

An Expanded Set of Declarative Memory Functionalities in PyACTUp, a Python
Implementation of ACT-UP’s Accountable Modeling

Yuxue C. Yang (chery@uw.edu)
Department of Psychology, University of Washington

Campus Box 3515525, Seattle, WA 98195 USA

Don Morrison (dfm2@cmu.edu)
Department of Psychology, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213

Andrea Stocco (stocco@uw.edu)
Department of Psychology, University of Washington

Campus Box 3515525, Seattle, WA 98195 USA

Mark Orr (mo6xj@virginia.edu)
Biocomplexity Institute, University of Virginia,

 P.O. Box 400298, Charlottesville, VA 22904 US
Christian Lebiere (cl@cmu.edu)

Department of Psychology, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213

Keywords: Cognitive Architecture; Accountable Modeling;

ACT-R; ACT-UP; Python; Agile Development

Introduction
ACT-R (Anderson, 2007) is the most influential

cognitive architecture in psychology and neuroscience
(Kotseruba and Tsotsos, 2018). To enforce its commitment
on end-to-end modeling (that is, the constraint that the
modeler should consider all aspects of a task), ACT-R is
purposely designed to paradigmatically discourage the
developer from taking shortcuts, which is often frustrating.

In 2010, Reitter and Lebiere proposed the alternative
paradigm of accountable modeling. Instead of discouraging
developers from taking shortcuts, it encourages them to
explicitly specify which components of an architecture they
plan to use and how they account for aspects that are not
modeled using the architecture (e.g., through parameter
estimation). As a proof of concept, they designed ACT-UP,
a modular Lisp implementation of ACT-R’s declarative
memory system that can be used independently of the other
components. Despite its successes, ACT-UP was limited by
(a) being written in Lisp, (b) covering only a limited set of
functions; and (c) inheriting ACT-R’s traditional
assumption that memories are equal in terms of importance.

Here, we present PyACTUp, a Python implementation
of ACT-UP that takes advantage of Python’s modern
language design, and extensive graphic and scientific
libraries, and further extends the set of declarative memory
functionalities, including spreading activation and emotional
components. Both of these core functionalities have
received widespread attention in contemporary models, and
are now implemented without any reference to ACT-R’s
other first-level structures (buffers or productions). Github:
https://cher_yang@bitbucket.org/cher_yang/pyactup2.git

General PyACTUp Architecture
PyACTUp closely follows Reitter & Lebiere’s (2010)

original implementation of ACT-UP, doing away with
buffers and procedural knowledge and simplifying the

process of modeling memory encoding and retrieval, so that
modelers are able to focus on essential cognitive phenomena
instead of being stopped by programming difficulties.

The most fundamental functions of PyACTUp are
learning and retrieving memories. As pieces of information
are learned, they are stored in declarative memory as
chunks . The memory contains one or more slot-value pairs,
and can be retrieved by specifying all or a subset of
identifying cues, also in the form of slot-value pairs . A new
declarative memory is created as an instance of the Memory
class object, i.e. dm = Memory(). Chunks are represented
using Python’s built-in dictionary type, and are learned and
retrieved using Python’s keyword-argument syntax to
manage slot-value pairs. For example, the following line:

dm.learn(guy=”Ringo”,role=”Drummer”)
creates a chunk for Ringo Starr of The Beatles. To retrieve
him, one can type

dm.retrieve(role=”Drummer”)
As in ACT-R, chunks in a Memory structure are

retrieved based on their activation, a scalar meta-quantity
that reflects frequency (the retrieval probability odds) and
the recency (decays over time). Depending on the number of
memories available in a Memory structure, it is possible to
enable blending and retrieve blended memories instead of a
specific chunk.

Implementation of Spreading Activation
In ACT-R, a chunk’s activation is made of a base-level

(the part that decays over time) and a spreading component,
which increases a chunk’s activation in proportion to its
association to other chunks. Because spreading activation
originates in ACT-R buffers, ACT-UP and its original
Python counterpart originally excluded it from their
available functionalities. However, since spreading
activation is important to capture phenomena like the fan
effect (Anderson, 1974) and working memory (Daily et al
2001), it was introduced as new functionality in this version
of PyACTUp. To avoid the use of buffers, activation is
spread through a specific function and the use, again of the

https://cher_yang@bitbucket.org/cher_yang/pyactup2.git

keyword-argument syntax, with an argument that defines
the source. For example,

dm.spread(role=”drummer”)
spreads activation from “Drummer” to other chunks in dm.
Following the ACT-R standard algorithm, the associative
strength between two chunks i and j is calculated, by
default, as inversely proportional to the logarithm of the fan
of i, i.e. the number of times i appears in other chunks other
than j. Modelers, however, are given flexibility to define
their own associative strength functions. The value returned
by these functions is then multiplied by the weight.

Differential Importance of Memories
ACT-R and ACT-UP share the assumption that all

memories are equal in terms of importance, and therefore
they decay at the same rate. This assumption was
recognized as a limitation by Anderson himself (2007,
chapter 3). Researchers modeling effects of emotion, for
example, have repeatedly suggested that affect and emotion
alter how memorable certain events are by providing an
activation bias or boost (Juvina, Larue, & Hough, 2018,
Fum & Stocco, 2004; Cochran et al., 2006).

Without taking a stance in the debate, we decided to
provide a way for developers to add their own activation
bias terms through an additional importance term, which is
linearly additive to base-level and spreading activation.
Here, we implement the highest level of conceptual idea of
importance. The degree of importance is attached to the
nature of memory and to some extent decides the needs of
retrieval subsequently. The importance is set directly
through learning. For example,
dm.learn(guy=”Disco”,role=”Manager”,
importance=5)

To observe the effects of importance on memory
retrieval, we created a model to simulate the retrieval
process of memory with various degrees of importance.

Highly important
memory is set to values
from 0 to 3 while
normal memory is set to
a randomly distributed
value from 0 to 2.

Fig 1. Interactive Model
shows the change of
base-level activation
over time (blue);
base-level + spreading
(green); and base-level
+ spreading +
importance (red).

Interaction Example
Fig 1 provides an example of the code in Jupyter

Notebook window. This shows how PyACTUp can be used

to quickly run an interactive model in Python. By adjusting
parameters, the model shows dynamic memory encoding
and retrieving outputs.

Summary
The current version of PyACTUp inherits the

simplification from the last version and extends its
functionality to include the spreading activation and
importance term. We use the new PyACTUp to model
spreading activation effects and the retrieval discrepancy
between important memory and trivial ones. Admittedly,
PyACTUp is only a subset of the ACT-R architecture, so it
does have some limitations in modeling human cognition.
How to keep PyACTUp simple, flexible and applicable is a
trade-off problem for the framework designer. Further
researchers could explore other useful functions and expand
the current PyACTUp to a more comprehensive,
accountable and modular implementation of the ACT-R
cognitive modeling architecture.

References
Anderson, J. R. (1974). Retrieval of propositional

information from long-term memory. Cognitive
Psychology, 6(4), 451–474

Anderson, J. R. (2007). How can the human mind occur in
the physical universe? Oxford University Press .

Chown, E., Cochran, R. E, & Lee, F. J. (2006). Modeling
emotion: Arousal's impact on memory. Proceedings of the
Annual Meeting of the Cognitive Science Society, 28.

Daily, L. Z., Lovett, M. C., & Reder, L. M. (2001).
Modeling individual differences in working memory
performance: A source activation account. Cognitive
Science, 25(3), 315-353.

Fum, D., & Stocco, A. (2004). Memory, emotion, and
rationality: An ACT-R interpretation for gambling task
results. In C. D. Schunn, M. C. Lovett, C. Lebiere & P.
Munro (Eds.) Proceedings of the 6th International
Conference on Cognitive Modeling. Mahwah, New
Jersey: Lawrence Erlbaum Associates, pp. 106–111.

Juvina, I., Larue, O., & Hough, A. (2018). Modeling
valuation and core affect in a cognitive architecture: The
impact of valence and arousal on memory and
decision-making. Cognitive Systems Research, 48, 4-24.

Kotseruba, I., & Tsotsos, J. K. (2018). 40 years of cognitive
architectures: Core cognitive abilities and practical
applications. Artificial Intelligence Review, 1-78.

Reitter, D., & Lebiere, C. (2010). Accountable modeling in
ACT-UP, a scalable, rapid-prototyping ACT-R
implementation. In Proceedings of the 10th International
Conference on Cognitive Modeling, ICCM 2010 (pp.
199-204)

