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Abstract

Trust calibration for a human-autonomy team is the process by
which a human adjusts their understanding of the automation’s
capabilities; trust calibration is needed to engender appropri-
ate reliance on automation. Herein, we develop an Instance-
based Learning ACT-R model of decisions to obtain and rely
on an automated assistant for visual search in a UAV interface.
We demonstrate that model matches well the human predic-
tive power statistics measuring reliance calibration; we obtain
from the model an internal estimate of automation reliability
that mirrors human subjective ratings. Our model is a promis-
ing beginning toward a computational process model for trust
and reliance for human-machine teaming.

Keywords: Cognitive architectures; Trust in automation;
Human-machine teaming

Introduction
Trust calibration is the process team members go through to
adjust their attitudes or expectancy of a favorable response
from other teammates or of a positive outcome of a team ef-
fort (Lee & See, 2004). Research in both all-human teams
and human-automation teams indicates that trust, and its be-
havioral proxy reliance, fluctuate over time. For human-
automation teams, this calibration-related fluctuation reflects
the human’s process of learning when to rely on the au-
tomation. Fallon, Murphy, Zimmerman, and Mueller (2010)
describe this as a sensemaking process wherein the human
learns the conditions under which automation performs well,
and how to properly interpret indicators provided by the ma-
chine system, to promote “appropriate use” (see also, Lee &
See, 2004). Without calibration, the team may suffer from
automation misuse or disuse by the human teammates (Lee
& See, 2004; Parasuraman & Riley, 1997).

Lee and See (2004) formulated a conceptual model of ap-
propriate trust formation. Within this model, trust calibration
is part of a closed-loop process wherein people use task goals,
context, and their own beliefs (including current trust level)
to form an intent about using automation and then take Re-
liance Actions. The subsequent behavior of the automation
and impact on the world (witnessed directly or via display)
feed back into the human’s Information Assimilation and Be-
lief Formation processes, which then feed the Trust Evolution
process, the Intent Formations, and Reliance Actions. Lee
and See argued that information available about the automa-
tion and the results of Reliance Actions are critical to the trust
formation process (as do Chen & Barnes, 2014; Fallon et al.,

2010; Lyons et al., 2016, and many others). Merritt and Il-
gen (2008) refer to trust emerging from interactions and ex-
perience with a system as history-based trust; they contrast
history-based trust with other forms of trust, such as a per-
son’s general tendency to trust (dispositional trust; Jessup,
Schneider, Alarcon, Ryan, & Capiola, 2019; Kramer, 1999;
Merritt & Ilgen, 2008). It follows from this perspective that
appropriate calibration can be defined as the degree of cor-
respondence between a person’s trust in automation and the
automation’s capabilities (see also, de Visser et al., 2020; Lee
& Moray, 1994; Muir, 1987).

In this work, we develop a computational cognitive model
of human decisions to rely on automation using Instance-
based Learning Theory (IBLT; Gonzalez, Lerch, & Lebiere,
2003). Using an IBL model, we can explicitly model deci-
sions about automation reliance and observe how those deci-
sions are informed by task performance, transparency infor-
mation, and the automation’s behavior over time. In this way,
we implement a computational processes mirroring elements
of Lee and See’s (2004) conceptual model.

Importantly, we do not explicitly incorporate a trust mech-
anism in the IBL model; rather, we maintain the perspective
that trust is an attitude, separate from the cognitive decision
making mechanisms, and that reliance is the behavioral indi-
cator of trust. We seek to understand if and how trust calibra-
tion emerges from the task experience and decision making
processes that are explicitly defined within the IBL model. In
the remainder of this paper, we will describe an experiment on
trust calibration measuring both intention formation and re-
liance action decisions. Then we will describe the IBL model
and demonstrate its performance on this two-stage task. We
will show that model reliance decisions mirror the human be-
havior, and we can extract an internal model bias that par-
allels human subjective judgments of automation reliability.
We conclude that we have a strong candidate computational
process model for trust calibration through experience with
automation.

The Human-Automation Teaming Task
We leverage empirical data collected by Fallon, Blaha, Jef-
ferson, and Franklin (2019) using the COgnitive Behavioral
AnaLytics Testbed (COBALT). COBALT is an experimental
interface developed by Fallon and Blaha to enable the study of
trust, reliance on automation, task performance, and cognitive



Figure 1: A mid-trial screenshot of the COgnitive Behavioral
AnaLytics Testbed (COBALT) task environment. This im-
age shows an AUTOASSIST cue (pink arrow) selected for
search, with an age + number text transparency cue (lower
right). Readers are referred to Fallon et al. (2019) for more
details about the interface.

workload while manipulating task characteristics, automation
transparency, and interface design choices. COBALT is com-
prised of modular windows in which participants interact with
automation to search for objectives in an aerial imagery. Fig-
ure 1 provides a screenshot of COBALT.

Two-stage Trial Structure Each trial of the task involves
two stages: a decision stage and a search stage, as dia-
grammed in Figure 2. In the decision stage, participants must
decide whether they would like the AUTOASSIST or COM-
MANDER to aid their visual search. Participants cannot per-
form the search without selecting an aid. Participants are pro-
vided transparency cues to help them decide if the AUTOAS-
SIST will be a reliable choice.

The search stage begins as soon as the assist type is se-
lected. Participants are tasked with searching for a pre-
determined objective randomly placed in the image. Partic-
ipants are provided with search guidance in the form of an
arrow overlaid on the search window. When reliable, this cue
points directly to the objective; when unreliable, it points to
some other random location. Participants can choose to fol-
low the assist cue or search unguided.

Using the terminology of Lee and See’s trust calibration
model, the assist selection stage is an example of an automa-
tion reliance Intention Formation; participants indicate inten-
tion about using automation when they select the AUTOAS-
SIST search aid. The search stage is an example of a Reliance
Action. Participants following the AUTOASSIST cue are re-
lying on automation; participants searching unguided are not.

Assist Types The assist types varied in their reliability and
timing. The COMMANDER option provided a 100% reliable
cue, always pointing to the objective. However, there was a
5 sec. delay between selecting the COMMANDER button
and the COMMANDER assist arrow appearing on screen to
aid the participant. While waiting for the COMMANDER as-

Figure 2: Diagram of the trial stages. A trial starts with pre-
sentation of transparency cues. Participants make a 2AFC
search assist cue selection. Then they complete the visual
search by either relying on the selected assist or searching
unguided.

sist, participants can search unaided for or wait for the COM-
MANDER cue to appear.

AUTOASSIST simulates automation to provide a search
cue. Unlike the COMMANDER, it is available immediately
at the start of the search stage. However, AUTOASSIST is
only 70% reliable, meaning it correctly pointed to the objec-
tive on 70% of trials and to a random location on the others.

Automation Transparency Cues Transparency informa-
tion was provided on every trial to aid participants in their
assist type decisions. Participants could use the cues to learn
when the AUTOASSIST would be unreliable. The two types
of transparency cues were: the age of the data and number
of sensors available to the automation. The number of sen-
sors ranged from 1 to 3, and AUTOASSIST was unreliable
if there was only 1 sensor. The data age varied from 1 to 36
hours old, and AUTOASSIST was unreliable if the data was
over 24 hours old.

Fallon et al. (2019) used four transparency cue conditions.
In the age-only condition, a statement about the age of the
sensor data was given; no information about the number of
sensors was provided. In the number-only condition, a state-
ment about the number of sensors was given; no information
about the age of the data was provided. In the age + number
text condition, a statement included both the age and number
information. And in the age + number graphic condition, the
combination of age and number information was presented in
a visual representation leveraging a circle-packing graphic.

Feedback An important component of modeling learn-
ing from experience is accounting for the feedback received
about the outcome of one’s decisions. We model two types
of feedback received by participants during the search stage.
The first was direct observation of success or failure of the
AUTOASSIST. On trials when the AUTOASSIST was unre-
liable, it would visibly fail by disappearing from the screen at
the moment of failure.

The second source of feedback was the total time to exe-
cute each search; participants were not given explicit timing
information, but experienced how long each search took and



Figure 3: Diagram of the IBL model for the COBALT task
decisions. The colors indicate the ACT-R mechanisms. See
the text for a description of the instance representation. The
upper half shows one trial as an instance in working mem-
ory (middle row), which is matched to similar prior instances
in declarative memory (top row) through the matching and
blending functions (blue, red and orange arrows). The lower
portion of the diagram shows the perception and action mech-
anisms interacting with the task interface.

if multiple assist cues had to be selected to locate the objec-
tive (participants could request the COMMANDER after the
AUTOASSIST failed, for example). The fastest search tri-
als occurred when a participant selected a reliable AUTOAS-
SIST and followed it directly to the objective. The slowest
search trials occurred when a participant selected an unreli-
able AUTOASSIST, followed it and observed its failure, and
then attempted some combination of unguided search, calling
and waiting for the COMMANDER assist, and then relying
on the COMMANDER assist to locate the objective. In this
way, the negative feedback from long search times with unre-
liable automation might influence experience differently than
the positive reinforcement and short search times associated
with relying on reliable automation.

Human Data Sixteen participants completed the four
transparency conditions (Age, Number, Age + Number Text,
and Graphic) of the COBALT task, for a within-subjects ma-
nipulation. A single condition contained 13 blocks of 11 trials
for a total of 572 trials per participant. Transparency condi-
tion orders were randomized between participants.

Cognitive Model of Automation Reliance
We developed a model of the automation reliance deci-
sions in COBALT task with Instance-base Learning Theory
(IBLT; Gonzalez & Dutt, 2011; Gonzalez et al., 2003) im-
plemented in the ACT-R cognitive architecture (Anderson et
al., 2004). IBL a methodology for modeling problem solv-
ing and decision making that relies on previous experiences
rather than pre-defined strategies. Those experiences are
stored in the declarative memory of the cognitive architecture,
whose mechanisms support adaptive storage and associative

retrieval. Experiences are stored in memory as a combination
of situation features, decision taken, and observed outcome.

Memory instance availability is controlled by activation:

Ai = log

(
N

∑
j=1

t−d
j

)
(1)

where i is the memory and d is the decay parameter control-
ling the power law of recency; the summation over all ref-
erences to that memory provides the power law of practice.
Given a particular situation, relevant memories are retrieved
by computing their match score that combines their activation
with their degree of relevance:

Mi = Ai +
l

∑
j=1

MP×Sim(d j,vi j) (2)

where j is a feature in the situation representation, d j is the
corresponding value in the current situation, vi j is the corre-
sponding value in memory i, and Sim is the similarity between
those two values. Rather than retrieving a single memory, a
consensus outcome is generated using the memory blending
mechanism satisfying this constraint:

V = argmin
V j

k

∑
i=1

Pi×Sim(Vj,vi j)
2 (3)

where V is the consensus value among the set Vj of possible
values, and Pi is the probability weight of memory i, reflecting
its match score Mi through a Boltzmann softmax distribution.

Our IBL model adopts a straightforward representation of
the problem. Examples are shown in Figure 3, where the mid-
dle row is a current trial instance, and the top row is one sim-
ilar instance from declarative memory. The situation features
are the age and/or number cues; the decision is whether to
rely on the COMMANDER or AUTOASSIST (labeled aid in
Figure 3), and the outcome is whether the AUTOASSIST was
reliable (Reliability) and time to complete the visual search
(Latency). To make a decision, the model generates an ex-
pected outcome for each assist type by performing blended
retrievals for the specific situation feature(s) available (age,
number, both) and each assist type, extracting an expected
value for total search time. The model selects the assist type
with the lowest expected search time. It then generates an
expectation for the reliability of the automation in a similar
manner, using a blended retrieval over situation feature(s) and
selected assist type. The model then executes the option, and
stores a new instance combining that situation’s feature(s),
the option chosen, and the outcomes experienced in terms of
reliability and search latency. Finally, at the end of each con-
dition, the model generated a general expectation of reliabil-
ity through a blending retrieval with no features specified.

IBL models need either a back-up strategy (such as random
exploration) to get started, or some initial instances to boot-
strap the process. We chose the latter route, creating three
instances to represent as broad a range of outcomes as possi-
ble. Those instances could have resulted from a short practice
phase, or fairly straightforward reflection upon the instruc-
tions; both instructions and a few practice trials were given to



Table 1: Signal Detection Theory Mapping of Automation
Reliance Intention Formations

Actual Reliability
of AUTOASSIST

Reliable Unreliable

AUTOASSIST
Selected

True
Positive

False
Positive

COMMANDER
Selected

False
Negative

True
Negative

COBALT participants. The first instance featured the most re-
liable cues (3 sensors and 1-hour-old data), a decision to rely
on AUTOASSIST, and outcomes of reliable AUTOASSIST
and fastest search time (directed search time of 3 seconds).
The second instance featured the least reliable cues (1 sensor
and 36-hours-old data), a decision to rely on AUTOASSIST,
and outcomes of unreliable AUTOASSIST, and the slowest
search time (random search time of 15 seconds). The third
instance featured average cues (2 sensors and medium age),
a decision to rely on COMMANDER, and outcomes of relia-
bility and an intermediate search time (wait then direct search
for a total time of 8 seconds). We use ACT-R default param-
eters: decay d = 0.5; activation noise s = 0.25; mismatch
penalty factor MP = 1.0; linear similarities over [0,−1.0].

Results

We focus on three aspects of the data collected by Fallon
and colleagues: decision stage intention formation choices,
search stage automation reliance actions, and the subjective
ratings of the AUTOASSIST’s reliability. We consider to-
gether the human and model data. Our goal is to evaluate if
the model captures well the human behaviors and if the IBL
model’s internal representation reflects trust calibration.

Predictive Power Metrics We quantify reliance calibra-
tion with predictive power analysis, based on a signal detec-
tion theory (SDT) characterization of automation use deci-
sions (Feinstein, 1975). SDT quantifies the decision rates
about the two assist types balanced with the ground truth of
the AUTOASSIST’s reliability. For the decision stage, we
define a true positive as a decision to request AUTOASSIST
when reliable and a false positive as a decision to request AU-
TOASSIST when it is unreliable. Table 1 defines all four SDT
categories for the decision stage, reflecting intention forma-
tion accuracy, and Table 2 gives the definitions in the search
stage for reliance actions accuracy.

We define positive predictive power:

PPP =
True Positive

True Positive+False Positive
. (4)

PPP gives the proportion of trials a participant appropriately
chose AUTOASSIST out of all trials on which the participant
selected the AUTOASSIST option. We define negative pre-

dictive power:

NPP =
True Negative

True Negative+False Negative
. (5)

NPP gives the rate at which the participant appropriately did
not select the AUTOASSIST (selected COMMANDER in the
decisions stage or did not follow an unreliable search cue)
when it would have been unreliable, out of all the trials on
which the participant did not select AUTOASSIST.

We selected PPP and NPP as our metrics for appropriate
reliance because they reflect the decision maker’s ability to
correctly select the automation when it will be reliable and
not select the automation when it will be unreliable, respec-
tively, while accounting for the prevalence of reliable and un-
reliable trials in the experiment. Accounting for the base rate
of reliability is a core part of the definition of trust/reliance
calibration. We note the more common SDT metrics d′ and
β (decision criterion) have been used in many studies to ex-
amine human judgements about the reliability of alarms or
automation recommendations. These metrics emphasize the
participants’ abilities to discriminate signal cues from noise
or non-signals. Application in the present study would mea-
sure participants’ abilities to discriminate the transparency
cues indicating the AUTOASSIST’s reliability; the emphasis
is on how participants internally represent the transparency
cues. Understanding this internal representation is important
for selecting effective transparency cues, but our present in-
terests are more about quantifying decision makers’ automa-
tion reliance, informed by those cues. PPP and NPP better
serve this goal. Additionally, there is evidence that PPP and
NPP better reflect the time-varying nature of decision-making
processes without changing their statistical properties (Rep-
perger, Warm, Havig, Vidulich, & Finomore, 2009).

Assist Selection Decisions Predictive Power Figure 4
(top) gives the predictive power for both the humans and
models in the assist selection decision stage. The bars give
the means, and the points are the individual decision makers.
For the human decision makers, PPP and NPP are fairly high.
PPP (right) is similar across all transparency cue conditions;
NPP (left) shows a bit more variability, with the highest NPP
observed in the Number-only condition. NPP for humans is
comparable to their PPP. Between both metrics, we can infer
that generally people chose the appropriate assist more often
than the inappropriate one.

The model closely reproduced the average level of PPP in
all conditions and NPP in the text and graphic (two-cue) con-
ditions. The model underestimates NPP in the Age-only and
Number-only conditions, meaning the model makes a higher
number of false negative decisions than humans. This dis-
crepancy might result from transfer between conditions, as
the model currently makes the assumption that no transfer
occurs across conditions because of distinct representations
of situation features. It is possible that participants relied on
information between conditions, improving performance on
single cues, relative to the model lacking between-condition
learning. Recent increases in representation flexibility in the



Table 2: Signal Detection Theory Mapping of Reliance on
AUTOASSIST Search Cues

Actual Reliability of
AUTOASSIST

Reliable Unreliable

AUTOASSIST
Followed

True Pos-
itive

False Pos-
itive

AUTOASSIST
Not Followed

False
Negative

True Neg-
ative

ACT-R architecture enables us to explore alternative assump-
tions in future work.

Reliance on Search Assist Predictive Power The sec-
ond way we quantify reliance on automation is to further use
Equations 4 and 5 in the search stage to examine the propor-
tion of trials wherein people followed the AUTOASSIST cue
when it was or was not reliable. Table 2 summarizes the SDT
definitions for AUTOASSIST search reliance actions. Here,
we consider only the subset of trials on which participants se-
lected AUTOASSIST in the decision stage, because there was
no automation reliance action when COMMANDER was se-
lected. PPP with the Table 2 mapping is the proportion of tri-
als on which a participant followed a reliable AUTOASSIST
out of all trials on which participants followed the AUTOAS-
SIST; NPP is to the proportion of trials on which the partic-
ipant did not follow the unreliable AUTOASSIST cue out of
all trials on which they did not follow the AUTOASSIST.

Figure 4 (bottom) shows the distributions of PPP (right)
and NPP (left) for the search stage of the COBALT trials.
The means for PPP are higher than NPP, within each mea-
sure, the human means are similar across all conditions. The
distributions for NPP have a larger variance, in addition to
the lower means. The low (approximately .25) NPP means
that the participants are taking more false negative reliance
actions than true negatives. Compared to the decision stage
(Figure 4 upper), the search NPP means are much lower; PPP
distributions and means are similar in the two task stages.

In the search stage, the model generates expectations of
the AUTOASSIST’s reliability, which we translated into pre-
dictive power measures. The model qualitatively reproduced
both PPP and NPP behaviors. We observe that the larger vari-
ability for NPP might result from individual differences in
strategy, which we plan to explore in future work.

Perceived Reliability of the Automation An exciting re-
sult that emerges from the model is an estimate of the proba-
bility of overall automation reliability that appears to parallel
the human subjective ratings.

At the completion of each condition, participants were
asked to estimate the AUTOASSIST’s correctness for that
condition. Ratings were given as a value between 0 and
100%. The ground truth automation reliability was always
70%. Figure 5 gives the means and individual ratings from

Figure 4: Distributions of predictive power values for all con-
ditions for the decision stage (top) and search stage (bottom)
of the COBALT trials.

both humans and IBL models; a horizontal line indicates the
actual automation reliability. As shown in Figure 5, on av-
erage, both people and models over-estimated the AUTOAS-
SIST’s reliability. Over-estimations were larger in the text
and graphic conditions than in the single cue conditions.

Previous efforts established the ability of IBL models to
reproduce human cognitive biases resulting from the interac-
tion of cognitive mechanisms and task statistics (Lebiere et
al., 2013). This predictive basis for judgments of (over)trust
raises the potential of using cognitive models to support
human-machine teaming in ways that automatically compen-
sate for human biases. Importantly, as conceptualized by def-
initions of trust calibration, internal estimates of reliability
were shaped through reliance experiences.

Relationship to Conceptual Trust Calibration Model
Our IBL model’s performance provides empirical support for
the closed-loop dynamic calibration process of Lee and See’s
(2004) model. However, our process model does not yet in-
tegrate the moderating factors outlined in their conceptual
model. Despite only formalizing the cognitive mechanisms
in Lee and See’s (2004) feedback loop, our approach was still



Figure 5: Mean perceived reliability ratings (bars) and indi-
vidual reliability ratings (points) each decision maker. The
light blue is the human subjective ratings data; the dark blue
are reflect blended values in the IBL model. The horizontal
line at 70 indicates the ground truth automation reliability.

able to fairly closely mimic human responses. IBL model
performance suggests that the individual, organizational, cul-
tural and environmental context played a less important role
in influencing trust calibration within this controlled task en-
vironment. In some ways, these findings are not surprising
because we attempted to control for (and did not manipulate)
many of these variables. What is less clear from our find-
ings is whether our model’s ability to simulate trust calibra-
tion would generalize to other less constrained environments
where individual, organizational, cultural and environmental
context might be more influential. If they do, such findings
would suggest that the feedback loop in the bottom portion
of Lee See’s model is the most powerful driver of trust cali-
bration. Perhaps the experience gained from interacting with
the automation has such a powerful impact on trust and re-
liance calibration that simply modeling this cycle is sufficient
to replicate human trust dynamics. The impact of organiza-
tion, culture environment and individual differences must be
explored; the IBL model should allow for a systematic inves-
tigation into the impact of these variables on trust calibration.
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