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Abstract

ACT-R has been used to study human-computer interaction. By
default, ACT-R models can only interact with interfaces written in
Common Lisp. JSegMan has allowed ACT-R models to interact
with external interfaces without modification. Currently, JSegMan
has been used in conjunction with ACT-R’s standard motor module,
which cannot model common behaviors such as holding down keys,
chording (pressing multiple keys at the same time), and multihand
actions (e.g., moving the mouse with the right hand while pressing
a button with the left). Extensions to ACT-R’s motor module have
been developed to address these issues and are included with
ACT-R. Like the original motor module, the extensions can only
interact with interfaces written in Common Lisp. This paper
describes modifications to update JSegMan to work with ACT-R’s
motor extensions and demonstrates its usage by creating a model to
play Desert Bus. Furthermore, the implication of running a model
over many hours is explored.

Keywords: Cognitive architectures; ACT-R; Motor control;
Chording.

Introduction

The embodied cognition-task-artifact triad states that behav-
ior in an interactive environment is mediated by three factors:
embodied cognition, the task a user is performing, and the
artifact they interact with. Byrne (2001) proposes that using
ACT-R (Anderson, 2007; Ritter, Tehranchi, & Oury, 2018)
can assist human-computer interaction studies because ACT-
R deals with the entire triad at once—the architecture handles
the limits of cognition, the model encodes task knowledge,
and an artifact is necessary to provide stimuli to the model
and handle its output (key presses and mouse movements).
However, ACT-R in its current form can only interact with
special or heavily modified interfaces, making it difficult to
study human-computer interaction.

JSegMan (Tehranchi & Ritter, 2018a, 2018b) offers a
method of interacting with an interface external to ACT-R
without modification. It detects visual features from a screen-
shot of the computer’s display to provide ACT-R with
stimuli. In addition, it allows a model’s motor movements to
control a computer’s peripherals. However, this new level of
interaction is limited to the default functionality of ACT-R’s
motor module and thus is limited in the behavior it can model.

By default, ACT-R is only capable of supporting serial
motor action. Multiple motor commands can be queued

together to simulate quick typing, but the architecture must
process each keypress separately. This prevents the architec-
ture from being able to press multiple keys at once, thereby
making it impossible to type certain symbols (e.g., open and
close parentheses because they require the shift key), use key-
board shortcuts, and play many video games. These issues
were raised and addressed by during the development of a
model to play space fortress (Bothell 2010). However,
JSegMan has yet to incorporate the extended functionality.
To determine how JSegMan must change, we created a model
to play a simple game, Desert Bus.

Our experience in developing the model has led to several
proposals on how to grow JSegMan. First, JSegMan should
add commands (e.g., press and release) that mimic those
available in the extended ACT-R motor module. Second,
JSegMan can reduce its overhead (and improve model accu-
racy in dynamic task environments) by using ACT-R’s
remote procedural call interface. This work also raises ques-
tions about long-term behavior in cognitive architectures.

Background

This section discusses ACT-R’s structure and various
methods researchers have used to have it interact with exter-
nal interfaces. Also, the game used as a task is described.

ACT-R

The ACT-R cognitive architecture (Anderson, 2007; Ritter,
Tehranchi, & Oury, 2018) implements the fixed features of
cognition as modules. The primary function of the architec-
ture is controlled by the declarative and procedural modules.
The declarative module manages factual memory (e.g.,
George Washington was the first president of the United
States) encoded as chunks while the procedural module
handles memory about performing actions (e.g., to turn on a
computer, you have to press the start button), encoded as
productions. The facts in declarative memory, actions in
procedural memory, and stimuli the model sees determines
how it behaves. What the model sees and how it acts within
its environment are controlled by the perceptual and motor
systems (spread across four modules), respectively. How-
ever, ACT-R has issues interacting with external interfaces
and simulations (Schwartz & Dancy 2019; Schwartz & Ritter
2019).



ACT-R/PM

ACT-R’s current perceptual and motor systems are based on
ACT-R/PM (Byrne, 2001). The system assumes the model is
viewing and interacting with a computer. ACT-R/PM adds
four modules to the architecture: vision, motor, speech, and
audition. ACT-R/PM’s perceptual and motor modules have
been merged into ACT-R and come as part of the standard
release. This section will only discuss the vision and motor
modules as the others are not pertinent to this project.

The vision module handles what an ACT-R model can see.
It represents the screen as a collection of features that
represent text, images, lines, buttons, etc. Features are
mapped to chunks that represent where and what an object is.
The visual-location buffer controls the where system and
allows a model to query for an object’s location. Once a
feature is found, the model can shift its attention to it and
encode the object via the what system controlled by the visual
buffer. This creates a detailed chunk for the model to use.

The motor system provides support for using a virtual
keyboard and mouse. It represents a user with two hands and
allows procedural memories in a model to move the hands,
mouse, and punch/peck mouse buttons and keys. The
duration of hand and finger movements are estimated via
Fitts” Law.

It is important to note that ACT-R/PM only works with
special interfaces. ACT-R/PM was originally written in
Macintosh Common Lisp (MCL) and only extracts features
from interfaces created in a particular set of tools included
with ACT-R/PM. ACT-R/PM has been partially generalized,
allowing it to pull features from the ACT-R Graphical User
Interface, across various Lisp implementations. However, the
root of the problem remains—the interface still needs to be
written in a compatible Lisp variant using the predefined
structures.

Shortcomings of and Extensions to the Motor System.
Two issues are present in ACT-R’s motor system. First,
ACT-R’s motor system cannot perform concurrent inputs
that are common in everyday computer usage. This issue is
caused by state management within the motor module. The
module has three states: preparation, processor, and
execution. New motor commands can be queued when the
preparation state is free. However, only one action can be
executed at a time as the execution state handles commands
serially. Furthermore, these states control actions for both
hands; therefore, performing an action with one hand
prevents the model from using the other. This implies that
ACT-R cannot model video games that require the user to use
both hands concurrently.

Second, the motor module does not support holding down
keys. The motor module supports punches and pecks, each of
which presses and then releases a given key. Together, these
issues limit the types of interaction ACT-R can model.

These limitations prevent ACT-R models from pressing
multiple keys at once—meaning the regular behavior users
exhibit when typing capital letters and using keyboard
shortcuts cannot be modeled. A common workaround is to
assume that the model has an extended keyboard with buttons

that represent chords. Thus, to give an ACT-R model the
ability to use copy and paste shortcuts, dedicated buttons
would be added to ACT-R’s virtual keyboard to input
Control-c and Control-v chords, respectively.

These weaknesses were exposed and remedied during the
development of a model to play Space Fortress (Bothell
2010). Separate execution states were added per hand,
allowing ACT-R to use both hands in parallel. Several motor
commands were added to facilitate holding down and
releasing keys such as hold-peck, hold-punch, hold-key, and
release. The extended system signals both presses and
releases, so new handlers were added to devices to enable
them to detect key and mouse button releases. Finally, a new
module, called motor-extension, was added that has two
buffers that can query the activity of each hand.

Network Interfaces

Another method of getting ACT-R to interact with an external
interface is via a network interface. The JSON Network
Interface (JNI) (Hope, Schoelles, & Gray, 2014) allows
visual objects and motor movements to be shared over a
network connection. The interface generates chunks for the
visual objects on screen, packs them into a JSON record, and
sends it to an ACT-R model. A special module unpacks the
packet and adds the information to the visicon (the list of
visual features currently on screen), allowing ACT-R to work
with the visual information as normal. Similarly, motor
commands in ACT-R generate a packet that is sent to the
interface, which can be used to update the interface’s state.

New versions of ACT-R (7.6+) have incorporated similar
functionality. They are based on a remote procedure call
(RPC) system that allows multiple clients to request actions
from a server running ACT-R. Therefore, an interface can
connect to the server and send visual chunks for models to
use. Additionally, the interface can watch for motor
commands and act based on them.

Both JNI and ACT-R’s RPC system assume an interface
can be modified. The task interface must have several
features added to it. First, it must manage the connection to
either JNI or ACT-R’s RPC server. Second, it must be able
to convert visual information into visual location and
encoded object chunks. Third, it must be able to simulate
inputs based on those received from JNI or ACT-R. These
modifications can be nontrivial and take time away from the
core reason for using ACT-R, to study human cognition in a
task.

Segmentation and Manipulation

Another method of providing interaction to external
interfaces is by parsing the screen and manipulating inputs.
Therefore, this approach aims to alleviate the issues present
in ACT-R/PM and network interfaces by allowing the model
to “see” what is on the screen and actually interact with it.
SegMan adopted this approach (St. Amant, Riedl, Ritter, &
Reifers, 2005). SegMan created visual features by taking a
screenshot of the display and separating the pixels into groups
based on color and location. Patterns were used to combine



groups that met modeler specified criteria. Finally, patterns
and groups could be parsed to identify visual features such as
images, buttons, and text. In addition, SegMan could simulate
mouse movement, clicks, and key presses by interacting with
the operating system.

SegMan was written in C and worked with Microsoft
Windows 95/98/2000/XP. In addition, it was designed to be
a general programmable interface, and thus worked with
several architectures including ACT-R, Soar, and EPIC.
Unfortunately, the system was not maintained and over time
became less usable.

JSegMan (Tehranchi & Ritter, 2018a, 2018b) is a modern
implementation based on the segmentation and manipulation
approach. JSegMan works separately from ACT-R, feeding
visual information to it and capturing desired motor
commands from it. The vision system works by taking a
screenshot of the computer’s display and detecting features
requested by a model. Models are augmented to have
memories of what an object (e.g., a button) looks like. These
memories store images to search for in an interface. Finding
a feature is handled by template matching—a computer
vision algorithm that separates the screen into patches and
compares each patch to a template (or desired image) pixel
by pixel. The patch with the highest similarity to the
requested memory image is returned.

Motor control is handled by interacting with the operating
system. A signal representing a model’s interaction (e.g., a
punch or peck) is sent to JSegMan, which relays the
corresponding action to the operating system.

JSegMan has shown that older models must be modified to
work with real interfaces. A model designed to perform the
Dismal spreadsheet task (Kim & Ritter, 2015) was modified
to use JSegMan (Ritter, Tehranchi, Dancy, & Kase, in press;
Tehranchi & Ritter, 2018a). The Dismal task asks subjects to
compute values in a spreadsheet given a fixed set of
instructions; Emacs was used to display and modify the
spreadsheet. Forcing the model to really interact with the
interface revealed deficiencies in the model’s logic. After
fixing them, the modified models performed better than the
originals.

Desert Bus

The video game Desert Bus was used as a task during this
study. Desert Bus was created by Dinosaur Games and
published by Gearbox Software; it is available for free and
runs on Windows machines. It was developed for a charity
event. The game is based off an unreleased game of the same
name designed by Penn and Teller in 1998.

Desert Bus has the player drive a bus on a straight road
through the desert connecting Tucson, AZ and Las Vegas,
NV. The trip takes approximately eight hours to complete
one-way, at which point the player earns one point and is
instructed to turn around and drive back. This process
continues endlessly. All the while, the bus drifts slightly to
the right. If the bus drives off the road, it is towed back to the
beginning (in real-time), the trip odometer, and points are
reset. The game cannot be paused. The player controls the bus

with the WASD keys; W is used to accelerate, A and D turn
left and right respectively, and S applies the brakes. The
player can also look around with the mouse and click to open
the door to the bus and turn on/off the radio. Figure 1 shows
the player’s view from inside the bus.

Figure 1. The player’s view from inside the bus.

Model

Figure 2 shows a flowchart of the model’s decision cycle.
The model begins by holding down the W key to accelerate.
After that, it enters a looping decision cycle where it looks
for the yellow dividing line in the center of the road (Land &
Horwood, 1995; Land & Lee, 1994) and uses its position to
determine if the bus should be realigned. A realignment will
occur if the line has drifted past 857 pixels; this is the initial
position of the dividing line at the start of the game. The A
key is pressed to turn the steering wheel and realign the bus.
If no adjustment needs to be made, the model fires a
production that symbolizes the decision to drive forward
(without adjusting steering) and then restarts the decision
cycle. As the game occurs in real-time, the ACT-R model
also runs in real-time.

The model takes advantage of the fact that the bus will only
drift to the right (causing the dividing line to move to the left).
Thus, the model only has to worry about moving left or
forward. A more robust model would also consider moving
to the right to make up for overcompensating for the drift and
ending up on the wrong side of the road. Our model does not
worry about this because no other vehicles appear in the
game.

JSegMan handles finding visual targets and simulating
keyboard inputs for the model. Visual searches are requested
at the start of the decision cycle, so the model will always
know where the dividing line has drifted since the prior
decision. Following the example of the Dismal model, an
ACT-R device was used to detect key presses and signal
JSegMan on the behavior to emulate. JSegMan does not have
a persistent connection to ACT-R. Instead, a JSegMan
process must be started (and run to completion) for each
action. Data is passed to JSegMan via command-line
arguments. Data is received from it by parsing its output
stream. Furthermore, when JSegMan is running, the ACT-R
model is paused.
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Figure 2. Flowchart of the model. Boxes with a solid
border do not make use of JSegMan whereas boxes with a
dashed border do. The model starts by driving forward.
Then, it looks for the dividing line in the road and realigns
the bus (by moving left) if the line has drifted far away.

The model only looks for the center dividing line, so it only
has one template for JSegMan to look for, depicted in Figure
3. Templates in JSegMan are images, thus a screenshot of the
game was used to generate the template.

Figure 3. Visual template used for the dividing line. The
template was extracted from a screenshot of the game.

Finally, the model only handles driving. The player begins
the game outside of the bus and must turn around and punch
a timecard before entering the vehicle. To keep the model
simple, we have a player punch the timecard, enter the bus,
and then we start the model. Including these steps are obvious
future tasks. Nevertheless, while undertaking the drive from
Arizona to Nevada, it will be one of the longest running
ACT-R models.

Demonstration Observations

Unfortunately, in its current state, the model is only able to
drive for about a mile before being towed back to the
beginning. The model always successfully makes one
adjustment. However, the adjustment made is too large; it
takes the bus from the extreme right edge of the road to the
extreme left of the opposite lane. After that, the model will
continue driving forward until the bus drifts back into the
center of the road (between the two lanes). Then the model
attempts to make another adjustment and over adjusts,
driving off the road to the left.

The model fails to drive for more than a mile for a
multitude of reasons. First, the template for the dividing line
gets mismatched. The model only uses one template to
identify the location of the divider. However, this template is
not always satisfactory. As the bus drifts left and right across
the road, the angle of the dividing line changes. When the bus
is to the right of the divider, the angle is similar to that of the
template and matches are more likely to be correct. However,
when the bus over adjusts and ends up on the left of the
divider, the template does not match as well. Furthermore,
ACT-R is unaware of the quality of a match. JSegMan is used
to find objects and features on the display. However,
JSegMan does not return any information about the quality of
a match, but a matching request will always return a position.
Thus, a feature will always be found even if it is not present,
meaning ACT-R does not know when it should avoid putting
the feature in the visicon.

In theory, using multiple patterns could remedy the issue.
Patterns of the divider at different angles would be a proxy
for where the bus is, allowing the model to determine if an
adjustment is necessary. However, this process would take
too long. Currently, it takes 6.01 seconds on average (n=100)
to match the divider template. Furthermore, this is about the
time it takes for the bus to drift from the center of the road to
the rightmost edge; therefore, if the model attempted to match
a second template, it would drive off the road before having
the chance to make an adjustment.

Additionally, the over adjustment is an artifact created by
the overhead of running external processes. JSegMan does
not have support for holding keys or presses of arbitrary
lengths. To make up for this, a Java program was constructed
to simulate key press and release events (to mimic the signals
sent by ACT-R) and is invoked just like JSegMan. This
program was used to determine what the effects would be of
incorporating press and release commands into JSegMan. To
simulate a full key press and release this program would have
to be run twice, the former sending the press signal while the
latter sent the release. According to the model, an adjustment
involves a rapid peck lasting for 0.08 seconds. However, on
average (n=100) this mechanism takes 2.79 seconds to
simulate an input. Furthermore, the input seen by the
operating system is longer than 0.08 seconds because of the
time spent creating the release process. Using the newest
version of ACT-R would help alleviate some issues (notably
those for key presses/releases) by reducing overhead. Newer
versions of ACT-R are remote procedure call based. If



JSegMan is modified to be a client to ACT-R’s event
dispatcher, it will not need to be restarted, reducing overhead
to the time it takes to send several packets (representing the
command to execute). This change will require JSegMan to
rely less on the device, as newer versions of ACT-R try to
avoid using it. However, this should not be an issue as
JSegMan will also be able to query the event dispatcher, thus
it can watch for events generated by the motor module instead
of the device.

Discussion and Future Work

There are some limitations to this model. It does not
perform the whole task, and cannot yet drive very far. These
limitations suggest changes to JSegMan and its interaction
with ACT-R. Specifically, JSegMan should return infor-
mation about the quality of a match and should use a persis-
tent connection to ACT-R (especially when being used in dy-
namic environments) to reduce overhead. Finally, JSegMan
should incorporate commands that enable models to hold
down keys for arbitrary (or indefinite) lengths of time.
Implementing these changes will allow JSegMan to be used
in modeling more complex tasks. During our work, we also
discovered several other interesting topics that can be studied
with a model that can drive a Desert Bus.

Vigilance

The version of Desert Bus we used is multiplayer, allowing
other players to enter the bus as passengers. Players can
interact with one another by talking or throwing scraps of
paper. Thus, cognitive resources are diverted away from
driving. Helton and Russel (2011), showed that subjects
perform worse at a target detection task when simultaneously
performing a spatial or verbal working memory task.
Therefore, in the future, the model can be augmented to lose
vigilance while driving and interacting with passengers.

Giving Up and Physiologic Effects

Desert Bus is more a game of endurance than skill. The trip,
one-way, takes about eight hours to complete and there is no
end to the game; the goal is to see how far you can go. A
model can play the game forever, but this is unrealistic for a
person. A model can be created that weighs external
influences and duties against playing and determines when to
stop.

Additionally, the model can become more realistic by
incorporating physiology with ACT-R/® (Dancy, 2013).
Players can become hungry, thirsty, and/or sleep deprived
while playing, causing their performance to suffer to the point
that the bus runs off the road or forces the player to stop.
Traditional driving models do not drive for long, so they can
ignore these influences. However, ours can theoretically run
forever. Adding a physiologic component to the model can
reveal interactions between cognition and physiology and
leads to a more robust theory of prolonged work and quitting.

Conclusion

With the advent of SegMan and JSegMan, ACT-R gained the
capability to truly interact with a wide range of
uninstrumented interfaces. ACT-R’s motor module has
evolved to enable modeling of many behaviors users may
exhibit. JSegMan should evolve to make use of the
extensions to ACT-R’s motor module to allow models to
interact with external interfaces with the same behavior as
users.

Using Desert Bus as a task, we began exploring how to
improve JSegMan and what implications our proposals had
for modeling and the design of JSegMan in general. While
our model did not successfully play the game for long, it
yielded useful insights.
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