
 

An Expanded Set of Declarative Memory Functionalities in PyACTUp, a Python 
Implementation of ACT-UP’s Accountable Modeling  

 

Yuxue C. Yang (chery@uw.edu) 
Department of Psychology, University of Washington 

Campus Box 3515525, Seattle, WA 98195 USA 

Don Morrison (dfm2@cmu.edu) 
Department of Psychology, Carnegie Mellon University 

5000 Forbes Avenue, Pittsburgh, PA 15213 

Andrea Stocco (stocco@uw.edu) 
Department of Psychology, University of Washington 

Campus Box 3515525, Seattle, WA 98195 USA 

Mark Orr (mo6xj@virginia.edu) 
Biocomplexity Institute, University of Virginia, 

 P.O. Box 400298, Charlottesville, VA 22904 US 
Christian Lebiere (cl@cmu.edu) 

Department of Psychology, Carnegie Mellon University 
5000 Forbes Avenue, Pittsburgh, PA 15213 

 
Keywords: Cognitive Architecture; Accountable Modeling;     

ACT-R; ACT-UP; Python; Agile Development 

Introduction 
ACT-R (Anderson, 2007) is the most influential       

cognitive architecture in psychology and neuroscience      
(Kotseruba and Tsotsos, 2018). To enforce its commitment        
on end-to-end modeling (that is, the constraint that the         
modeler should consider all aspects of a task), ACT-R is          
purposely designed to paradigmatically discourage the      
developer from taking shortcuts, which is often frustrating. 

In 2010, Reitter and Lebiere proposed the alternative        
paradigm of accountable modeling. Instead of discouraging       
developers from taking shortcuts, it encourages them to        
explicitly specify which components of an architecture they        
plan to use and how they account for aspects that are not            
modeled using the architecture (e.g., through parameter       
estimation). As a proof of concept, they designed ACT-UP,         
a modular Lisp implementation of ACT-R’s declarative       
memory system that can be used independently of the other          
components. Despite its successes, ACT-UP was limited by        
(a) being written in Lisp, (b) covering only a limited set of            
functions; and (c) inheriting ACT-R’s traditional      
assumption that memories are equal in terms of importance.  

Here, we present PyACTUp, a Python implementation       
of ACT-UP that takes advantage of Python’s modern        
language design, and extensive graphic and scientific       
libraries, and further extends the set of declarative memory         
functionalities, including spreading activation and emotional      
components. Both of these core functionalities have       
received widespread attention in contemporary models, and       
are now implemented without any reference to ACT-R’s        
other first-level structures (buffers or productions). Github:       
https://cher_yang@bitbucket.org/cher_yang/pyactup2.git 

General PyACTUp Architecture  
PyACTUp closely follows Reitter & Lebiere’s (2010)       

original implementation of ACT-UP, doing away with       
buffers and procedural knowledge and simplifying the       

process of modeling memory encoding and retrieval, so that         
modelers are able to focus on essential cognitive phenomena         
instead of being stopped by programming difficulties.  

The most fundamental functions of PyACTUp are       
learning and retrieving memories. As pieces of information        
are learned, they are stored in declarative memory as         
chunks . The memory contains one or more slot-value pairs,         
and can be retrieved by specifying all or a subset of           
identifying cues, also in the form of slot-value pairs . A new           
declarative memory is created as an instance of the Memory          
class object, i.e. dm = Memory(). Chunks are represented         
using Python’s built-in dictionary type, and are learned and         
retrieved using Python’s keyword-argument syntax to      
manage slot-value pairs. For example, the following line: 

dm.learn(guy=”Ringo”,role=”Drummer”) 
creates a chunk for Ringo Starr of The Beatles. To retrieve 
him, one can type  

dm.retrieve(role=”Drummer”) 
As in ACT-R, chunks in a Memory structure are         

retrieved based on their activation, a scalar meta-quantity        
that reflects frequency (the retrieval probability odds) and        
the recency (decays over time). Depending on the number of          
memories available in a Memory structure, it is possible to          
enable blending and retrieve blended memories instead of a         
specific chunk. 

Implementation of Spreading Activation 
In ACT-R, a chunk’s activation is made of a base-level          

(the part that decays over time) and a spreading component,          
which increases a chunk’s activation in proportion to its         
association to other chunks. Because spreading activation       
originates in ACT-R buffers, ACT-UP and its original        
Python counterpart originally excluded it from their       
available functionalities. However, since spreading     
activation is important to capture phenomena like the fan         
effect (Anderson, 1974) and working memory (Daily et al         
2001), it was introduced as new functionality in this version          
of PyACTUp. To avoid the use of buffers, activation is          
spread through a specific function and the use, again of the           
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keyword-argument syntax, with an argument that defines       
the source. For example,  

dm.spread(role=”drummer”) 
spreads activation from “Drummer” to other chunks in dm.         
Following the ACT-R standard algorithm, the associative       
strength between two chunks i and j is calculated, by          
default, as inversely proportional to the logarithm of the fan          
of i, i.e. the number of times i appears in other chunks other             
than j. Modelers, however, are given flexibility to define         
their own associative strength functions. The value returned        
by these functions is then multiplied by the weight.  

Differential Importance of Memories 
ACT-R and ACT-UP share the assumption that all        

memories are equal in terms of importance, and therefore         
they decay at the same rate. This assumption was         
recognized as a limitation by Anderson himself (2007,        
chapter 3). Researchers modeling effects of emotion, for        
example, have repeatedly suggested that affect and emotion        
alter how memorable certain events are by providing an         
activation bias or boost (Juvina, Larue, & Hough, 2018,         
Fum & Stocco, 2004; Cochran et al., 2006). 

Without taking a stance in the debate, we decided to          
provide a way for developers to add their own activation          
bias terms through an additional importance term, which is         
linearly additive to base-level and spreading activation.       
Here, we implement the highest level of conceptual idea of          
importance. The degree of importance is attached to the         
nature of memory and to some extent decides the needs of           
retrieval subsequently. The importance is set directly       
through learning. For example,  
dm.learn(guy=”Disco”,role=”Manager”, 
importance=5) 

To observe the effects of importance on memory        
retrieval, we created a model to simulate the retrieval         
process of memory with various degrees of importance.        

Highly important  
memory is set to values     
from 0 to 3 while     
normal memory is set to     
a randomly distributed   
value from 0 to 2.  
 
Fig 1. Interactive Model    
shows the change of    
base-level activation  
over time (blue);   
base-level + spreading   
(green); and base-level   
+ spreading +   
importance (red).  

Interaction Example 
Fig 1 provides an example of the code in Jupyter          

Notebook window. This shows how PyACTUp can be used         

to quickly run an interactive model in Python. By adjusting          
parameters, the model shows dynamic memory encoding       
and retrieving outputs.  

Summary  
The current version of PyACTUp inherits the       

simplification from the last version and extends its        
functionality to include the spreading activation and       
importance term. We use the new PyACTUp to model         
spreading activation effects and the retrieval discrepancy       
between important memory and trivial ones. Admittedly,       
PyACTUp is only a subset of the ACT-R architecture, so it           
does have some limitations in modeling human cognition.        
How to keep PyACTUp simple, flexible and applicable is a          
trade-off problem for the framework designer. Further       
researchers could explore other useful functions and expand        
the current PyACTUp to a more comprehensive,       
accountable and modular implementation of the ACT-R       
cognitive modeling architecture. 
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