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Abstract 
Models of learning and retention make predictions of human 
performance based on the interaction of cognitive mechanisms with 
temporal features such as the number of repetitions, time since last 
presentation, and item spacing. These features have been shown to 
consistently influence performance across a variety of domains. 
Typically omitted from these accounts are the changes in cognitive 
process and key mechanisms used by people while acquiring a skill. 
Here we integrate a model of skill acquisition (Tenison & Anderson, 
2016) with the Predictive Performance Equation (PPE; Walsh, 
Gluck, Gunzelmann, Jastrzembski, & Krusmark, 2019) using 
Bayesian change detection (Lee, 2019). Our results show this allows 
for both better representation of an individual’s performance during 
training and improved out-of-sample prediction. 
 
Keywords: Mathematical model, Bayesian model, Hidden Markov 
model, Skill acquisition, Learning, Strategy change, Spacing effect, 
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Since the research of Ebbinghaus over a century ago, 
psychologists have studied human learning and forgetting. 
This research has resulted in three core empirical phenomena. 
First, the law of practice (Newell & Rosenbloom, 1982). With 
sufficiently frequent practice on a task, performance 
improves over time. Second, the law of decay. As the time 
between instances of exposure increases, individual memory 
starts to decay and performance gets worse. Third, the 
spacing effect. When exposures between learning 
opportunities are distributed over time (spaced practice) 
individuals are slower to acquire the information, but retain 
the information better than if given the same number of 
exposures within a short time (massed practice; Carpenter, 
Cepeda, Rohrer, Kang, & Pashler, 2012). To explain and 
predict these factors of human learning, formal models of 
learning and retention have been developed (see Walsh, 
Gluck, Gunzelmann, Jastrzembski, & Krusmark, 2018, for a 
detailed model review and comparison). In the current paper, 
we focus on the Predictive Performance Equation (PPE), a 
model of learning and retention (Walsh et al., 2018).  
 
Predictive Performance Equation (PPE) 
PPE is a mathematical model of learning and retention that 
makes performance predictions at the individual level based 
on (1) prior performance and (2) the learning schedule of an 
individual. PPE is composed of five equations representing 
three psychological factors of learning (power law of 
learning, power law of decay, and spacing).  The first factor 
is the power law of learning (Eq.1, first term), which is a 
function of N, the number of exposures to a task, a which 

represents one’s prior task knowledge, and learning rate, c, 
which is held constant. 
 

	𝑀	 = 	 (𝑁 + 𝑎)) ∗ 𝑇,-	(𝐸𝑞. 1)	 
 
The second factor is the power law of decay (Eq.1, second 
term). Temporal decay is represented using T (Eq. 2), which 
weights time by (Eq. 3), and exponent decay parameter, d.  
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The third factor is spacing effect or temporal distribution of 
practice over time, which is represented within the decay 
parameter (Eq. 4).  
 

𝑑 = 𝑏 + 𝑚 ∙ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 G 8
HIJ(HKJL)

M  (Eq.4) 

 
Spacing is accounted for using two free parameters b and m 
and cumulative average lag time. As practice events occur 
together (i.e., massed), the decay increases. As practice 
becomes distributed (i.e., spaced), the decay decreases. 
Finally, activation (M) is placed within a logistic function and 
adjusted according to a threshold parameter, 𝜏.  

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
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Model Limitations 
A limitation of PPE is that it assumes an individual’s 
performance is expected to improve or decrease according to 
a single continuous function over time. This is based on 
empirical findings of aggregate performance curves, which 
often reveal smooth performance curves following power 
laws. Research examining learning in individuals find this an 
artifact of averaging the performance of multiple individuals 
(Heathcote, Brown, & Mewhort, 2000; Gray & Lindstedt, 
2017). An individual’s performance can appear to have 
“sporadic” performance variation. These “sporadic” 
performance variations sometimes appear random but have 
been shown to reflect changes in an individual's strategy 
(Gray & Lindstedt, 2017; Tenison & Anderson, 2016) 
     These findings are consistent with research suggesting 
skill acquisition occurs in phases, where an individual uses 



 

 

different strategies and/or representations to complete a task 
(Fitts & Posner, 1967; Tenison, Fincham, & Anderson, 
2016). One such theory of skill acquisition, based on the 
ACT-R architecture, proposes that individuals go through 
three phases while acquiring a skill (Anderson, 1982). In the 
first phase, the Computational phase, the individual solves a 
problem by applying general problem-solving rules to 
achieve the solution. In the second, Associative phase, the 
problem is solved through the direct retrieval of various 
portions of the problem. In the third phase of learning, the 
Autonomous phase, the individual has created a stimulus-
response rule for a given problem. Learning during these 
phases is driven by knowledge compilation and declarative 
strengthening. It can be modeled by three separate power law 
functions and their associated parameters (i.e, intercept, 
slope, asymptote).  Prior work has used hidden Markov 
models (HMMs) to estimate these parameters and identify 
where phase shifts occur (Tenison & Anderson, 2016).  
   Currently, PPE does not represent or make predictions 
based on these learning phases. Prior research with PPE 
focused on accounting for average performance on memory 
retrieval during word association tasks and overall 
performance metrics of complex tasks (Gluck, Collins, 
Krusmark, Sense, Maaß, & van Rijn, 2019; Jastrzembski, 
Gluck, & Gunzelmann, 2006). In each of these cases, the 
assumption was a continuous performance curve moderated 
by features of the learning schedule (i.e., number of attempts, 
time between trials, spacing). Assuming a continuous 
learning curve is reasonable in these cases because average 
performance will follow standard features of learning. 
However, the argument for this assumption of a continuous 
performance curve weakens when accounting for 
performance at lower levels of aggregation. At the individual 
person learning individual skills level of analysis, there are 
often discontinuities in performance. PPE interprets these 
“sporadic” changes as noise, leading to (1) decreased 
confidence in an individual's performance, (2) a less accurate 
representation of the learning profile, and/or (3) unrealistic 
out-of-sample performance predictions. To mitigate these 
limitations a substantive mechanistic means of interpreting 
discontinuities in individual learning profiles is required.  
     In this paper, we propose and evaluate a theoretical and 
methodological integration to achieve just that. We use a 
Bayesian change detection procedure (Lee, 2019; Lee, Gluck, 
& Walsh, 2019) to identify when identifiable performance 
discontinuities occur. We then use information about these 
change points to infer changes in phase during learning and 
make predictions about subsequent performance. We refer to 
this novel implementation as TAPPED, which is an 
integration of Tenison and Anderson’s (2016) skill 
acquisition model, Walsh et al.’s (2018) PPE, and  Lee’s 
(2018) change detection procedure. To foreshadow,  the 
TAPPED model identifies similar learning phases similar to 
Tenison and Anderson’s (2016) HMM-based models of skill 
acquisition and is found to have superior predictive accuracy 
compared to PPE.  

Method 
Participants 
We used Amazon Mechanical Turk to recruit 101 participants 
(Gender: Female = 49, Age: M = 31.4, SD  = 6). All 
participants were paid $10 for participation in both 
experimental sessions and $.02 for each correct problem.  
 
Task Stimuli 
During the experiment participants completed a set of novel 
mathematics problems (Pyramid problems). Each problem is 
composed of two numbers separated by a “$” symbol (e.g., 
2$4). The first number is referred to as a base. The second 
number is referred to as the height. The base of the problem 
represents the first term in the additive sequence. The height 
of the problem represents the number of sequential numbers 
that must be added to the base. For example, if a participant 
was given the problem 3$3, then they would have to add 
together the number 3 + 4 + 5 + 6 = 18. In this experiment 
participants were given problems with bases ranging from 3 
– 6 and heights from 4 – 11.  
 
Procedure 
The experiment consisted of two experimental sessions, with 
a 66 hour lag in between them. During the first day, problems 
were displayed on the screen and participants were instructed 
to type in their answer. All participants received feedback on 
whether they were correct or incorrect. Participants went 
through 10 practice blocks, with each block including 40 
items each. Each block consisted of 40 items, with each item 
in one of four spacing conditions. Items in Spacing group 4 
were presented 25 times with 3 problems in-between. 
Spacing group 8 were presented 25 times with 7 intervening 
questions. Spacing group 16 were presented 25 times with 15 
intervening problems. Spacing group 32, were presented 12 
times with 31 intervening presentations. The second 
experimental session was given 66 hours after the first 
session and were tested on the items they practiced on Day 1.  
 
Hidden Markov Model  
We fit an adaptation of the Tenison and Anderson (2016) 
power-law skill acquisition model to the response latencies 
for the items solved during the 10 practice blocks completed 
on Day 1. We refer to this model as the Phase HMM. Only an 
overview of the HMM model is provided here, a detailed 
description can be found in Tenison and Anderson (2016). 
The HMM consists of three states, each representing the three 
phases of skill acquisition. Within each phase, we have a state 
representing each practice opportunity the participant may 
have had within that phase. After each stimulus, participants 
either transition to the first state of the next phase or the next 
state within the current phase. The HMM predicts that 
participants’ reaction times follow phase-specific power 
functions, where the opportunity count for each power 
function is determined by the current state within that phase. 
This HMM structure enables joint estimation of a 
participant’s state as well as their response latency.

 



 

 

  

 
Figure 1. The Bayesian model diagrams for TAPPED (top) and PPE (bottom).  
 
      In fitting the Tenison and Anderson model (2016) to this 
current experiment we made two changes.  First, we adjusted 
the model to account for general learning which occurs over 
the course of the task and is therefore shared across spacing 
groups (Eq 6). To do this we extended the skill specific model 
to capture general learning using the general learning 
equation derived from ACT* (Pirolli and Anderson, 1985). 
Second, we expanded our model fitting procedure to identify 
which parameters should be shared between items of different 
spacing groups. We fit eight models to the data, exploring 
whether sharing learning rate (𝛼), transition probability 
(𝜋8[	𝜋[\), and scale (𝛽^_K`a) across spacing groups improved 
the fit of the model. 
 
𝜇cad = 𝛽^_K`a𝑛`^a)4e4),KfghiLjLi × 𝑛Ja7acKH,Klhmhnop 	(𝐸𝑞. 6) 

 
Table 1. Parameters for best fitting HMM  

Spacing 
group 

𝛽)Ir^sdKd4I7  𝛽K``I)4Kd4ta  𝛽KsdI7IrIs`  

4 9.97 3.6 1.8 
8 11.5 4.6 2.0 
16 12.0 5.1 2.1 
32 12.0 4.6 1.9 
Parameters shared across spacing group 

𝑎Ja7. 𝑎`^a). 𝜋8[ 𝜋[\ 
-.05 -.07 .12 .09 

 
All models were compared using BIC. We found that the 
model that estimated unique scale parameters for each 
spacing group shared transition parameters and a shared 

learning rates fit best (Table 1; BIC = 119,517.2). This model 
fit the data better than more complex models with all unique 
parameters (BIC= 119,530.7) and simpler models with all 
shared parameters (BIC = 119,672.5).  We list the parameters 
of our final model in Table 1.  For each practice opportunity 
of each item, the model generates a likelihood of being in 
each state of the HMM.  This can be translated into discrete 
Phase labels. We use these labels in our comparison with the 
TAPPED model. 
 
 
Bayesian Models 
The Bayesian implementations of TAPPED and PPE are each 
represented as a graphical model (Koller, Friedman, Getoor, 
& Taskar, 2007) (Figure 1). A graphical model format allows 
each variable, variable type, and the dependencies across 
variables to be observed.  All observable variables (e.g., 
participant’s response on a given trial – RT) are represented 
in shaded circles. PPE’s estimated free parameters (b, m, a, τ 
) are represented as unshaded circles. Stochastic variables are 
represented with a single open circle, while deterministic 
variables are represented with two circles. The multiple panes 
represent redundancies for the different participants (i), and 
events (j). 
     The PPE (bottom graph) and TAPPED (top graph) (Figure 
1) models are similar in their overall structure. Both models 
are run over a participant’s (i) performance on a particular 
pyramid problem (item – j). For each participant the model 
estimates values for each of PPE’s free parameter values (b, 
m, a, τ). The difference is in the number of different free 
parameters each model uses to account for participant 
performance during the 1st day. The PPE model (Figure 1 –
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Figure 2. The round by round proportion of each phase of learning (Computational — black, Associative — red, and Procedural 
— blue) estimated with the Phase HMM (Open circles) and the TAPPED model (stars). 
 
 bottom figure) estimates only one value of each of PPE’s free 
parameters for the participant’s performance on a given item 
during the 1st day. However, the TAPPED model (Figure 2) 
can estimate up to 5 different values for each of PPE’s free 
parameters, depending on the number of change points 
estimated by the model (T). Change points are estimated 
using a spike-and-slab prior (T) (Lee, 2019). After parameters 
are estimated for a portion of the learning curve (wij) from the 
prior distribution, they are combined with the participants’ 
observed time variables (lagj, T, Nj), and PPEs fixed 
equations  
to create a performance estimate (Predj) for a given trial. The 
performance estimate (Predj) is then combined with a  
precision parameter (ki) in a beta distribution to develop a 
prior distribution for the likelihood function. Because PPE is 
developed to predict accuracy, reaction times (Perf) were 
transformed to a proportion by dividing their reaction time by 
a maximum reaction time of 7 minutes. The opposite 
transformation was used to get PPE’s predictions represent 
reaction time for all of the preceding results by multiplying 
PPE’s predictions by 7 minutes.  
     Additionally, during the student’s 1st day of performance, 
the TAPPED model also inferred the phase (i.e., 
computational, associative, procedural) of learning that each 
individual was in before and after each unique change point 
(z). Each of the three learning phases (declarative, 
associative, and procedural), was identified based on 
response times estimated from the Tenison, Fincham, and 
Anderson (2016) empirical data distribution. The estimations 

of the individual’s phase were then used to make predictions 
of the participant’s subsequent performance. Predictions the 
participants performance of the 2nd experimental session were 
generated by using parameters estimated for the highest 
learning phase obtained during Day 1 performance.  

 
Results 

First we will examine the similarity between the inferences 
of the participants’ phases of learning estimated by Tenison 
and Anderson (2016) (Phase HMM) and our TAPPED model. 
A comparison between the two models’ results allows us to 
evaluate the extent to which they reach converging inferences 
about learning phase. Second we will use the estimation of 
phases from the participants’ performance during the 1st day 
to make theory-driven predictions of the 3rd day and compare 
these to the PPE.  
 
Behavioral Effects  
For this analysis, we only considered spacing groups with the 
same number of total practice opportunities (i.e. SG-4, SG-8 
and SG-16).  Rather than rely on accuracy, which is high 
across all spacing groups, we used response latency to verify 
the impact of spacing on performance.  A repeated measures 
analysis of variance (ANOVA) run on mean latency data (log 
transformed) revealed a significant main effect of spacing 
group (F(2,174)=97.6, p < .001) and practice opportunity 
(F(1,87)=684.7, p < .001). The interaction between spacing 
group and practice was not significant (F(2,174)=1.7, p = .2).  
During the initial practice period, items that experience



 

 

 

   
Figure 3. The mean performance of participants +/- 95% CI (black line and shaded ribbon) and the TAPPED +/- 95% HDI 
and PPE +/- 95% HDI  calibration and prediction for the 4 spacing conditions.  
 
An greater delay between practice opportunities take longer 
to solve than those with less delay between practice 
opportunities.  We ran a repeated measures ANOVA to 
explore the impact of spacing on the response latency three 
days after the initial learning period.  For the first opportunity 
on Day 3, we see a significant main effect of training 
(F(2,174)=8.8,p<.001) on problem solving latency (log 
transformed).  The benefit of spaced practice is present in the 
faster response latency for spaced items, SG-4(M = 6.2s, SD 
= .3), SG-8 (M = 5.9s, SD = .3), SG-16 (M = 5.1s, SD = .3).  
These analyses confirm the presence of the spacing effect 
within our experiment.  
 
Phase Comparison 
     To compare phases of learning inferred by the Phase 
HMM and the TAPPED model, the per round proportions of 
each phase (i.e., computational, associative, procedural) 
during the course of the first day in each of the 4 spacing 
conditions were compared (Figure 2). Across the four spacing 
conditions, a high degree of similarity is seen in the phases of 
learning estimated by the Phase HMM model and the  
TAPPED model (r = .87, RMSD =  .10).  

     The greatest divergence between the two models is seen 
during the initial performance events (Rounds 1-3). Phase 
HMM model assumes that participants must sequentially go 
through all three phases of learning starting with the 
computational phase. This is why that model interprets 100% 
of participants as starting in the Computational phase. 
TAPPED does not share these assumptions, allowing for any 
phase of learning to be estimated at any point in time during 
the experiment for a given change point. Despite these 
differences, the TAPPED model converges to inferences 
similar to those of Phase HMM’s model. This is evidence that 
the Bayesian change detection method of Lee (2019) is 
functionally approximating the output of the HMM used by 
the Phase HMM.  
 
Day 1 – Calibration 
To compare how well each model calibrated to each of the 
participant’s performance during the 1st day, the PPE and 
TAPPED model are compared across the four spacing 
conditions (Figure 3) evaluation of each model’s fit reveals 
two findings. First, the average performance estimate of both 
the PPE and TAPPED model fit participant average 



 

 

performance quite well during the 1st day across each of the 
4 spacing conditions. 
 
Table 2. The correlation (r) and root mean squared deviation 
(RMSD) and the percent the participant’s performance that 
falls within the predicted 95% HDI  (% Pred) of the fits of 
TAPPED and PPE during the first experimental session.  

  TAPPED PPE  
Spacing r RMSD % Pred r RMSD % Pred 

4 .93 1.32 93% .76 2.14 84% 
8 .94 1.46 92% .77 2.69 82% 
16 .93 1.68 90% .77 2.87 77% 
32 .98 1.05 96% .81 2.99 77% 

 
    Although differences are observed in model fits of 
participants’ individual learning curves, across the four 
spacing conditions, TAPPED has a higher correlation and 
lower RMSD with the individual participants compared to 
PPE (Table 2). TAPPED calibrates much more closely to 
individual performance during the 1st day. These better 
performance fits result from the fact that TAPPED selectively 
calibrates to separate portions of the participant’s learning 
profile. While in contrast, PPE attempts to account for all the 
participant’s first day performance with a single performance 
curve. 
 
Day 3 – Predictions 
Based on each model’s calibration to the performance of 
participants during the 1st day, performance predictions were 
generated for each individual participant on the 3rd day 
(Figure 3). Over this period of time, the uncertainty each 
model has in the individual’s performance increased. This 
uncertainty is reflected in the increase in the size of each 
model’s 95% HDI. Though the uncertainty in predictions 
increases, there are differences between the two models’ 
predictions. Over each of the 4 spacing conditions, PPE 
predicts slower initial and ongoing performance on the 3rd day 
– much slower than the human data. In contrast, TAPPED 
predicts faster initial and ongoing performance, much closer 
to the actual human experiment results.  
 
Table 3. The correlation (r) and root mean squared deviation 
(RMSD) and the percent the participant’s performance that 
falls within the predicted 95% HDI (% Pred) of the 
predictions of TAPPED and PPE during the second 
experimental session.  

  TAPPED PPE 

Spacing r RMSD 
% Pred 

r RMSD 
% 

Pred 
4 .30 3.70 75% .39 6.43 51% 
8 .36 3.25 73% .43 5.23 54% 
16 .40 3.15 74% .50 4.50 54% 
32 .36 3.13 61% .49 3.88 64% 

 
    The out-of-sample correlation and RMSD increase in both 
models across each of the 4 spacing conditions, relative to 
Day 1. PPE (Table 3) has a higher r but higher RMSD 

compared to TAPPED (Table 3). The overall decrease in the 
correlation between the models’ predictions of the 3rd day is 
expected. However, in addition to how well the model 
captured learning during the 3rd day, we are interested in the 
accuracy of each model’s predictions. To investigate this we 
calculated the percentage of response times that fell within a 
model’s predicted 95% HDI. With the exception of the SG32 
spacing condition, TAPPED had a greater predictive 
accuracy compared to PPE (Table 3). Here it is seen that 
TAPPED, despite having a lower correlation compared to 
PPE, was able to better predict the participants’ actual 
performance data. This result suggests TAPPED’s additional 
complexity is warranted, given its ability to predict out-of-
sample performance.  

 
Discussion 

The results presented in this paper revealed several 
interesting findings. First, a comparison of the inferences of 
learning phase by TAPPED to Phase HMM during the 1st day 
of performance found a high degree of similarity. Differences 
between the two model’s inferences about learning phases 
stemmed from the assumptions about the sequences of phase 
transitions over time. This particular Phase HMM assumes a 
strict sequential transition between learning phases and does 
not allow for regression back to previous learning phases. In 
contrast, TAPPED holds no such assumptions. These 
differences between the two models’ assumptions lead to a 
particular disagreement in inferences of the participant’s 
initial phases of learning during the 1st several trials. This 
added flexibility of TAPPED provides a more realistic model 
of skill acquisition in which forgetting can occur between 
problems. While this matters less in a highly focused training 
paradigm where forgetting is less likely, in more spaced and 
varied training paradigms this is a strength over the Tenison 
and Anderson (2016) model. Despite the differences in the 
assumptions of learning phase transitions between the two 
models, the high degree of similarity of the classification of 
learning phase over the 1st day suggest that both models are 
capturing similar aspects within the data. 
     We also compared TAPPED to PPE, contrasting how each 
model accounts for participant performance during the 1st day 
and predicting participant performance on the 3rd day. 
TAPPED was able to better fit participants’ performance 
during the 1st day compared to PPE. This is due to the fact 
that the TAPPED has a greater number of parameters and was 
able to selectively fit to the performance curve of the 
individual. Despite TAPPED’s additional complexity, this 
model better predicts performance on the 3rd day. This 
increase in accuracy comes from the fact that the TAPPED 
model demarcated and classified changes in a participant’s 
performance and used information from the participant’s 
most recent stage of learning to make a prediction.  
     In contrast, PPE developed predictions based on all of a 
participant’s data from the first day, leading to predictions of 
much slower performance on Day 3. The only exception to 
these regularities were seen in the longest spacing conditions, 
where the performance of both models is nearly equal. The 



 

 

improved performance in PPE could have been due to the 
nature of the spacing manipulation. The highly spaced nature 
of the 32-item spacing condition could have decreased abrupt 
changes due to changes in phase in an individual’s 
performance allowing for the PPE to better capture and 
predict performance during the 2nd experimental session. 
However, further exploration is needed and future research 
should address the similarities and differences between 
TAPPED and PPE when fitting and predicting items on a 
longer spaced schedule. Furthermore, future research should  
investigate using TAPPED in a more complex learning tasks 
where individuals might go through successive iterations of 
the three learning phases addressed in this paper or vary in 
their proficiency in which they learn a particular skill. 
Understanding these subtle fluctuations or differences in 
performance is important for being able to predict 
performance at the individual item level.  
    In summary, models of learning and retention often 
account for performance at a given time based on an 
individual’s prior performance and temporal features of study 
and practice history. Often these models do not represent the 
cognitive mechanisms or changes in cognitive mechanisms 
individuals use when acquiring a particular skill and how 
these particular mechanisms might interact with the 
presentation history of the learned material. Our results 
suggest that detecting and modeling learning phases can 
improve predictive validity.   
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