of student actions within 
the four HMM pause states. We started with a maximal model 
with main effects for all four states and performed stepwise 
model selection using Akaike information criteria (AIC) to 
compare fits. Our final model indicated a significant 
collective effect of the Experimental Investigation, Data 
Manipulation, and Reflection on Questions pause states 
(F(3,188) = 7.6, p <.001, adjusted-R2=.09, BIC = 1304.6). To 
test if the HMM states account for more variance in the WBA 
measure than the raw pause actions, we fit a separate linear 
regression using the proportion of short, medium, and long 



pauses in a student’s action sequence to predict the WBA 
measure. Using stepwise AIC model selection, we found that 
the maximal model best fit the data (F(3,188)=4.8, p <.005, 
adjusted-R2= .05, BIC=1312.3). This model does not fit the 
data as well as, nor explain as much of the variance in the 
WBA score as the pause states model.  

Discussion 
In this paper, we show how an unsupervised modeling 
approach can be used to characterize pauses in the problem-
solving process and explored what these pauses contribute to 
the measurement of skill. Our best fitting model identified 
four distinct pause states and split action states around 
experimental preparation and table manipulation activities 
into separate swift and thoughtful action states. These results 
suggest that pauses capture a range of processes and 
aggregation across pauses obscures meaningful variation in 
students’ inquiry practices. We found weak evidence that 6th 
graders and 8th graders pause with similar frequency, but 6th 
graders pause slightly more when manipulating data. Across 
grades, students who paused while setting up experiments 
and in between inquiry activities were score incorrectly on 
the subsequent multiple-choice item. Finally, we found that 
pauses around experimental preparation, data manipulation 
and question answering varied in concordance with student’s 
science inquiry ability, and that our characterization of pauses 
explained 4% more variance than considering only pause 
length. The finding that pauses explain a small proportion of 
variance in scores on the multiple-choice item and the WBA 
measure illustrates the challenge of using this information to 
evaluate the inquiry process. The conclusions students draw 
only partially reflect inquiry ability and future work 
validating models of inquiry process would benefit from 
more direct measures of planning, investigation, and analysis 
skills. 

It is unlikely HMMs can discover the structure of problem-
solving strategy at the same granularity of cognitive 
architectures (e.g., ACT-R; Anderson, 2007); however, these 
models can be used to provide a computational formulation 
of behavior patterns that balances an adherence to cognitive 
science theory, parsimony and conformity to data. Our goal 
in fitting a descriptive model was to better understand 
differences between individuals and capture meaningful 
variation in skill. While we examine group differences in a 
post-hoc analyses, in future research this information could 
be used as covariates within our HMM to guide model fitting 
(Helske & Helske, 2017). Such an approach would be 
especially appropriate in situations where there are clear 
hypotheses about how factors such as student ability and 
group membership drive differences in behavior patterns.  
The results of such models can be used to focus the subtasks 
we construct cognitive models to capture.  

The precision of HMMs in capturing cognitive activity is 
limited by our ability to observe the thinking of the student. 
This is especially obvious in our first pause state which 
combines processing new information, deciding the next 
action and planning the execution of that action. In future 

work, we plan on exploring several avenues for improving 
our ability to distinguish pauses. In the current study, we 
found that how we represented pauses impacted the 
descriptiveness of our model. One approach for improving 
the distinction between pause states is to extend our 
representation of the actions students take to include more 
information about the actions. Including information about 
the data collection strategy students use may help us to 
identify pause behavior related to specific experiment goal 
subtypes such as those identified in the SPL model (Schunn 
& Anderson, 1998).  We believe the combination of data and 
theory within these models will lead to promising avenues for 
assessing inquiry skills.   
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