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Abstract 

Fatigue is a common occurrence in several occupational 
fields, often resulting in operator performance and health 
issues. Biomathematical models of fatigue have become 
useful tools in several fatigue risk management programs. 
However, these tools still have limitations in terms of 
identifying specific performance outcomes affected by 
fatigue, as well as individualizing fatigue estimates to 
individual operators. The integration of computational 
cognitive models and biomathematical models can help solve 
these issues in a complex operational context. The current 
effort aims to develop an integrated model of fatigue in the 
context of C-17 approach and landing operations. 
Specifically, we integrate a biomathematical fatigue model 
with a task network model to estimate performance 
degradation due to fatigue. The following paper outlines the 
development of the task network model and integration with 
the biomathematical fatigue model. 
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Fatigue is a pervasive issue in work environments involving 
factors such as long work hours, shift schedules, circadian 
desynchrony, and high workload tempo, factors common in 
transportation, healthcare, and law enforcement, among 
other fields. Fatigue often results in performance 
degradations and can have significant negative effects on 
operator health, especially if fatigue is chronic in nature 
(Belenky, Lamp, Hemp, & Zaslona, 2014; Craig & Cooper, 
1992). Biomathematical fatigue models are promising  
predictive tools in fatigue risk management (FRM) 
programs in high-risk operational settings. These models 
commonly use factors such as homeostatic regulation, 
sleep/wake schedules, and circadian rhythm to create 
general predictions of fatigue for operators (Mallis, Mejdal, 
Nguyen, & Dinges, 2004). However, these models have 
limitations that affect the accuracy of fatigue predictions. 
They tend to predict general performance outcomes (e.g., 
cognitive effectiveness) that might not relate directly to risk 
in an operational setting. Additionally, these models 
commonly lack individualization; rather, they give fatigue 

predictions for an “average” operator (Civil Aviation Safety 
Authority, 2014; Dawson, Darwent, & Roach, 2016; Mallis 
et al., 2004). Computational cognitive models can provide a 
cost-effective and flexible means to explore the usability of 
systems through simulation (Pew, 2007). Recently, research 
has successfully integrated biomathematical models of 
fatigue with cognitive architectures (e.g., Gunzelmann, 
Veksler, Walsh, & Gluck, 2015). In the current effort, we 
work toward developing an integrated model that can 
pinpoint specific performance degradations due to fatigue in 
a complex real-world environment, and allows the inclusion 
of individual difference modulations. Specifically, we 
integrate a biomathematical fatigue model with a task 
network model (Laughery, Archer, Plott, & Dahn, 2000) to 
predict C-17 aircraft approach and landing performance 
degradations. 

 

Background 
C-17 mobility pilots and aircrew are especially susceptible 
to fatigue given unique characteristics of the operational 
environment. Basic crews and augmented crews have flight 
duty periods of up to 16 and 24 hours, respectively. Flight 
legs commonly cross multiple time zones during missions 
and missions comprising multiple legs often last several 
days. Research suggests mobility aircrew are commonly 
fatigued during missions and believe that changes need to be 
made in the mobility community to address fatigue (Morris, 
Howland, Amaddio, & Gunzelmann, 2020; Morris, Veksler 
et al., 2020). Currently, the United States Air Force Air 
Mobility Command (AMC) uses the Fatigue Avoidance 
Scheduling Tool (FAST®; Hursh, Balkin, Miller, & Eddy, 
2004) and underpinning biomathematical fatigue model, 
Sleep, Activity, Fatigue, and Task Effectiveness (SAFTE™; 
Hursh, Redmond, et al., 2004) to develop mission 
effectiveness graphs that balance fatigue with operational 
needs and recommend sleep schedules for aircrew based on 
mission information (e.g., flight leg start and end times, 
time zones, light). The SAFTE model includes a circadian 
process affecting sleep regulation and performance. Within 
the model there is a reservoir capacity which refers to an 



individual’s maximal capacity to perform tasks. This 
capacity is affected by sleep and wakefulness. When an 
individual is awake, the reservoir level decreases, and when 
an individual is asleep the reservoir is replenished. 
Accumulation in the reservoir is affected by sleep intensity 
and sleep quality. Sleep intensity is a function of time-of-
day (circadian phase) and the current reservoir level (sleep 
debt). Performance is affected by the sleep reservoir, 
circadian phase, and sleep inertia. Performance output from 
the model is a general cognitive effectiveness in the form of 
a percentage from 0 to 100% (Hursh, Redmond, et al., 
2004). Aircrew can use the resulting mission effectiveness 
graph from FAST and SAFTE to plan fatigue mitigation 
strategies. It is not known which performance metrics are 
affected in C-17 pilot operation, nor is there currently a 
mechanism to individualize these predictions within AMC’s 
general risk management program.  As a result, additional 
tools are needed to provide insights into specific 
performance metrics that are likely to be affected by fatigue 
and have the ability to incorporate individual difference 
factors that affect fatigue. 

The current C-17 approach and landing model was 
developed using a task network model. These models are 
comprised of nodes and connections that let activity flow 
through the network and provide an efficient way of 
simulating the complexities of operator/system designs 
(Hansberger & Barnette, 2005; Schunk, 2000; Swoboda, 
Katz, & Kilduff, 2005). The sequencing of various tasks and 
subtasks is integrated into task network models and each 
task/subtask is assigned to an operator. Operators, in turn, 
have properties specific to their role in the simulation and 
individual differences can be incorporated in the operator 
profile by specifying amount of military training, length of 
service, age, rank, time in position, and workload threshold 
(Hansberger & Barnette, 2005; Richardson, Mittrick, & 
Hanratty, 2016; Swoboda et al., 2005). Tasks within the 
model have preconditions that must be met to execute the 
task. When a task is executed, the state of both the 
environment and the operator change. Due to the design of 
the task network, certain subtasks can be completed 
concurrently (especially if multiple operators are present) as 
long as the operator’s workload threshold has not been 
exceeded. Task network models have been used in many 
military and commercial applications to make predictions 
about performance under varying conditions (e.g., Bloechle 
& Schunk, 2003; Laughery et al., 2000; Schunk, 2000). 

Our task network model was developed in the C3TRACE 
(Command, Control and Communication Techniques for 
Reliable Assessment of Concept Execution; Kilduff, 
Swoboda, & Barnette, 2005) task-network modeling 
environment to represent the relevant tasks and subtasks 
involved in approach and landing phases of flight for the C-
17 aircraft. C3TRACE is a modeling environment in which 
tasks, transitions, and operators can all be represented in a 
network model. It is owned by the US Army Research Lab 
(ARL-HRED) and was developed by Micro Analysis & 
Design (acquired by Alion Science and Technology) (Plott, 

2017). C3TRACE allows the modeler to encode the relevant 
task information flow and then uses a stochastic discrete 
event simulator (the simulation engine is Micro Saint Sharp 
(Bloechle & Schunk, 2003)) to output results of the 
simulation. The modeler can then evaluate various aspects 
of task performance such as operator workload, task 
execution time, etc. In particular, C3TRACE allows the 
modeler to define the magnitude of the workload 
components for Visual, Auditory, Cognitive, and 
Psychomotor (VACP) aspects of performance for each 
task/subtask. Tasks can also contain logic regarding 
execution time, “if/then” rules to dictate when tasks can be 
“released”, and the capacity to modify environmental 
variables as needed to simulate task effects (i.e., adjustments 
to plane position). In the past, C3TRACE has been utilized 
in simulating high-level team interaction because of its 
ability to integrate multiple personnel and personnel 
groupings into a model that selects operators based on 
availability (workload-based) and task priority. 
Furthermore, personnel characteristics can be modified to 
better reflect operator experience (i.e., education level, age, 
rank, time in position, workload threshold, etc.) that in turn 
can influence task performance (Cosenzo, Kilduff, & 
Swoboda, 2005). 

Model Development 
Approach and landing tasks and pilot and co-pilot 
interactions were developed based on an existing analysis of 
standard procedures and through discussions with two 
experienced C-17 pilots. The model was divided into two 
tasks: approach and landing as defined in the procedures. 
Each task was composed of several subtasks that had to be 
performed in a certain order, although some subtasks could 
be done concurrently as they required either the pilot or co-
pilot to perform them (see Figure 1). 

Approach and landing both have strong monitoring 
components (see Figure 2) as the pilot and co-pilot must 
maintain basic airplane operations such as keeping the plane 
level and slowly descending in altitude as the plane 
approaches the runway while simultaneously performing the 
necessary subtasks to ensure a safe landing (i.e., setting and 
checking altimeters, doing approach and landing checklists, 
setting the flaps, verifying glideslope, lowering the landing 
gear, etc.). The task analysis also indicated another 
monitoring task that could potentially alter the plane’s 
course if a threat was detected and a corresponding set of 
subtasks needed to be performed if that occurred. All 
monitoring subtasks were implemented in the model as 
concurrently occurring during the main approach and 
landing subtasks. Therefore, the operator’s attention had to 
be switched between the main task and the monitoring 
components. 

Several environmental variables were included in the 
model to simulate the plane flying and descending. Those 
environmental variables were controlled by a “dummy” 
operator that continuously updates the plane’s state 
variables both in response to the pilot/co-pilot interaction 



and by a basic linear drift model (see Figure 2). As the 
model runs, the plane gradually descends to the runway and 
the speed of descent (both X and Y direction) is modulated 
by variables such as flap settings. 

The task analysis informed the model’s timing of each 
subtask. C3TRACE allows the modeler to specify the mean 
and standard deviation of all timing intervals. For 
simplicity, the mean for each procedure was set to an 
estimate derived from the expert task analysis combined 
with input from the experienced pilots. A standard deviation 
of 10% was introduced to these estimates to add some 
stochasticity to the model’s results. This value was used as a 
stand in and may change with future work; however, it does 
not affect the comparisons of the models discussed below. 
As per the task analysis, each subtask was assigned an 
operator or operator group (if either the pilot or co-pilot 
could perform the task). The task analysis also provided us 
with a breakdown of which VACP components were 
utilized in each subtask and those were set accordingly to 
simulate the workload associated with each subtask. Certain 
subtasks also altered state variables (i.e., flaps). 

C3TRACE allows the starting conditions to be modified 
for each model run (i.e., the starting altitude of the plane and 
its descent rate) which can be utilized to produce predictions 
about when certain milestones will be reached during 
approach and landing (i.e., flaps are set, runway reached, 
checklists accomplished). These predictions can then be 
compared to data collected from real C-17 landings to verify 
the model’s validity. 

 

 
 

Figure 1: A sample set of subtasks required for approach. 
PM and PF indicate which operator typically does those 
tasks in order (PM: Pilot Monitoring, PF: Pilot Flying).  
 

 
 

Figure 2: Snapshot of one monitoring component of the 
model. The drifting and altitudechange tasks are 

continuously performed by a "dummy" operator that updates 
the plane's position. The monitoring loop below involves the 
pilot or copilot making adjustments to the plane as needed 

to keep it on course. 
 

Fatigue Modulation 
As an initial approach to modifying performance on this 
task and to simulate fatigue, we utilized the workload 
threshold parameter that can be set for each operator. The 
scheduler in C3TRACE assigns tasks to operators as long as 
(1) all preconditions for a given task are met and (2) the 
operator’s workload threshold is not exceeded by the 
currently running tasks. With the inclusion of the 
monitoring tasks in this model, it is very possible for the 
pilot or co-pilot to be in the process of monitoring some 
state variable and adjusting it while attempting to perform 
the necessary approach and landing subtasks. In instances 
where the VACP workload is high for a given subtask (i.e., 
visually inspecting a dial while reporting the reading and 
adjusting something else), the monitoring component may 
pose some interference especially if the operator’s current 
workload threshold is lowered (i.e., due to fatigue). 

The effects of fatigue manifest themselves in this model 
by (1) reducing how many simultaneous tasks can be 
accomplished, (2) when those tasks are scheduled, and (3) 
how long those tasks will take to complete. This has further 
implications for important state variables such as deviation 
from the ideal glideslope as monitoring tasks may be 
delayed by other tasks. Figure 3 depicts the task timeline 
showing the various subtasks as they occur during model 
execution during the first 150s of approach and landing 
(shortened to fit within paper margins) under two settings of 
workload threshold for the operators (both operators’ 
workload threshold is set to the same amount, either 20 or 
8). Of note is that as the workload threshold is reduced, the 
frequency with which monitoring and adjusting takes place 
diminishes (see Adjust Drift and Adjust Glideslope tasks 
listed in Figure 3). Furthermore, other subtasks are more 



staggered in their execution, prolonging the time to 
complete the required steps, as shown in the bottom graph 
where the bottom four subtasks are not even scheduled 
before 150s into the approach and landing procedure. Note 
that the number of simultaneous tasks that can execute is a 
function of both the workload threshold and the specific 
VACP components required for each task, so an exact 
number of simultaneous tasks will vary throughout model 
execution, but lower workload threshold will necessarily 
reduce the number of simultaneous tasks that the model can 
execute. The modification of workload threshold for 
operators is a good first approximation for modeling the 
deleterious effects fatigue has on performance. 

We can inform the setting of the workload threshold by 
using fatigue estimates from biomathematical models of 
fatigue, in this case from the SAFTE model, and scaling the 
workload accordingly. Work is ongoing to determine the 
best way to do the scaling so as to produce changes in 
performance commensurate to those seen in human data. 
The output from the SAFTE model typically produces a 
performance effectiveness score on a scale of 0-100% by 
using sleep history (Hursh, et. al., 2004). In operational 
settings, performance effectiveness values higher than 
77.5% indicate an alert individual, values between 70 and 
77.5% indicate a moderately fatigued individual, and values 
below 70% indicate high fatigue and serious risk in 
continuing operating. In the approach and landing model 
described, a workload threshold setting of 20 would 
correspond to a relatively rested individual, whereas a 
setting of 8 would correspond to serious degradations in 
performance.  

 

 

 
 

Figure 3: Task Timeline with different settings of operator 
workload threshold. 

 
Model Results 

The model was run 100 times using several settings of 
Workload Threshold for the two pilots. Preliminary results 
indicate differences in when important components of 
approach and landing procedures get executed (i.e., flaps 
deployed, speed brake set, gear lowered). In particular, 
lower levels of workload threshold resulted in significant 
delays and more variability in the timing of these subtasks 
(see Figure 4). In addition, there was an increase in the 
amount of drift observed throughout the model run as the 
operators made less adjustments to the plane (recall Figure 
3’s adjustment subtasks which are much more sparse in the 
WT=8 case).  

There are many other diagnostic variables that we can 
observe in the output from a model run in C3TRACE which 
can be compared to real world landing data. Future work 
will integrate more of these variables. 



 

 
Figure 4: Distribution in timing of when gear is set down 

and when speed brake is set for two settings of workload 
threshold (100 model runs). 

 

Discussion 
We have developed an initial model integrating fatigue 

and a task network model of C-17 approach and landing 
operations.  Currently, we modulate workload thresholds 
within the task network model with individualized fatigue 
estimates from the SAFTE model. SAFTE model estimates 
are derived from sleep estimates for individual operators. As 
a follow-on effort, we plan to validate the integrated model 
by fitting the predictions to performance metrics from actual 
C-17 flight data from an operational study. Sleep estimates 
will be derived from actigraph watches worn by pilots and 
co-pilots to generate fatigue estimates through SAFTE. The 
integrated model will allow us to identify specific 
performance degradations in the C-17 environment. This 
information can be used to develop more effective FRM 
programs and systems that link fatigue estimates to actual 
safety outcomes, a feature that is currently lacking in most 
FRM implementations (Dawson et al., 2016; Gander et al., 
2017). 
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