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Abstract
One of the hallmarks of expert performance in complex, dy-
namic tasks is the ability to select and perform the appropri-
ate action within a constantly shifting environment, often un-
der tight time constraints. In an example task, the video game
Tetris, expert players select placement positions for the active
zoid and navigate them into place in increasingly short time
spans. Machine models of the same task are capable of produc-
ing human-like performance patterns, but either ignore or only
roughly approximate the time constraints that seem to be an
integral part of human behavior. Using a set of scaled time pa-
rameters derived from a large set of human players, we trained
and tested an existing machine Tetris model and observed the
resultant changes in performance and behavior.
Keywords: Expertise, Reinforcement Learning, Machine
Learning, Human Performance

Introduction
Expertise is marked by the ability to perform a particular task
at a very high level of proficiency, and in many task domains,
are capable of performing more quickly and efficiently than
non experts. But while speed is often observed in conjunc-
tion with high levels of skill, it is not always clear how it
contributes to performance. In this paper, we explore the re-
lationship between speed and strategy in a complex and dy-
namic task environment, the video game Tetris.

Video games, and Tetris in particular, have a long his-
tory of use in research. Gray (2017) identifies three major
uses of games: Gamification describes efforts to use a game-
like environment for more serious and real world applica-
tions (Rapp, Cena, Gena, Marcengo, & Console,2016;Nash
& Shaffer,2011;Proctor, Bauer, & Lucario,2007), games as
Treatment Conditions are studies that use games to alter some
aspect of human behavior (Holmes, James, Coode-Bate, &
Deeprose,2009;Belchior et al.,2013), and Game-XP is a term
referring to the use of a game as an experimental paradigm.
in this work we use Tetris as a task environment to inves-
tigate the low level mechanisms that give rise to high level
skilled behavior (Kirsh & Maglio,1994;Destefano, Lindstedt,
& Gray,2011;Lindstedt & Gray,2019;Sibert, Gray, & Lind-
stedt,2017;Sibert & Gray,2018). Exploring this task could
help to us understand how these skills are developed and how
complex strategies are learned and used.

Tetris the Task
Tetris is a real-time, dynamic puzzle solving game that is sim-
ple in concept and can be very complex in execution. A player

Figure 1: A Tetris game in progress. The active piece, the or-
ange ”L” is currently being placed by the player on the main
game screen. The player also has access to score informa-
tion, in the lower right-hand box, and one upcoming piece,
the green ”Z” in the upper right-hand box.

is presented with a sequence of game pieces, called “zoids”,
made up of four conjoined squares. These zoids fall from
the top of the game board, and as they fall, the player navi-
gates them into position using a series of translation and ro-
tation maneuvers. Placed zoids form a pile at the bottom of
the screen, and when a row of the pile is completely filled
across the width of the screen, that row will disappear, low-
ering the pile and earning the player some points. The game
ends if the pile reaches the top of the screen. Higher scores
are achieved by clearing multiple lines (up to four) simultane-
ously, which encourages players to plan ahead and construct
board structures that can support these more complex maneu-
vers. However, as lines are cleared, the zoid falling speed
increases, allowing players less and less time to plan and ex-
ecute their moves. At early game levels, players have a full
16 seconds for maneuvering, but that time window is slowly
reduced until the fall speed of a zoid is a third of a second at
the highest playable levels. Successful players must balance
the score benefits of complex multi-line clears with the risk
of building the pile too high and having insufficient time and
space to maneuver zoids into place.

The constantly changing nature of Tetris allows for a wide



range of player skill, with extremely low level players strug-
gling to clear any lines at all, all the way up to extreme ex-
perts, who comfortably set up and execute multi-line clears
in fractions of a second. Performance in this task is usually
judged by the final game score, but that score is achieved
though a complex interaction of perceptual, cognitive, and
motor skills.

Tetris Models
Building models of Tetris has long been
pursed in the Machine Modeling community
(Robertson,2003;Fahey,2015;Szita & Lorincz,2006;Thiery
& Scherrer,2009a), and these efforts have produced computer
models capable of high level Tetris performance. These
models are not usually developed out of any specific interest
in Tetris behavior, but they use Tetris as a testbed to demon-
strate the effectiveness of machine learning algorithms that
optimize a large feature space.

Though the search methods and models are all different
across the machine learning work, the basic model structure is
fairly consistent.The researcher selects a set of features of in-
terest, often structural aspects of the board like the pile height,
or number of unfilled cells, that may be important when mak-
ing placement decisions. Each of these features is assigned
a numerical weight, and using these weights, the model is
able to calculate a numerical score for all potential place-
ments for any static board state. A game is played by sim-
ply selecting the highest scoring move at each decision point,
and updating the game board to reflect the previous decision.
A simple, yet effective, set of features was defined by Del-
lacherie (Fahey,2015) and used in the modeling experiments
presented here. The features are described in Table 1.

Table 1: Tetris features proposed by Dellacherie, and used to
construct the models used in this paper

Feature Description
Landing
Height

Height where the last zoid is added

Eroded
Cells

# of cells of the current zoid elimi-
nated due to line clears

Row
Transitions

# of full to empty or empty to full hori-
zontal transitions between cells on the
board

Column
Transitions

# of full to empty or empty to full ver-
tical transitions between cells on the
board

Pits # of empty cells covered by at least
one full cell

Wells a series of empty cells in a column
such that the cells to the left and right
are both full

As suggested by Table 1, most machine modeling work on
Tetris has focused on selecting weights for a limited set of

features. These weights must be able to select moves that re-
sult in high game scores, but must do so in a nearly infinitely
variable environment of potential board configurations. A
machine learning method that is capable of producing a suc-
cessful model of Tetris, then, is likely to also be effective in
other complex task domains. One such method, and the one
employed in this research, is Cross Entropy Reinforcement
Learning (CERL), first proposed by Szita and Lorincz (2006)
and modified by Thiery and Scherrer (2009a,2009b), and uses
a generational search method to narrow in on the optimal fea-
ture space.

The models produced by this line of research are very ef-
fective Tetris players, clearing hundreds of thousands of lines
in a game (a high scoring human clears five or six hundred),
but they do so by adopting very un-human-like strategies that
allow them to take advantage of significant differences be-
tween the human and model task environment. Most notably,
the models are completely unconstrained by time pressure.
Where human strategy often revolves around making and ex-
ecuting the best placement decisions in the time available,
the models instantly choose which of the possible zoid place-
ments has the highest rank (the highest number of alterna-
tive placements possible for one episode is 35). For a model
player, the game ends when the feature weights encounter a
sequence of zoids that it cannot place in a way that clears
any lines, far different from the time constraints that limit hu-
man players. In response, models and humans develop diver-
gent strategies. The model player emphasizes clearing single
lines repeatedly over very long game spans (behavior also ex-
hibited by low level human players), while the expert human
player emphasizes setting up and executing as many multi-
line clears as possible.

Because of this and other limitations, the models in their
original forms are not very informative about human behav-
ior. However, previous modeling work has found that a basic
limitation, imposing a hard limit on the length of a model
game, could be employed to induce more human-like strate-
gies in the models (Sibert et al.,2017). A follow-up study
showed that the human-like strategy of multi-line clears will
arise naturally in models in response to a short game condi-
tion, even without explicit reinforcement of the score-seeking
behavior (Sibert & Gray,2018).

These results provide a strong argument for the importance
of time pressure in shaping human behavior, but so far, it
has only been implemented in a very simple way. In this
paper, we gift our models with human-like time pressure so
that rather than StarTrek-like “beaming” each zoid to its final
location in a single instant, moves requiring more zoid move-
ments cost more to execute than those which favor fewer.

Methods
As part of an ongoing exploration of human expertise in
Tetris, we have collected gameplay data from over 600 sub-
jects through a combination of laboratory studies where Tetris
is played in acoustically isolated “research pods” to local



and international tournaments where players compete against
each other in loud and, at times, raucous events. All data was
collected using the Meta-T software (Lindstedt & Gray,2015)
and its successors, providing access to a huge array of game
information including all board states and key presses.

As shown in Figure 2 and Table 2, players were placed
into skill bins ranging from Extreme Novice to Extreme Ex-
pert based on the mean performance across their best several
games. In addition to score differences between groups, play-
ers showed a clear shift in strategy from a nearly complete re-
liance on single line clears (by novice players) to prioritizing
multi-line clears (by expert players).

Figure 2: Behavior patterns of human players in each of the
eight defined skill bins. The proportion of each bar corre-
sponds to the proportion of each line clear type that players
in each group made during their games. Players at the low
end of the skill spectrum rely almost entirely on single line
clears (blue), while the rate of 4-line clears (green) increases
with skill.

Time Parameters

From the raw behavioral data of the human players, we cre-
ated three measures that capture the execution cost of an in-
dividual move: Initial Latency, Average Latency, and Effi-
ciency. These values were logged for all players at every deci-
sion point for all games during the experimental period. How-
ever, not all these values reflect the actual speed of players.
For example, a very advanced player playing at a very slow
level may start moving the zoid before a decision is made,
and therefore overlapping the costs represented by the Initial
Latency and Average Latency parameters (described in more
detail below). To account for this, time parameters were not
derived from all of a players decisions, but only those made
at the Maximum Playable Level, the final level completed be-
fore the game was lost. We believe that these decisions are
being made at the edge of the player’s skill, but are not the
random panicked moves often made during the final moments
of a game. The parameters for each skill bin are listed in Ta-
ble 2.

Initial Latency This parameter captures the average time
needed for a player to make any key press following the ap-
pearance of a new zoid at the top of the screen. When playing
to the edge of a player’s ability, this initial latency likely cap-
tures the processing time to recognize the zoid, some kind of
evaluation of possible placement options, the selection of the
final placement, and the planning of the keypress sequence re-
quired to move the zoid into place. Initial latency is calculated
by taking the average time between the zoid’s appearance and
the first key press for each player. The expertise group value
is calculated by taking the average value for all players in the
group.

Average Latency This parameter captures the speed of
all key presses after the initial key press. As these key presses
are likely made after a motor plan has been determined, aver-
age latency reflects the motor speed of the player without any
decision making or planning. Average latency is calculated
by taking the average time between key presses for all but the
first key press for each player. The value for each of the 8
expertise groups is calculated by averaging the value across
all players in that group

Efficiency A perfectly efficient player will make the
minimum number of key presses to move the zoid into po-
sition, but humans are prone to all manner of small mistakes
that require extra key presses. Zoids are rotated or translated
too far and must be brought back into position, players switch
paths to pursue an alternate placement, or players simply are
unaware that a slightly different order of translations and ro-
tations would require fewer key presses. The efficiency pa-
rameter is calculated by determining the optimal path to the
final placement and then finding the difference in key presses
between this optimal path and the one executed by the player.
A player making only the required key presses when maneu-
vering pieces would have an efficiency of 0. The efficiency
parameter is the average number of extra key presses made
by a player. The expertise group value is calculated by taking
the average value for all players in the group.

Implementing Time Pressure in Models
To capture the effect of time pressure on how long movements
could take, we calculated the mean movement time for each
type of movement at each of our 8 levels of player expertise
(Table 2). In the no time pressure condition, the best place-
ment is calculated and the move is instantly made (This is
how all previous Machine Learning Models have worked).
The time parameters add the additional step of determining if
the move chosen can be made in the time allocated The time
cost of a move is calculated by the following formula.

TimeCost = InitLat +AvgLat(Path∗E f f ) (1)

The estimated path length (Path) is multiplied by the effi-
ciency parameter (Eff). This extended path length is multi-
plied by the average latency parameter (AvgLat). Finally, the



Skill Bin Initial
Latency
(ms)

Average
Latency
(ms)

Efficiency

Extreme Expert 79.28 162.11 0.50
Expert 70.56 173.79 0.57
Advanced 96.12 221.72 0.98
Proficient 272.26 433.31 1.64
Intermediate 151.24 311.03 1.16
Beginner 411.29 536.51 1.88
Novice 448.76 668.98 2.06
Extreme Novice 571.37 804.34 2.62

Table 2: Time parameters for each skill bin. Initial and Av-
erage latency are measured in milliseconds, and Efficiency is
measured in key presses. The Criterion Score is a score based
metric reflecting the average of the highest scoring games
achieved by players in each group.

initial latency parameter (InitLat) is added to determine the
overall time cost (TimeCost).

This time cost is then compared with the zoid drop speed
at the current game level. If the move time cost is greater than
the time available, the model must choose an alternate move
(that does not raise the pile past the top of the screen), and if
there are no alternates are possible, the game ends.

Time parameters were implemented into the models in two
ways: first, by adding each level of constraints to a high per-
forming model previously trained with no time constraints,
and second, by training a model with each set of human-
derived time parameters.

Models were trained using the CERL method, reinforced
for high score. The model with no time parameters was lim-
ited to 525 piece games (a reasonable human game length),
but the other models were not explicitly limited in length and
relied on the time parameters to restrict game length. The
training process ended when the variation of feature weight
values dropped below 0.01, and were considered to have con-
verged.

After training, the models were tested by playing a set of
ten games using a pre-selected set of game seeds (that would
produce the same sequence of zoids). The models were eval-
uated on their performance, reflected in the scores of these
test games, and their behavior, measured by the proportion of
line clear types made by the models.

Results
Imposed Time Parameters
Imposing time constraints on a previously unconstrained
model caused a significant drop in performance. This per-
formance drop increased as the timecost (see equation 1) be-
came greater. Models slowed to the speed of Proficient play-
ers scored hardly any points at all. (See Table 3) The behavior
of the model as measured by line clear types remained largely
consistent (Table 4), with an emphasis on 4 line clears, until
the model was unable to execute line clears of any kind.

Skill Level Game
Length

Lines
Cleared

Score

No Time
Parameters

409.9
(155.00)

153.1
(67.20)

203766
(133487)

Extreme
Expert

278.9
(67.45)

94.4
(26.93)

71878
(32742.14)

Expert 271.1
(64.84)

91.5
(25.92)

68416
(30855.40)

Advanced 231.2
(37.77)

75.9
(15.08)

45000
(12673.27)

Intermediate 116
(51.51)

49.5
(20.14)

23688
(16916.47)

Proficient 41.5
(7.29)

1.6
(1.96)

72
(93.90)

Beginner 24.4
(4.30))

0
(0)

0
(0)

Novice 24.8
(6.03)

0.4
(0.97)

16
(38.64)

Extreme
Novice

25.1
(4.95)

0.6
(0.97)

24
(38.64)

Table 3: Performance of models with Imposed Time Parame-
ters. Performance is measured by average game length (num-
ber of episodes), average lines cleared, and average score.
Standard deviations are listed in parentheses.

Trained Time Parameters
Models trained with time constraints were able to score points
(see Table 5), even when playing very slowly, though faster
models were unsurprisingly higher scoring than slower mod-
els. These scores were also roughly equivalent to the aver-
age score of human players in the group from which the time
parameters were derived. The model behavior also shows
a strategy change, with slower models relying almost com-
pletely on single line clears, while faster models started shift-
ing toward a multi-line clear strategy. (See Table 4). How-
ever, the rate of multi line clears for these models was lower
than those of models trained without time parameters.

Discussion
Imposing time pressure on an already trained model resulted
in a significant score drop. Indeed, the model was unable
to perform at all once slowed to the speed of our mid range
players. Unlike humans and unlike models trained at different
speeds (Table 6), models trained with no time pressure (Table
4 did not change strategies with changes in drop speed.

In contrast, training models with time parameters produced
successful models at all speed levels, and roughly reflected
the scores and strategies of the human players in the corre-
sponding expertise groups, with a few notable exceptions.
The Extreme Expert group had lower performance than the
Expert group because the former has a higher initial latency
parameter, making them, on paper, slower. We believe this
slowdown is reflective of a higher decision quality by ex-
treme expert players, but as the models all have the same de-



Skill Level 1 Line 2 Line 3 Line 4 Line
No
Parameters

20.51%
(3.44)

25.48%
(7.51)

20.00%
(11.36)

34.01%
(7.86)

Extreme
Expert

20.55%
(5.37)

26.63%
(9.23)

21.62%
(22.34)

31.20%
(6.33)

Expert 21.25%
(6.03)

26.15%
(8.32)

20.51%
(11.60)

32.09%
(6.27)

Advanced 21.84%
(6.47)

27.66%
(10.48)

19.52%
(10.65)

31.00%
(8.65)

Intermediate 22.60%
(7.68)

21.21%
(12.60)

25.17%
(10.66)

31.02%
(16.43)

Proficient 73.33%
(41.31)

26.67%
(41.31)

0%
(0)

0%
(0)

Beginner 0%
(0)

0%
(0)

0%
(0)

0%
(0)

Novice 100%
(0)

0%
(0)

0%
(0)

0%
(0)

Extreme
Novice

100%
(0)

0%
(0)

0%
(0)

0%
(0)

Table 4: Behavior of models with Imposed Time Parameters.
Behavior is measured by the average percentage of total lines
that are cleared with each line clear type (1, 2, 3, or 4). Stan-
dard deviations are shown in parentheses.

cision ability, the small speed difference results in a slightly
lower score. In addition, players in the Extreme Novice group
scored much lower than their corresponding model, likely be-
cause even when very slow, the models are making better
quality decisions than the players. These deviations at the
extreme ends of the skill range suggest that a player’s skill
level is determined by a combination of their speed and their
decision quality, rather than just by speed alone.

There were two more deviations between the performance
and behavior of the human and the model. First, the Pro-
ficient model scored much lower than the corresponding hu-
man players. Second, although the Advanced model achieved
a score that was close to its human counterparts, it relied pri-
marily on clearing single rather than multiple lines (see Table
4).

The above two cases demonstrate the pitfalls of our model
search method. While hundreds of potential models are tested
and evaluated during training, the development process is run
only once. Under most circumstances, we consider the wide
breadth and length of the search sufficient to prevent overfit-
ting, the CERL method can sometimes converge on a locally
optimal area of the feature space. Additional noise introduced
into the search, or perhaps another search method altogether
could possibly mitigate some of these problems and produce
more robust models.

Our biggest surprise was the behavior of the time trained
models. Though models with faster time parameters dis-
played higher percentages of 4-line clears, these percentages
were lower than the human players in the skill groups from
which those parameters were derived, and also lower than the

Skill Level Game
Length

Lines
Cleared

Score

Extreme
Expert

378
(110.42)

134.3
(44.34)

80350
(45401.84)

Expert 392.1
(90.54)

139.5
(36.03)

95552
(46846.02)

Advanced 337.3
(31.26)

118
(12.45)

32434
(7209.18)

Intermediate 170.1
(64.80)

50.7
(26.05)

23196
(19153.34)

Proficient 115
(80.24)

30.7
(31.50)

4582
(5652.35)

Beginner 134.4
(34.89)

38.6
(13.75)

4514
(3031.51)

Novice 94.2
(34.58)

23.6
(13.66)

2134
(1869.31)

Extreme
Novice

66.4
(18.77)

14.1
(7.82)

928
(606.06)

Table 5: Performance of models with Trained Time Param-
eters. Performance is measured by average game L=length
(number of episodes), average lines cleared, and average
score. Standard deviations are listed in parentheses. For all
test games, the game length was unlimited but dependent on
the model’s speed.

model trained without time parameters. We believe this dis-
crepancy is caused by the implementation of time pressure as
a global factor, that is, the models have the same time con-
straints for a full game and these parameters dictate what is
considered a ’good’ move based on the extent of the model’s
ability. This leads the consideration of a ’good’ move to
be moves that are successful at the final level of the game,
where line clears of any type are worth more points. Even
highly skilled players, who primarily pursue the score based
strategy, shift to the lines based strategy in a bid for survival
(Sibert & Gray,2018) at the end of a game. With global time
parameters, a move made at level 1 would be given the same
score as a move made at level 15, even though at level 15 the
time constraints might make that move impossible. Gifting
the models with an awareness of the current level might mod-
erate the other features and produce time based models more
representative of human behavior.

Conclusions
The deliberate practice framework (Ericsson, Krampe, &
Tesch-Römer,1993) identifies practice as the single best pre-
dictor of a player’s eventual level of expertise. Though the
exact definition of deliberate practice has proven difficult to
pin down, it is most often agreed to be effortful execution
of the target task at the very edge of the player’s skill. In this
way, the current implementation of the model time constraints
as global parameters may be forcing the model training into a
kind of deliberate practice, and may be forcing our models to
use strategies at the highest speed levels that humans would



Skill Level 1 Line 2 Line 3 Line 4 Line
Extreme
Expert

34.42%
(6.42)

34.48%
(5.68)

21.64%
(5.34)

9.46%
(8.77)

Expert 24.38%
(4.13)

40.75%
(6.26)

24.42%
(5.49)

10.45%
(5.10)

Advanced 88.49%
(3.66)

10.33%
(2.75)

1.18%
(1.63)

0%
(0)

Intermediate 22.79%
(6.49)

34.33%
(16.01)

19.24%
(9.79)

23.64%
(14.56)

Proficient 91.36%
(7.17)

8.64%
(7.17)

0%
(0)

0%
(0)

Beginner 88.33%
(7.18)

11.19%
(7.15)

0.48%
(1.51)

0%
(0)

Novice 93.28%
(8.81)

6.06%
(8.31)

0.67%
(2.11)

0%
(0)

Extreme
Novice

90.88%
(10.94)

7.45%
(8.85)

1.67%
(5.27)

0%
(0)

Table 6: Behavior of models with Trained Time Parameters.
Behavior is measured by the average percentage of total lines
that are cleared with each line clear type (1, 2, 3, or 4). Stan-
dard deviations are shown in parentheses. For all test games,
the game length was unlimited but dependent on the model’s
speed.

not. That is, the (Sibert & Gray,2018) observations show that,
while experts mostly favor a multi-line strategy, when playing
at the limits of their expertise, humans revert to strategies that
favor single-line clears. Our models, in contrast, are more
dogged. Once they acquire a strategy they keep with it to the
very end. By only practicing, or training (in the model case),
under high time constraints, a player may fail to learn or mas-
ter the alternate strategies that are more successful at earlier
levels.

The models provide only a rough approximation of human
behavior, but the observed contrasts between them and human
players helps to shed light on the relationship between the
time-based game constraints and the strategies employed by
players. A safe, survival based strategy is best when the game
is hard (because of low player skill or high speeds), but true
expert players are able to flexibly switch strategies to best suit
the current game state. A single, unchanging strategy may
be functional in complex, dynamic task environments, but is
unlikely to allow for the highest levels of performance.
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