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Abstract

The universal flexibility of biological systems needs to be re-
flected in cognitive architecture. In PRIMs, we attempt to
achieve flexibility through a bottom-up approach. Using con-
textual learning, randomly firing of a set of instantiated prim-
itive operators are gradually organized into context-sensitive
operator firing sequences (i.e., primordial “skills”). Based
on this implementation, the preliminary results of the model
simulated the averaged single-pattern processing latency that
is consistent with infants’ differential focusing time in three
theoretically controversial artificial language studies, namely
Saffran, Aslin, and Newport (1996), Marcus, Vijayan, Rao,
and Vishton (1999), and Gomez (2002). In our ongoing work,
we are analyzing (a) whether the model can arrive at primor-
dial “skills” adaptive to the trained tasks, and (b) whether the
learned chunks mirror the trained patterns.
Keywords: cognitive flexibility; contextual learning; language
acquisition; processing efficiency; PRIMs architecture

Introduction
From epigenetics to behavioral appropriateness, adaptability
is ubiquitously observed at each level of biological systems
(see Bateson & Gluckman, 2011). Cognition, in particular,
may well be the most flexible system of all, which contrasts
the deterministic approach in cognitive theories and model-
ing. To show that cognitive flexibility is possible, we use
a generally-implemented model to simulate the learning of
three specific language tasks by infants (for a review, see Saf-
fran & Kirkham, 2018). The reasons are as follows. Firstly,
it agrees with the consensus that language is one of the most
crucial aspects of cognition (Newell, 1990; Rumelhart & Mc-
Clelland, 1986). More importantly, the acquisition of lan-
guage highlights the pivotal role of flexibility and adaptabil-
ity. Last but not least, young infants cannot be instructed as
how to acquire a language, therefore motivating a hard-code
free approach.

In the following sections, an introduction of the three rep-
resentative tasks is provided, before describing the common
mechanism that learns all three tasks. We then compare the
models’ predictions to empirical data.

Three Language Phenomena
Without being endowed a priori with a native language, very
young infants are sensitive to speech sounds (e.g., Kuhl,
Williams, Lacerda, Stevens, & Lindblom, 1992), and are al-
ready discovering word forms within their first year of life
(e.g., Jusczyk & Aslin, 1995). Such pioneering findings

opened up a field focusing on infant language learning (see
Saffran & Kirkham, 2018). However, it remains an open
question as how infants can (a) identify atomic elements such
as syllables (atomicity); and (b) compose atomic elements
lexically and/or syntactically to form words or phrases (com-
positionality). This paper focuses on compositionality with
the assumption of atomicity. In other words, it concerns
the learning mechanism that connects lower-level syllables
to higher-level words/phrases (Taatgen, 2017). This focus is
discussed when the following tasks are introduced (see Fig-
ure 1).

a b a 7mo, Marcus et al. (1999)

8mo, Saffran et al. (1996)

17mo, Gómez (2002)

X Y Z

X a Y

Figure 1: Three representative language tasks ordered based
on developmental trajectory. Note: lowercase letter = vari-
able token; uppercase letter = fixed token.

In Saffran et al.’s (1996) study, 8-month-olds are presented
with an uninterrupted speech stream formed by randomly
concatenating four fixed trisyllabic words in the form of X-
Y-Z (see Figure 1). After the learning phase, infants are
examined with a set of test words. Infants show more at-
tention to novel non-word (e.g., “da-pi-ku”) or part-words
(“tu-da-ro”) as compared to test words directly taken from
the training phase (e.g., “da-ro-pi”). Saffran and colleagues
(1996) interpreted their results from a connectionist perspec-
tive. They considered that infants’ differentiation of speech
streams is related to the acquirement of embedded transi-
tion probabilities between adjacent word-syllables (statisti-
cal learning). Nevertheless, the differentiation of speech
streams at the global level does not fully explain whether
word forms are learned/segmented. To verify this further, in
a follow-up study, 17-month-old infants performed a label-
object association task after listening to a continuous stream
of words (Estes, Evans, Alibali, & Saffran, 2007). During



the habituation phase, shapes (i.e., objects) are either pre-
sented with words or other untrained non-words/part-words
(i.e., labels) until a habituation criteria is reached. In the test
phase, object-label pairings are switched to induce dishabitu-
ation. However, only when the labels are words versus non-
word/part-words was the dishabituation detected, which im-
plies that wordlike units are necessary for label-object associ-
ation, and needs to be learned during the training phase. Sim-
ilarly in modeling studies, previous simulated results were
more in line with empirical findings when both token-level
transitional probabilities and the generation of word-level pat-
terns were taken into consideration (see Mareschal & French,
2017). These altogether support that infants are able to com-
pose atomic elements into basic lexical units.

In contrast, Marcus et al. (1999) argued that pure connec-
tionist learning account may not be applicable in all situa-
tions, and that syntactic structure is needed to recognize gen-
eralized pattern types. They showed that 7-month infants
seem to be able to derive the more general a-b-a pattern,
after being presented with a series of trisyllabic patterns of
“le-we-le”, “ga-ka-ga” and so on (see Figure 1). Infants fo-
cus distinctively more on the novel test patterns of c-d-d and
c-c-d, as compared to the familiarized test pattern of c-d-c,
even when the specific tokens are replaced. Marcus et al.
(1999) therefore showed that infants are able to generalize
even though there exist no transitional probabilities between
the learned and test patterns (algebraic learning). However,
their argument that infants possess innate ability of syntactic
processing (e.g., knowing “the 1st token predicts the 3rd” in
a-b-a) is not in line with empirical findings. In fact, infants
generally needs to be more than 1-year-old to distinguish non-
adjacent syntactic relations (e.g., Gómez & Maye, 2005). Al-
ternatively, more recent studies have shown that younger in-
fants (7-month-olds) are instead attuned to immediate repeti-
tions without being able to acquire the full trisyllabic pattern
(e.g., Wagner, Fox, Tager-Flusberg, & Nelson, 2011). Our
previous model shows that the learning and transfer of alge-
braic patterns can be achieved in a bottom-up fashion when
immediate repetition are rewarded (Ji, van Rij, & Taatgen,
2019). Therefore, the findings of Marcus et al. (1999) may
only captures infants’ ability to identify a particular element
as it is (i.e., atomicity), rather than the capability to under-
stand syntax fully. However, this is not to say that infants
cannot learn syntactic structures. Research in syntactically-
relevant non-adjacent dependency learning is championed by
Gómez and colleagues. Taken non-adjacent pairs in the form
of X-a-Y as an example (e.g., “pel-a-rud”, see Figure 1), when
variability of the middle token a (i.e., 24 variations) renders
transitional probabilities unreliable to capture the regularity
of that pattern, 17-month-old infants counterintuitively are
better able to differentiate them by focusing more on novel
non-adjacent pairs (“pel-a-jic”) than learned ones (Gomez,
2002). Infants are therefore able to shift strategies (Saffran &
Kirkham, 2018, p. 190), suggesting diverse form of language
compositionality either by lexicon or syntax.

One Architecture that Learns

Although the theory of artificial language learning remains
controversial, it is indisputable that infants have the ability to
deal with all tasks. However, usually in the ACT-R model,
stimulus-response production-rules related to task process-
ing need to be artificially defined. Thus, the discovery and
learning process of infants cannot be well simulated. For the
problem of skill acquisition, Taatgen and Lee (2003) first pro-
posed the learning strategy of production compilation and in-
corporating it into ACT-R. Through production compilation,
general production-rules are combined into task-specific rules
adapted to the task-demand. As early as 2002, Taatgen and
Anderson (2002) boldly applied procedurally-related produc-
tion compilation in children’s language learning, and shows
how regular past-tense rule can be learned as a specialization
of more general rules. Until recently, the procedural hub of
basal ganglia is viewed as relevant not only to motor learn-
ing, but also to many other skill domains including language
(see Stocco, Lebiere, & Anderson, 2010, Kotz & Schmidt-
Kassow, 2015). Nevertheless, the firing conditions (i.e., con-
text or goal-state) and information processing flow of general-
purpose production rules still need to be programmed manu-
ally. Moreover, production compilation is operated at the pro-
cedural level, but learned skills are often transformed as long-
term declarative knowledge that can be transferred/reused in
different scenarios (see Stocco et al., 2010).

For the same question of incorporating skill acquisition in
a cognitive architecture, we propose a new bottom-up ap-
proach that seeks to organize primitive elements of procedu-
ral knowledge into context-sensitive stimulus-response rules
through trial-and-error. These rules are maintained in declar-
ative memory and can be transferred in other task contexts
once necessary. The specific contextual learning mechanism
to achieve this is inspired by the action selection process of
basal ganglia and related cortical areas (see Stocco et al.,
2010, Dehaene, Meyniel, Wacongne, Wang, & Pallier, 2015).
The basal ganglia is a reinforcement learning hub that syn-
thesizes contextual signals from multiple cortical areas and
connects them with corresponding responses, and relays re-
sponse outcomes gradually to the cortex to be maintained and
integrated with contextual information. When a task-related
reward state is reached, the cortex then fine-tunes the associ-
ation between the contexts and specific primitive procedural
elements to promote the rearrival at such task-relevant reward
state. For infants’ performance on artificial language tasks,
Saffran and Kirkham (2018, p. 195) similarly suggests that re-
inforcement learning maybe a crucial candidate for language
acquisition. It is possible that such reinforcement learning
of language skills is supported by the cortico-basal ganglia
mechanism (Kotz & Schmidt-Kassow, 2015).

In addition, the fine-tuning of contextual learning requires
predefined reward states. Empirical evidence for these states
are provided by Wagner et al. (2011). It is found that younger
infants are more susceptible to the changing environment,
especially the exogenous repetition of simple stimuli. For



slightly older infants, these simple environment-driven re-
actions are gradually replaced by the endogenous detection
of more complex embedded regularities that are mirrored in
memory. The learning from simple elements to more com-
plex patterns is also reflected in animal studies. In one study,
a saccade task with four targets is presented to the macaques.
At the beginning of training, basal ganglia and related corti-
cal areas respond to all single targets. However, cellular re-
sponse in later stages is limited to only the sequential bound-
ary made up of the four targets (see Dehaene et al., 2015,
p. 5). These results support that the basal ganglia-inspired
contextual learning mechanism may be the key to the transi-
tion from atomicity to compositionality.

The purpose of this article is to provide a proof of con-
cept for the bottom-up learning approach. Through contex-
tual learning, we investigate whether the model can provide
a unified description on three theoretically controversial arti-
ficial language tasks, namely Saffran et al. (1996), Marcus et
al. (1999), and Gomez (2002). In this article, our first task is
to simulate and explain the experimental results, that is, fo-
cusing time differences. Currently, we are still analyzing the
procedural and declarative knowledge acquired by the model
under different task conditions.

Model
The model is implemented in the PRIMs architecture (see
Taatgen, 2013). In PRIMs, operators are equivalent to
production-rules, but with slightly different nature (van der
Velde, 2018). Like ACT-R, operators are if-then rules that de-
fine how information are routed and compared between per-
ceptual and memory buffers. Moreover, these operators can
be further broken down into their smallest units (i.e., prim-
itive operations). Contrary to ACT-R, in PRIMs operators
share the properties of chunks, including base-level activa-
tion and spreading activation from the buffers. This is be-
cause procedural operations will eventually be stored in cor-
tex to be used in future scenarios (Stocco et al., 2010, p. 548).
Therefore, operators can be triggered based on its associa-
tions with the current buffer contents (i.e., the immediate con-
texts). For example, and operator can be triggered by a certain
auditory input, or by a previously executed operator. Asso-
ciations between the operators and the contexts are learned
through reinforcement learning. This partially replaces goal-
states that used to be explicitly defined for action selection
with production-rules. The gradual acquisition of context-
sensitive operations increases the flexibility of the architec-
ture, and opens up a method of exploration-based learning.

Primitive Operations Primitive operations are the small-
est units of production rules. They route and compare in-
formation between different buffers. In this model, environ-
mental inputs can be encoded successively to the slots of the
imaginal buffer. For example, the previous stimulus X fills
the currently empty slot (e.g., slot-2, if slot-1 is filled) in the
imaginal, the next stimulus Y can only fill the next free slot
(e.g., slot-3). Encoding of the environmental stimulus in the

Exogenous

input = imaginal(slot1)
input = imaginal(slot2)
input = imaginal(slot3)
input = imaginal(slot4)

input <> imaginal(slot1)
input <> imaginal(slot2)
input <> imaginal(slot3)
input <> imaginal(slot4)

input = declarative(slot1)
input = declarative(slot2)
input = declarative(slot3)
input = declarative(slot4)

input <> declarative(slot1)
input <> declarative(slot2)
input <> declarative(slot3)
input <> declarative(slot4)

Endogenous

imaginal(slot1) = declarative(slot1)
imaginal(slot2) = declarative(slot2)
imaginal(slot3) = declarative(slot3)
imaginal(slot4) = declarative(slot4)

imaginal(slot1)<> declarative(slot1)
imaginal(slot2)<> declarative(slot2)
imaginal(slot3)<> declarative(slot3)
imaginal(slot4)<> declarative(slot4)

Reward(exo.)

Reward(endo.)

Figure 2: Comparison operations and reward preferences.
Note: exogenous = comparisons with input; endogenous =
comparisons with declarative unit; Reward(exo./endo.) = Ex-
ogenous/endogenous reward preferences.

imaginal also automatically starts the retrieval of the declar-
ative memory chunk containing the stimulus, and the chunk
with the highest activation and exceeding the retrieval thresh-
old can be harvested. When the imaginal buffer is cleared
(in PRIMs, this is achieved when “nil” is filled into imaginal
slot-0), the chunk stored in the current imaginal will then be
stored in the declarative memory as a whole.

When memory buffers and/or input buffers are not empty,
another series of comparison operations can be fired to check
whether there is match/mismatch between the buffer slots.
Comparison operations in this model are categorized into ex-
ogenous and endogenous types (see Wagner et al., 2011). Ex-
ogenous operations check whether the immediately presented
stimuli matches/mismatches the slot in the chunk currently
stored in imaginal or retrieved from declarative memory. The
reward state is to detect any immediate matches between in-
put and the memory buffers (i.e., Reward(exo.), Figure 2).
Endogenous operations check whether the currently encoded
pattern by slot mirrors the pattern as retrieved from declara-
tive memory. The reward state is to find a mismatch that iden-
tifies the pattern boundary (i.e., Reward(endo.), Figure 2).

A Walk-Through Example Here, we describe one possi-
ble processing solution to the specific pattern of “le-we-le”.
Suppose the model has already learned the bigram “le-we” in
declarative memory. When the first input “le” is encoded into
imaginal slot-1, the automatic retrieval process may harvest
“le-we”. Consequently, with the encoding of the second in-
put “we”, the model may find the syllable is now matched be-
tween slot-2 of the imaginal and the declarative chunk. How-



ever, after the encoding of the third input “le”, a mismatch
maybe found between slot-3 of the imaginal and declarative
chunk (i.e., an empty slot), which suggest the current pre-
sented pattern are different from the memorized pattern at the
global level. This time, the endogenous reward state is ar-
rived. If there is sufficient time the model will strengthen as-
sociations between all fired operations and their correspond-
ing contextual buffer states that lead to the reward.

On the other hand, the model may also process the pat-
tern in an exogenous manner, and just find that the encoded
first syllable “le” in imaginal slot-1 is repeated when the third
“le” is presented. If the operations and related buffers states
are reinforced after this reward state is reached, the model
may alternatively oriented towards the detection of immedi-
ate repetition.

Learning Mechanism The learning mechanism binds op-
erations to their contexts in accordance with the reward pref-
erence. When a particular reward state is satisfied, the associ-
ations between operations and the contexts are strengthened:

∆S jik = β ( payoff−S jik ) (1)

where

payoff fired =
maxS jik × ( reward - timeToReward )

reward
(2)

At the same time, the bond between unused operations and
the contexts are weakened by the payoff term:

payoff unfired =
maxS jik × ( 0 - timeToReward )

reward
(3)

In this function, association weight Sjik is updated every
time when an reward is issued. Here, j denotes the spe-
cific operation fired, and ik denotes the associated context in
buffer i and slot number k. The beta is a learning rate param-
eter, whereas the payoff term specifies how much context-
operation association weights are updated each time. Specifi-
cally, timeToReward is the firing time of each used operation.
Reward is the sum of the set reward parameter (Reward0 =
10.0) and the “trial” duration (i.e., previous to current reward
time). After the rewards are issued, the imaginal is cleared,
and the next “trial” now starts afresh.

Timing Consideration From birth to the age of 2 years,
processing efficiency undergoes dramatic age-related changes
without altering structure of the brain (see Dubois, Adibpour,
Poupon, Hertz-Pannier, & Dehaene-Lambertz, 2016). This
means that young infants are only able to fully process a stim-
ulus when presentation is sufficiently long (see Chen, Peter,
& Burnham, 2016). In the current model, the interaction
between stimulus duration and the rate of operation firing
is specifically considered. Operation firing takes time, and
when the stimulus duration is short, the per-stimulus opera-
tion firing rate will be reduced accordingly. In addition, if
the operator processes have not yet ended when the presenta-
tion of the current stimulus has ended, the processing time of

the operation would therefore exceed the presentation of the
stimulus. In this case, the processes of the upcoming stim-
ulus would be less sufficient as if its presentation time has
been reduced. In this model, it is so far arbitrarily set that the
stimulus would be completely ignored when the time window
for processing a stimulus is reduced to less than 10% of the
objective stimulus presentation time.

Object of Evaluation Based on the general implementa-
tion, it is investigated whether infants’ differential focusing
time for different task conditions can be simulated by a sin-
gle model. Our simulation and experimental results apply
different time scales. The experimental results investigate
the overall focusing time for all patterns in the test phase,
whereas the simulation results focusing on the averaged time
required to process a single pattern in the test phase. The rea-
sons are as follows. First of all, we do assume that processing
latency of a single pattern is related to the overall focusing
time. When the infants need to spend more time to process a
pattern, then the remaining task-irrelevant gap will be short-
ened accordingly. In this case, the probability of the infants
deviating from the task is relatively small, so the overall fo-
cusing time will be relatively high. However, if the infants
are now familiar with the pattern and can effectively process
it, task-irrelevant gap will increase. At this time, the possi-
bility that the infants deviate from the task will also increase,
resulting in a decrease in the overall focusing time. However,
for the current model, we do not know what the cause and
duration when infants divert from the task. There are many
possibilities, such as when an infant is captured by other in-
teresting environment stimuli (external causes), or the needs
for food or play (internal causes). It is much more difficult to
reflect these factors in the current model. Therefore, we only
consider the single-pattern processing latency of the learned
and novel patterns after training, and assume the difference
in processing latency would reflect the overall difference in
focusing time. Specifically, duration from each stimulus on-
set to its last operation firing time are summed and averaged
for each pattern. Note that when the operation/s cross the
next stimulus boundary, the stimulus input onset will be de-
layed. In the next section, details of each task conditions are
described, followed by the simulated results.

Experimental Details
Saffran et al. (1996) In this task, infants are first pre-
sented with a training stream of continuous trisyllabic pat-
terns. These trisyllabic patterns include four words in the
form of X-Y-Z (i.e., “pa-bi-ku”, “ti-bu-do”, “da-ro-pi”, and
“go-la-tu”). These four words are concatenated randomly
with no interval between them. After training, the experi-
ments 1 and 2 further test whether infants exhibit a differ-
ence in the duration of focusing time on trained words versus
untrained patterns during the test phase. The tested trained
words are directly taken from two words presented during the
training phase (i.e., “pa-bi-ku”, and “ti-bu-do”), whereas the
structure of untrained patterns and trained words have differ-



ent transitional probabilities to the trained words. In Experi-
ment 1, the untrained non-words (i.e., “da-pi-ku”, “ti-la-do”)
share no transitional probabilities (p = 0) with the trained
words. In Experiment 2, the untrained part-words (i.e., “tu-
da-ro”, and “pi-go-la”) share some transitional probabilities
(p = 1

3 ) with the trained words, as if the part-words are cross-
ing over the word boundaries.

Marcus et al. (1999) The study investigated whether af-
ter training a certain type of trisyllabic patterns, infants show
differential focusing time to the tested same and different pat-
tern types with replaced tokens. In other words, the trained
and tested patterns share no transitional probabilities. In the
original experiment, the stimulus properties of experiments
2 and 3 are better-controlled. In Experiment 2, the training
patterns are of the type a-b-a or a-b-b, and the test pattern
types contain c-d-c and c-d-d. Similarly, in Experiment 3, the
training patterns are of the type a-b-b or a-a-b, and the test
pattern types are c-d-d and c-c-d. In this study, results regard-
ing consistent and inconsistent type to the trained pattern are
collapsed together. For all training patterns, there are four in-
stantiations relates to the repeated syllables (a-b-a, a-b-b, or
a-a-b; i.e., “le”, “wi”, “ji”, and “de”); and two instantiations
for non-repeated syllables (a-b-a, a-b-b, or a-a-b; i.e., “di”,
“je”, “li”, and “we”). For the patterns in the test phase, the
instantiations of repeated (c-d-c, c-d-d, and c-c-d; i.e., “ba”,
“ko”) and non-repeated syllable (c-d-c, c-d-d, and c-c-d; i.e.,
“po”, “ga”) are replaced.

Gómez (2002) The study investigated whether after train-
ing non-adjacent dependent X-Y patterns, infants show dif-
ferential focusing time on the same X-Y pattern from other
untrained X’-Y’ non-adjacent dependent patterns. Here, the
meaning of non-adjacent dependency is that the fixed tokens
X and Y are not adjacent to each other, but separated by a
variable token a in the form of X-a-Y. In the training phase,
X-Y has two instantiations (i.e., “pel-rud”, “vot-jic”). They
are divided into three conditions based on the variability of
the middle token a. In the first condition, a has only 3 vari-
ants, while in the second and third conditions, the variability
of a increases to 12 and 24 variants. The instantiation of a
includes “wadim”, “kicey”, “puser” and so on. During the
test phase, it is then investigated whether infants can distin-
guish the same X-Y and different patterns X’-Y’ after each of
the three training conditions. The same test X-Y patterns are
consistent with the training phase (i.e., “pel-rud”, “vot-jic”)
and are separated by a variable token a that includes three
variants. Similarly, the different test X’-Y’ patterns uses the
reverse of X-Y (i.e., “pel-jic”, “vot-rud”), which also includes
a 3-variant middle token a.

Task Lengths In the empirical studies, the presentation
time of trisyllabic patterns in different tasks varies greatly.
Specifically, in Saffran et al. (1996), the presentation time
of each trisyllabic pattern is 750 ms (250 ms/syllable) with-
out inter-pattern interval (note though that a 500 ms inter-
pattern interval is added during the test phase). In Marcus

et al. (1999) and Gomez (2002), trisyllabic pattern are each
presented for 1500 ms (500 ms/syllable) with an inter-pattern
interval of 1000 ms and 500 ms respectively. In other words,
the numbers of patterns trained in the Saffran et al. (1996)
greatly exceeded the other two tasks. In the simulation study,
in order to make the model fully acquire the patterns in each
tasks, the simulation duration is set longer than it is in the
empirical study. In detail, the total presentation lengths in
the training phases are 500 patterns (6.25 min) for Saffran et
al. (1996, 2 min), 100 patterns (4.17 min) for Marcus et al.
(1999, 2 min), and 100 patterns (3.33 min) for Gomez (2002,
3 min). In addition, to better compare the operation firing pat-
terns in the early and late training stages, the model divides
the entire continuous presentation of patterns into streams.
Each stream contains the continuous presentation of 10 pat-
terns. On the other hand, in the test phase of the simulation,
all task conditions consistently contains 10 patterns. This is
done so because our model only focuses on how much time is
spent on average to process a single trisyllabic pattern (along
with the immediate inter-pattern interval that follows).

In addition, our model assumes that processing efficiency
undergoes change during different months of age. Infants of
7-8 months are tested in Saffran et al. (1996) and Marcus et al.
(1999), while 17-month-olds are tested in Gomez (2002). In
our model, processing efficiency is differentiated by the firing
duration of an individual operator, and operations that are not
successfully fired also take time. To simulate younger infants
in Saffran et al. (1996) and Marcus et al. (1999), the firing
duration is set lower (70 ms) as compared to older infants (50
ms) in Gomez (2002).

Simulation results

Learning of Context-Sensitive Operation In here, we
only show the difference between the operation firing re-
sponding to each single pattern of various task conditions
during training (see Figure 3). For the specific firing pat-
tern formed by these operations, we are currently conducting
further analysis and will not be elaborated in this paper. Ini-
tial and later state describe the performance of the model in
the first stream and the tenth stream respectively. Note that
the number of streams applied here is only for demonstra-
tion purpose and do not represent the entire training length
- for example, simulation of Saffran et al. (1996) consists of
50 streams (500 continuous patterns). We can see that in the
initial state, the firing of the operation is without structure.
However, in the later state, the operation seems to form some
firing patterns. In addition, the efficiency of firing seems to
have improved, so it can be seen that the transitional gaps be-
tween stimuli and/or pattern are also increased. However, for
the simulation of Saffran et al. (1996), the increase in tran-
sitional gap is not as obvious. This is because in this ex-
periment, the presentation time of each syllable stimulus is
extremely short (250 ms) and there is no inter-pattern interval
between patterns during the training phase.



Figure 3: Changes in operator firing for different tasks (grids
represents different tasks; scales from 0 to 10 on the grid-Y-
axis represents the 10 simulated subjects sampled) and dif-
ferent parts of the training (left blocks are onsets of train-
ing, right blocks are later stage in training). Each dot repre-
sents a fired operator, with varying colors for different oper-
ator types. The black vertical lines mark the onsets of sound
patterns, the gray lines mark the onset of individual syllables.

Differentiating Acquired/Novel Patterns The empirical
and the stimulated results are analyzed based on an un-
paired two sample design. The reason for this is that (a)
the experimental results leave only summarized data (such
as mean, standard error, and sample size), therefore the orig-
inal within-group difference cannot be reassessed; whereas
(b) in the model, different task conditions are independently
simulated. Moreover, Welch’s t-test is performed to analyze
the results, since (a) the original data is based on small sam-
ples, and (b) we do not assumed equal variance in experi-
mental and simulated samples. For Saffran et al. (1996), it
was found that none of the experiments’ focusing time differ-
ence on words/non-words (mean difference = 0.88 s, p = 0.16)
and words/part-words (mean difference = 0.83 s, p = 0.17)
reached statistical significance (see Figure 4A). Similarly
in simulation, no difference was found between words/non-
words (mean difference = 0.002 s, p = 0.61) and words/part-
words (mean difference = 0.006 s, p = 0.12) for the single-
pattern processing latency (see Figure 4B). Nevertheless, re-
gardless of experimental and stimulated results, it is found, at
face level, that the focusing time and processing latency for
trained words is slightly longer than non-words/part-words.
Marcus et al. (1999) investigated the focusing time differ-
ence between acquired/novel pattern types, and found that

Figure 4: Simulation of Saffran et al., 1996. A: Data, average
focusing time (±1SE) in 12 patterns. B: Simulation, process-
ing latency per pattern (average of 200 runs, ±1SE). Note:
wor = words; non = non-words; par = part-words.

there was significant differences between cdc/cdd (mean dif-
ference = 1.75 s, p = 0.04) and cdd/ccd (mean difference =
2.00 s, p = 0.003; see Figure 5A). Similarly in simulated re-
sults of single-pattern processing latency, we also found the
difference between cdc/cdd (mean difference = 0.10 s, p =
2.63×10−9, Cohen’s d = 0.61) and cdd/ccd (mean difference
= 0.07 s, p = 1.98×10−4, Cohen’s d = 0.38; see Figure 5B).
Analysis of Gomez (2002) shows that the greater the vari-
ability of middle token a during the training phase, the larger
the focusing time difference between acquired non-adjacent
patterns and novel patterns. However, only when the vari-
ability contains 24 instantiations (mean difference = 0.05 s,
p = 0.97), the focusing time difference reaches significance;
whereas when the variability is with 3 (mean difference = 0.34

Figure 5: Simulation of Marcus et al., 1999. A: Data, average
focusing time (±1SE) in 12 patterns. B: Simulation, process-
ing latency per pattern (average of 200 runs, ±1SE).



s, p = 0.73) and 12 instantiations (mean difference = 2.07 s, p
= 0.003), the differences are non-significant (see Figure 6A).
In the simulated results due to the larger sample size, the dif-
ferences in single-pattern processing latency among 3 (mean
difference = 0.04 s, p = 0.007), 12 (mean difference = 0.06 s, p
= 6.79×10−5), and 24 instantiation conditions (mean differ-
ence = 0.07 s, p = 8.30×10−7) have all reached significance.
Further analysis of the simulated results shows that effect
sizes increases as the number of instantiations increases from
3 (Cohen’s d = 0.27), 12 (Cohen’s d = 0.40) to 24 (Cohen’s
d = 0.501). Only the 24-variant condition shows substantive
medium effect size latency difference (see Figure 6B).

Discussion
In this study, we use a single model to simulate three theoret-
ically controversial infant artificial language tasks. The sim-
ulated results of different tasks are consistent with the origi-
nal findings. Specifically, for Marcus et al. (1999), simulated
difference in processing latency is found between consis-
tent/inconsistent pattern types after training; and for Gomez
(2002), as the variability of token a in non-adjacent dependent
pattern X-Y increases, the difference in processing latency
between trained/novel patterns gradually increases, showing
substantive difference only when token is instantiated with
24 variants. These simulated results indirectly illustrate en-
hanced processing efficiency of the learned pattern. This is
assumed to reserve longer task-irrelevant gap during pattern
processing, thereby increasing the possibility of diversion and
eventually leading to a reduction in focusing time for the
trained pattern. Therefore, the simulated results are consis-
tent with empirical findings and illustrates the learning ability
of the model.

Nevertheless, for Saffran et al. (1996), further analysis sug-
gests that the original data or the simulated results only re-
vealed face level difference but neither reached statistical sig-
nificance. This is the case even though the simulated length
of this task is the longest. In Saffran et al. (1996), the presen-
tation time of each syllable in the pattern is only 250 ms and
without inter-pattern interval. Therefore, it is difficult for in-
fants to sufficiently process the patterns. For example, for the
trained pattern of “da-ro-pi”, it is very likely that infants may
only process “da” and “pi” but omit the middle syllable “ro”.
In addition, the model’s reinforcement learning process also
takes time, and the pattern presentation time is thus too short
and prevents such reward process from occurring. These are
among the reasons that the operation firing pattern are still
sparse at the end of training (e.g., Figure 3). Our ongoing
analysis did find that the operation firing patterns are differ-
entiated for the trained/novel patterns. Though due to syllable
omission, the model tends to acquire skip-grams rather than
trigrams.

In general, our simulation shows that the model can grad-
ually acquire the different task patterns through a cognitively
constrained architecture, avoiding views that consider task-
specific information processing as innate and deterministic.

Figure 6: Simulation of Gómez, 2002, who tested the differ-
entiation of X-Y and X’-Y’ patterns after training X-Y with 3,
12, and 24 variations of middle token a. A: Data, average fo-
cusing time (±1SE) in 8 patterns. B: Simulation, processing
latency per pattern (average of 200 runs, ±1SE).

Conclusion

The current simulation provides unified descriptions for the
three artificial language tasks. The model can distinguish be-
tween task conditions at the level of processing latency, which
implies its capabilities to acquire operation firing patterns or
primordial “skills” related to the task conditions without ex-
plicit programming. Therefore, the PRIMs contextual learn-
ing mechanism contributes to the flexibility of cognitive ar-
chitecture. However, to tackle the question of compositional-
ity, this article has a few limitations and remains incomplete.
The simulation has not considered the complex factors that
lead to diversion, and the overall focusing time of the entire
test phase has not been simulated. In addition, we are still
analyzing the procedural and declarative knowledge acquired
by the model. Only by answering this question can we bet-
ter demonstrate the skill acquisition of PRIMs and the sure
acquirement of language-related contents.
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