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Abstract 

What is the effect of level of simulation fidelity on learning 
and then on performance in the target task?  We consider an 
example of an electronic maintenance training system with 
two levels of fidelity: a high fidelity (HiFi) simulation that 
basically takes as much time as the real-world task and a low 
fidelity (LoFi) simulation with minimal delays and many 
actions removed or reduced in fidelity and time. The LoFi 
simulation initially takes about one quarter of the time, and 
thus starts out providing about four times as many practice 
trials in a given time period.  The time to perform the task 
modifies the learning curves for each system. The LoFi curve 
has a lower intercept and a steeper slope. For a small number 
of practice trials, this makes a significant difference. For 
longer time periods, the differences between low and high 
fidelity get smaller.  Learners that move from low to high 
appear to not be adversely affected.  We note factors that 
could influence this transfer (i.e., subtasks included in each 
simulation), and how this approach could be extended. 
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Introduction 
What is the effect of varying the level of simulation fidelity 
on learning in that simulation and on the more complete 
learning situation? What happens to learning when a learner 
practices in a simpler simulation and then moves to a more 
realistic or higher fidelity simulation? In this paper we 
explore how task fidelity affects how fast a task is learned in 
an example task, and analyze what this means through 
analyses using learning curves. 

We consider these questions by using an example of a 
maintenance training system with two levels of fidelity: (a) 
a simple system with minimal delays and with many actions 
removed or reduced in fidelity and time, and (b) a full fidel-
ity simulation that basically takes as much time as the real 
world task.  The higher fidelity simulations take longer to 
perform a more complete task including all sub-tasks. The 
low fidelity simulation starts out taking about one quarter of 
the time to complete, and thus starts out getting about four 
times as many practice trials in a given time period.   

The task complexity in the systems influences the time to 
perform the task, and this in turn modifies the two learning 
curves, both in the intercept and in the learning rate. We will 

show that for a small number of practice trials, this differ-
ence in trial time makes a significant difference in the 
curves. For longer time periods, the differences between low 
and high fidelity get smaller.  The amount of training the 
tasks being trained will receive will thus influence the 
choice of fidelity as well. 

After briefly reviewing the effect of training system 
fidelity we introduce a maintenance task we have developed 
to study learning and retention.  We will use a simple model 
based on ACT-R and Soar of how the task is performed and 
learned. Based on the learning curves we are able to draw 
some new conclusions about the effect of fidelity on the 
effectiveness of training, notably that using lower fidelity 
training situations help most where there is only modest 
time to practice, and that if there is extensive time to prac-
tice full fidelity has nearly the same outcome (but perhaps 
not the same costs or risks) as does starting with a simple 
simulation and moving to the complex simulation.  

Literature Review of Fidelity 
There is a long-standing debate of the effects of fidelity on 
training with simulators. The early research on fidelity was 
based on the natural assumption that higher fidelity would 
necessarily lead to better learning, since the simulation 
would more closely resemble the actual system (e.g., Allen, 
Hays, & Buffardi, 1986; Miller, 1954; Noble, 2002). How-
ever, much of the research supporting this notion was 
conducted from the 1950s to 1980s, so it had a low ceiling 
for how representative high simulation fidelity could be at 
the time. There is also a body of research showing that 
higher fidelity is not always desirable to maximize learning 
(e.g., Dahlstrom, Dekker, van Winsen, & Nyce, 2009; 
Havinghurst, Fields, & Fields, 2003; Lesgold, Lajoie, 
Bunzon, & Eggan, 1992; Swezey, Perez, & Allen, 1991).  

Delving into this literature quickly leads into the question 
of what fidelity actually means. The most common distinc-
tion is surface or physical fidelity versus operational or task 
fidelity (Allen et al., 1986; Liu, Macchiarella, & Vincenzi, 
2009). Within physical fidelity there are still many dimen-
sions, including visual clutter, visual layout, auditory fidel-
ity, and haptic fidelity. All of these dimensions have the 
potential to affect both speed of learning and degree of 
transfer to the real task. Some of these dimensions, how-
ever, are not relevant to the task being taught. To properly 
learn a task, the simulation should have reasonably high 



fidelity on the task-relevant dimensions (Prophet & Boyd, 
1970; Thorndike & Woodworth, 1901), but the irrelevant 
dimensions should be kept at a lower fidelity to minimize 
distraction from the task (Alessi, 1988).   

An additional factor that affects task time and transfer of 
learning is the experience level of the learner (Alessi & 
Trollip, 1991). The experience of the learner will affect the 
cognitive load associated with higher fidelities and the 
dimensions of fidelity that could be considered task relevant 
(Alessi, 1988). For example, an expert who is used to using 
the actual interface but is doing additional training will 
likely experience less cognitive load with a nearly full fidel-
ity simulation than a novice learning about the interface for 
the first time. Additionally, due to their experience, experts 
may find not having the appropriate haptic or audio cues or 
incorrect timings in the simulator to be a distraction to 
learning, while including these details would be distracting 
for a novice.  Similarly, the age of the learner can affect 
what sorts of interfaces are easily usable. A low fidelity 
simulation could introduce interactions that are natural for 
younger adults but novel or slower for older adults (John & 
Jastrzembski, 2010). 

The question of when higher fidelity is better for learning 
continues to be debated because it is not clear why or when 
lower fidelity simulations provide the most advantage. As 
we have discussed, experience of the learner and cognitive 
load are considered to be two important contributing factors, 
as is the type of task. In this paper we propose an additional 
factor, the number of repetitions of the task (or subtask) that 
a learner is able to complete while training. 

A Simple Task Model of Learning and Fidelity 
To examine the effect of fidelity on learning we use an 
example simulation, the Ben-Franklin (BF) Radar (Ritter, 
Tehranchi, Brener, & Wang, 2019).  Figure 1 shows a sche-
matic for the BF Radar system included to show its relative 
complexity, not its details. The system has 35 replaceable 
components that can have faults, and 15 switches and a 
power supply that cannot have faults.  The system is based 
on the Klingon Laser Bank task (Friedrich & Ritter, 2020; 
Kieras & Bovair, 1984; Ritter & Bibby, 2008) and on a 
functional radar system (Charvat, 2011).  

The schematic shows five subsystems. The subsystems 
vary in their complexity and connectivity within them and 
across subsystems. The blue lines in Figure 1 are power 
connections; the red lines are information; the purple lines 
are both. The schematic also identifies certain components 
that have their status displayed on the front panel of the BF 
Radar.  

There are several tasks that can be performed with the BF 
radar system. Users can turn it on; users can correctly adjust 
switches so that it works; users can find a single fault and 
replace it; and users can find and replace multiple faults.  
The task that we will use to examine the effect of fidelity on 
learning is to find a single broken component, a fault. Single 
broken faults create a unique light configuration and are 
always solvable.  

 
Figure 1. Schematic of the Ben-Franklin Radar simulation. 

 
The task was created to support troubleshooting within 

the confines of a study, and to be more complex than the 
Klingon Laser Bank task, but not so complex that it would 
take more than an hour to learn.  This system can be and has 
been realized in several ways with different levels of 
assumed fidelity.  

Task Simulations 
In our analysis we examine two potential implementations 
of the BF Radar device. The first (Low Fidelity) is realized 
in software and is being used in another study. The second 
(High fidelity) is realized in hardware, and has been 
partially built.  
 
Low Fidelity (LoFi) Simulation  Figure 2 shows the gen-
eral layout (not the details) of MENDS, a low-fidelity sim-
ulation of this system. The system is implemented in Unity.  
The front panel (top image) shows the subsystems and the 
lights in the upper right corner of each square shows which 
subcomponents are working. An individual tray (bottom 
image) shows a tray and the components that are working 
(yellow light and white) and the components that are not 
working (red light and grayed out). This system has been 
briefly reported before (Ritter, Tehranchi, Brener, et al., 
2019).  

To troubleshoot the task (the details are in Table 1) the 
user clicks for the next problem, examines the lights, clicks 
on a tray, and examines its contents.  They must then choose 
the broken component by clicking on it and clicking done. 
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Figure 2. The initial interface of the MENDS low-fidelity 

task (top) and a tray (bottom). In these pictures, the fault is 
in the Processor subsystem. 

 
High Fidelity (HiFi) Simulation  Figure 3 depicts the 
higher fidelity version of this system. This system is real-
ized in an approximate 2 ft physical metal and component 
cube using Raspberry Pi’s and in Unity 3D.  It has a cabinet 
holding trays for each subsystem. The top tray provides a 
summary of the system, including the indicator lights. The 
other trays each hold one subsystem.  

 

 
Figure 3. The high-fidelity realization of the BF Radar, 

showing the cabinet (with its door removed), two racks that 
will hold one subsystem each, and two components that will 
be inserted into component holders on the tray when the tray 

is built-out. 
 
To troubleshoot the task (as an overview, the details are in 

Table 1) the user must first put on a grounding strap, and 
then examine the lights, open the cabinet door, pull out a 
tray, and examine its contents.  They must then choose the 
broken component, find the replacement part, and replace 
the broken component. To set up a trial, the experimenter 
must have the user look away, replace a working component 

with a broken component, and then close the tray and the 
door.   

The Task Assumptions 
We assume that the user has been taught the BF Radar 
schematic and has it available, either in their head or on a 
sheet of paper.  Table 1 shows the subtask times and the 
total time.  The times are broken up into Learnable and 
Fixed tasks. The learnable tasks improve with practice; the 
fixed do not. These steps and their times (similar to and 
taken from the Keystroke-Level Model, Card, Moran, & 
Newell, 1983) are shown in Table 1. The user will start with 
the front display panel, and will have to examine the lights 
to know what tray and component to examine. Each step 
takes time, and we assume is error free. We use the 
Overdriven Amplifier, an early component in the system, as 
the example fault for this analysis.  

The Learning Theory 
The time to perform a task is broken down into two types of 
time: skills to be learned and skills that are already learned 
(or, essentially learned).  Skills that are to be learned get 
improved with practice.  On this task, learnable skills 
include: recognizing the lights and their implications.  Skills 
that are essentially already learned are moving the mouse 
and clicking, and system response times include replacing 
faults or inserting faults by the system.   

These times are used to compute the time to do the task 
using Eq. 1.  This equation is consistent with Soar’s 
(Newell, 1990) and ACT-R’s (Anderson, 2007; Ritter, 
Tehranchi, & Oury, 2019) learning theories, and the learn-
ing curve in general (Ritter & Schooler, 2001).  The times 
are computed in 10-minute blocks.  Thus, the first 10 min. 
block of trials are done at 2.7 (LoFi) and 1.0 (HiFi) trials per 
minute, then in the second block the pace is updated to 
reflect what is learned after 10 min.  This is repeated for 
nine more blocks.   

(1)  Time = Fixed tasks + learned tasks (Trial)
-α

 

The choice of α (alpha) was arbitrarily chosen as 0.2.  This 
value of α is consistent with values from Newell and 
Rosenbloom (1981, 0.06 - 0.81, a variety of tasks); and 
similar to values from Delaney, Reder, Staszewski, and 
Ritter (1998, 0.265 - 0.510, mental arithmetic); and Kim and 
Ritter (2016, 0.4 – 1.2, spreadsheet tasks). 

We also looked at the time if users were to move back to 
the HiFi trainer at the end of each 10-min. block.  That is, if 
a user were to train on the LoFi simulator and then move to 
the HiFi simulator at the end of each block.  This curve is 
thus not a learning curve, but shows how well the learner 
would perform in the HiFi simulator after that much practice 
in the LoFi simulator. Equation 2 shows how that time is 
computed. We include the power law effect for the new 
task, but on the subtasks in the HiFi simulation, they have 
not been learned, and thus they are trial 1. This is just the 
subtask time itself, no learning has occurred.  



 
(2)  Time = Fixed tasks(Hi) +  

  Learnable tasks only in Hi (1)
 -α

 + 

  (learnable tasks in both) (Trial)
-α

 
 
 

Table 1. Task analysis. The fault modeled is the  
Overdriven Amplifier fault. (times are in s.)  

 
 

Simulation Results 
Table 2 shows the number of repetitions of the tasks that 
arise across the ten 10-minute blocks.  The LoFi simulator 
has a much larger number of reps, and this difference is 
maintained across the total training time, although the ratio 
between HiFi and LoFi decreases with practice.   

 
Table 2.  Number of total task repetitions  

over ten 10-min. blocks. 

 

Total Repetitions          .a 
Block LoFi HiFi Ratio 

1 26 10 0.26 
2 64 23 0.24 
3 105 37 0.23 
4 149 51 0.22 
5 194 66 0.22 
6 240 81 0.22 
7 287 96 0.22 
8 334 111 0.22 
9 382 127 0.22 

10 431 142 0.22 
 

Figure 4 shows the learning curves for the HiFi and LoFi 
simulations, in linear and log-log coordinates.  There is an 
additional line showing the response time for a user that 
practiced with the LoFi simulator and then moved to the 
HiFi simulator.   

The plots show that the low fidelity users would get 
extremely fast on the material that is taught (green triangle, 
dashed line) compared to the high fidelity (blue square, 
solid line).  The intercepts are different; the low-fidelity 
group starts out faster.  And the slopes are different (best 
shown in the log-log plot), the low-fidelity group learns at a 
faster rate because they get an increasingly large number of 
repetitions because they are using a faster interface. With 
increasing practice, the low fidelity group remains faster, 
but the difference decreases as the power law effect is 
applied; that is, it takes increasingly larger amounts of prac-
tice for decreasing gains. 

But, where would the new learners be on the whole task 
(HiFi) if they move to the HiFi after working with the LoFi 
simulator? When the low-fidelity group moves back to the 
high fidelity interface (black circle, dotted line) the effect of 
practice with the LoFi simulator is most pronounced early 
on. The black line shows not practicing all the tasks in the 
HiFi simulator can lead to faster times, but that this effect 
decreases with practice. And, if there was one or several 
learnable tasks in the HiFi task that were not in the LoFi 
task, the LoFi transition line could conceivably come in 
higher than the HiFi task at some point.  

Human Participant Data that We Have So Far 
We have three sets of data related to this task. On the origi-
nal Laser Bank task, Ritter and Bibby (2008) saw reaction 
times ranging from 20 s initially to around 7 s when prac-
ticed. Friedrich and Ritter (2020) reported similar times.   

In the MENDS task (LoFi interface), Ritter et al. (2019) 
saw a subject with 10 minutes of practice that went from 
60 s to 22 s. The initial trials were thus slower, but the final 
time after 10 min. is approximately accurate.   

We are currently running a study that will gather more 
data on the low fidelity version.  We have run 8 out of 115 
human participants so far.  



 

 
Figure 4.  Response time for the 10 blocks for the high, low, 

and transitioned training schedules  
(linear, top; log-log, bottom).  

Discussion and Conclusion 
This analysis can help explain why there are still discus-
sions about whether to choose low or high fidelity simula-
tions. The analysis is sensitive to different assumptions 
about time costs of the two training systems.  The analysis 
shows that the expected factors influence the amounts of 
learning: previous training on a task, setup costs for a train-
ing task, what can be transferred, what can be trained, and 
how much training is required. Each will influence the 
learning curves and the differences between the two levels 
of fidelity.  This analysis points out that it is probably 
worthwhile to note and document what tasks are being 
trained in each system, and how many repetitions they are 
getting.  

What is also clear is that time to train is an important 
measure.  When there is a lot of training time (i.e., a large 
number of training trials is available), a low fidelity trainer 
does not offer as much benefit as when training time on the 
full system is limited.  If a low fidelity trainer is available, it 
might not so much save time but save money (or lives or 
equipment if the situation being trained is dangerous).  

Lower fidelity training systems, if they cost less, can also 
lead to large learning gains even when transitioned to more 
complex tasks, and this has been seen before (Alluisi, 1991; 
Caro, Isley, & Jolley, 1973). It would be interesting to put 
those situations into these analyses.   

This approach thus offers a calculus, a way for choosing 
how and why to use different levels of simulations. It can 
provide support for how much more training can be 
obtained from each type of simulation.   

It could also be used to avoid the awkward situation 
where spending effort to make the simulation/training more 
faithful to the external environment by including behavior 
that is not greatly influenced by learning would none-the-
less lead to learning less. Tasks that do not get faster and do 
not get learned are cases where fidelity could be dropped.   

In this task, there does not appear to be a cost to starting 
low and going to the high fidelity training situation.  This 
approach can save substantial time and resources. This 
approach shows that for this task there appears to be no cost 
to starting low and going high, unless there are essential 
skills that are learned and that are not in the LoFi simulator. 
Putting on a grounding strap, for example, if it was learna-
ble and not taught in the LoFi simulator, could have an 
important role in this story.  

We have run this analysis of the grounding strap as an 
example task only in the HiFi task. The curve indicates that 
in the first few training blocks, the LoFi interface still leads 
to faster performance. As amount of training increases, there 
is a cross-over point where the low fidelity performance is 
dominated by not having practice on the unpracticed task, 
and when the user transfers to the HiFi task, they are slower 
than the full task for the same training time. This effect 
should be explored further.  

More Repetitions Are Important Early 
The analysis shows that if you have only a short period to 
train, it is better to have learners on a low fidelity system.  
Figure 4 shows that the low fidelity when transitioned back 
to high was faster than only high fidelity because the learner 
had more practice on what could be learned. Performing 
more repetitions in the same period of time has a greater 
effect on learning when there is not a lot of trials.  On the 
other hand, at larger amounts of practice, learners on the 
low fidelity do not gain as much relative to the high fidelity 
as they do at low practice time.  The low fidelity is still 
faster, but the effect is smaller.  In some situations this will 
still greatly matter (where differences in response time are 
important, such as adversarial tasks), and in some situations 
this will not (perhaps in safety tasks where doing the task 
correctly and slow is good enough).   

Limitations 
There are several limitations to this analysis. We have 
revised the task in Table 1 numerous times.  Thus, there are 
likely to still be some inconsistencies. The model’s general 
predictions appear to be robust against these changes, how-



ever. As we updated Table 1 while writing this paper, the 
curves in Figure 4 did not substantially change.   

These analyses do not account for other differences in 
training systems such as cost, risk to the learner, environ-
ment, and equipment, time to get to the system, and so on.  
These are important considerations, and will have an 
important impact on training system choice.  

Future Work 
As a next step we are moving this analysis to R and doing a 
more detailed analysis.  We will examine different tasks 
(faults) as well. We continue to run the study of the LoFi 
condition. The physical apparatus will provide more 
detailed empirical results to support this approach.   

There are several analyses that we would like to do in the 
future.  We would like to explore what happens when there 
are more tasks that are not trained in the LoFi simulation. 
This may lead to a situation where coming back to the HiFi 
task from the LoFi simulator is slower than staying on the 
HiFi curve.  There currently is the use of the grounding 
strap as an example subtask.  There could be numerous tasks 
like this in other situations.  Other considerations such as 
cost may also be important.   

We would like to generate a set of plots showing the 
effect of changes in learning rate (e.g., 0.1 to 1.0 in 0.1 
steps).  Exploratory analyses show that higher learning rates 
can alter the curves and the relative value to each level of 
simulator fidelity.  It would also be interesting to see the net 
cost of the LoFi curves, either in training time or training 
costs.   

It would be useful to make this analysis even easier to 
use. It could then be used to analyze more realistic, complex 
tasks, for example, as IMPRINT does (Booher & 
Minninger, 2003).  This analysis could include the costs of 
building the additional LoFi interface.  This tool could even 
go so far as to predict the cost of each component in the 
LoFi interface (e.g., building it out more could cost a little 
more but lead to greater learning savings, system saving, or 
system effectiveness). This approach can also be informed 
by tools to model users in interfaces automatically (John & 
Jastrzembski, 2010; Wallach, Fackert, & Albach, 2019), and 
could be potentially included in them.   

This work can lead to a better method to determine 
optimal simulator training time based on examining perfor-
mance improvement through using learning curves.  
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