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Introduction

In behavioral economics, ‘rational inattention’ (C. A.
Sims, 2010) has been proposed as a theory of human
decision-making subject to information processing limitations.
This theory hypothesizes that decision-makers act so as to
optimize a trade-off between the utility of their behavior, and
the information processing effort required to reach a good
decision. Shannon information has been proposed as a means
of quantifying this information processing cost. However,
existing models in the rational inattention framework do
not account for the learning dynamics that underlie human
decision-making. In order to incorporate the impact of
cognitive limitations on learning, we extend the traditional
reinforcement learning objective to incorporate a bound on
the Shannon information of the learned policy (see also
Lerch & Sims, 2019). Using experimental data from a
previously-studied learning paradigm (Niv et al., 2015), we
show that our method can be used to represent differences in
participants’ performance as resulting in part from utilizing
different capacities for storing and processing information.

Rational Inattention

According to theories of rational inattention, human
decision-makers seek to maximize the following objective
(Jung, Kim, Matéjka, & Sims, 2019):

maxE[U(X,Y)] —M(X,Y), (1)

where U (X,Y) describes the utility of choice Y in state X, and
I(X,Y) represents the mutual information between the state X
and the action Y.

The result of altering the traditional expected utility
maximization with a regularization term based on mutual
information is a constraint on the information-theoretic
complexity of the decision-makers’ behavior. This limitation
is proportional to the scale of the parameter A; as A increases,
simpler policies will be preferred over increased expected
utility. In the extreme, a decision-maker would act randomly
or else choose the same action regardless of his or her state
(ignoring all information from the environment).

Figure 1: Example of stimuli used in the Niv et al. paradigm.
Each of the 9 features was randomly assigned to one of the
three possible objects, with no feature present more than once
in the same stimulus.

Feature Reinforcement Learning

The specific reinforcement learning algorithm we are
interested in extending is a variant of Q-learning defined
in (Niv et al., 2015) called Feature Reinforcement Learning
(FRL). The algorithm defines the value of an option V (S) in a
contextual n-armed bandit learning task to be the sum of the
values of the features that make up that option:

V(s)=Y W), 2)
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where the weights of each feature are updated based on the
selection that was made by the participant and the reward that
was observed as follows:

whew (f) = WOld (f) +T][Rz - V(Schosen)] vf € Schosen- (3)

FRL was developed to explain human learning performance
in domains with high-dimensionality. In their experiment,
participants were presented with stimuli varying in color,
shape, and texture. Each feature dimension had three possible
feature values (for example, stimuli could be red, green, or
yellow). The task for participants was to learn which of the
nine possible features leads to the highest probability of reward
(Figure 1), changing roughly every 20 episodes.

The results shown in (Niv et al., 2015) indicate that it is
possible to achieve high predictive accuracy on the selections
made by participants using the standard FRL model. In the
following section we show that greater predictive accuracy
can be achieved by determining the capacity for storing



and processing information that is used by each of the
participants, and modelling their resulting behaviour with the
capacity-limited FRL method.

Capacity-Limited FRL

Applying the learning objective defined in (1) onto the domain
of reinforcement learning results in an algorithm that allows
us to define a capacity for the amount of information that
is used to represent our agent’s policy. The two additional
hyper-parameters are the capacity-limit C, which is determined
for each participant individually using the same method as
described in (Niv et al., 2015), as well as the feature weight
adjustment learning rate oo = le — 3 for all participants.

Algorithm 1: Capacity-Limited FRL

Initialize: Feature weights W (f) =0

Initialize: Hyper-parameters: o, B, 1, 6, C

for each participant selection S do

Predict choice with probability distribution w(A|S)
for each feature fin selection S do

[ W () = W) +1[Re =V (Schosen)]
for each feature f not in selection S do

[ W (f) = (1= )WL (f) VF & Schosen
while /(nt(als)) >C do

L for each f in W(f) do

| f=f=alf=Erer W/ W (D

The constraint on the amount of information used to
represent performance is determined by the magnitude of the
capacity parameter C, which performs the same function as the
parameter A in Eq (1). Decreasing the value of C results in a
more and more strict limitation on the amount of information
that is used by the model to represent the performance of
the participant. The algorithm iteratively updates the RL
Q-table to decrease the mutual information until it is below the
bound. In the next section, we fit this parameter to each of the
individual participants performance in the contextual n-armed
bandit learning environment. This algorithm demonstrates
that the mutual information regularized expected utility
maximization approach that is described in Eq (1) is applicable
into the domain of human reinforcement learning.

Results

The original experiment design described in (Niv et al.,
2015) includes 2 different speed trials, fast (500ms) and
slow (1.5s) response times, with the slow response times
used during trials to allow for a fMRI scanner enough time
to capture data for a separate analysis that is not discussed
further. Hyper-parameters were originally fit by minimizing
negative log posterior individually for both the slow and fast
trials. However, one potential benefit of the capacity-limited
approach is that the information capacity parameter C could be
the same across different tasks for the same participant, as long
as factors such as motivation and attention remain consistent

enough across the different tasks. To support this, we instead
fit both models to the entire data set for individual participants
using the Python Scipy minimization package, and compare
the performance of the FRL and CLRL methods. These
results indicate that it is possible to determine the information
capacity that is used by a participant in a learning task, even
across tasks with slightly different cognitive requirements such
as the different time constraints shown here.
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Figure 2: Mean predictive accuracy of CLRL and FRL models
based on parameters fit to minimize negative log loss across
both fast (500ms) and slow (1.5s) response times. Error bars
represent 99% confidence intervals.

The high predictive accuracy of the CLRL model when fit
to the entire data set demonstrates a similarity of participant’s
information processing capacities across different tasks.
Although the individual sources of these capacities can
be varied, from attention and motivation to differences
in cognitive abilities, this model determines the amount
of information required to represent participants’ learned
behaviour. This difference represents one possible explanation
for less than optimal performance on learning and decision
making tasks that is observed with human participants. By
connecting the information-constrained maximum utility with
reinforcement learning, this algorithm expands the application
into learning tasks. In developing this algorithm, we further
support the conceptualization of rational decision makers as
Shannon information channels with a limited capacity for
storing and processing information that is efficiently allocated
to maximize reward when learning and making decisions.
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