
Cognitive Twin: A Personal Assistant Embedded in a Cognitive Architecture
Sterling Somers1, Alessandro Oltramari and Christian Lebiere1

1Psychology Department, Carnegie Mellon University, Pittsburgh, PA
Bosch Research and Technology Center, Pittsburgh, PA

{sterling@sterlingsomers.com,Alessandro.Oltramari@us.bosch.com, cl@cmu.edu}

Abstract

This paper presents an analysis of a cognitive twin, imple-
mented in a cognitive architecture. The cognitive twin is in-
tended to be a personal assistant that learns to make decisions
from your past behavior. In this proof-of-concept case, we
have the cognitive twin select attendees to a party, based upon
what it has learned (through ratings) about an agent’s social
network. We evaluate two versions of a model with respect
to rate of change in the social network, the noise in the rating
data, and the sparsity of the data.
Keywords: cognitive architectures; personal assistants; act-r;

Introduction
Smart recommendation systems, automated alerts, digital
personal assistants, and the like have become ubiquitous in
our everyday lives. From speakers in our living rooms,
watches on our wrists, and, of course, phones in our pockets,
we are constantly being notified and updated with informa-
tion that, at times, can even be helpful. Beyond these cur-
rent efforts, we envision a cognitive twin: an automated per-
sonal assistant that knows the kinds of decisions you would
make and uses that knowledge to carry out tasks in the digital
world on your behalf. We instantiate our cognitive twin in a
cognitive architecture that exhibits human-like cognitive con-
straints that, for better or worse, can result in biases such as
recency and frequency effects. We aim to show that cognitive
constraints like these can actually be beneficial in a dynamic
environment.

Existing technology requires large data sets which often in-
cludes aggregate data from multiple people. There is no doubt
that useful inferences can be made by learning from aggre-
gate data, however, there are limits in of the effectiveness of
big-data approaches: sometimes the choices you would make
are not the same as the average person. Furthermore, these
approaches gather data about everyone in a central location
which raises concerns about privacy. In our approach, we
advocate learning about you from your own data. We cast
your behavior as decision that had desirable or undesirable
outcomes. That information is stored in the memory of your
cognitive twin and is used to make future, similar decisions.
Since the decision maker whom we are attempting to model
is a cognitive agent, with limited cognitive capacities, we in-
stantiate our model in cognitive architecture that is used in
the cognitive sciences to make scientific models of the human
mind. The resultant model is human-like and is personalized

to make decision for you, negotiate decisions with other cog-
nitive twins, without sharing your data, and without storing
your data on a central repository.

In this work we evaluate a prototype cognitive twin devel-
oped in the cognitive architecture, ACT-R (Anderson, 2007)
using instance-based learning (Gonzalez, Lerch, & Lebiere,
2003). Data is generated from a discrete action simulation
of a population of simulated agents who carry out tasks. For
each artificial agent in the simulation, a log of their activity
is generated. We then use these logs as input to generate a
cognitive twin for each simulated agent. In this context, the
cognitive twin, therefore, is a simulation of a simulation. As
the simulation itself is a prototype, we do not assume a high
degree of veridicality. Instead, we use the simulation as a data
generator, and evaluate the cognitive twin with respect to that
world.

In a machine learning context, it may, at first glance, seem
like an misguided choice to use an architecture that is specifi-
cally designed to have human-like cognitive constraints. A
learning model that, in effect, will ‘forget’ data over time
may seem like a waste of data. However, in a dynamic en-
vironment, data can become outdated, as targets change, you
might not want to make the same decision you made in the
past, even if that decision had a positive outcome. In the
present study we test the model’s ability to deal with change
in two ways. First, directly, we modify the rate of change
in the simulation (α) and expect the model to do well with
moderate rate of change. Second, we test how many weeks
worth of simulated data we use in the model. By reaching
back, n-weeks, we hope to show that the learning mechanism
gracefully degrades old data; as well as being able to show
that the model is robust to few learning examples.

In the spirit of testing real-world-like scenarios, we also
test to see how robust the model is to noisy data and sparse
data. We test the sensitivity to noise directly by modifying
the noise parameter in the simulation (σ). We test sparsity
in two ways: first, by using n-previous-weeks worth of data
(same as above); and second, by probabilistically controlling
how much simulated data is ‘seen’ by the model (effectively
removing data probabilistically).

Background
In previous work (Somers, Oltramari, & Lebiere, 2020) we
tested two versions of the cognitive twin, central and dis-



tributed, against one another and against the simulation in
their respective success at inviting guests to a ‘dinner party’.
In this section we describe the dinner-party-planning scenario
and the simulation.

Dinner Party Planning
Think about the knowledge that goes into something as seem-
ingly simple as planning a dinner party. You need a place, a
time, food, and friends. The time has to suit the attendees
(scheduling) and should be during ‘dinner’ (knowledge), the
food should suit the attendees (dietary restrictions), and the
people who attend should all get along (unless you are host-
ing a fight club). Presumably, when you carry out the task
of planning a dinner party, you do so partly from knowl-
edge about how to carry-out the task (task-knowledge), partly
from things you have learned (who you like, what foods peo-
ple eat), and partly from communication with other attendees
(what food they eat and who they like). Task knowledge can
be difficult to learn from data because those processes are of-
ten communicated at least in part explicitly as instructions,
in a process known as Interactive Task Learning (Laird et al.,
2017). We advocate a hybrid approach in which we combine
structured knowledge with and data-driven knowledge.

In our previous (and present) work we evaluate our model
on its ability to select party guests based on past experiences
with them and communicating with other cognitive twins (in
distributed model). The simulation assumes a social rating
system: when simulated agents interact with one another,
they provide a ‘rating’ of that interaction. That rating is then
used to update their social link (their friendship). We describe
the simulation, the social interactions, and the rating system
more thoroughly below.

Simulation
To generate data, we implemented a discrete simulation.
While the simulation, itself, is currently under development,
we believe it has enough complexity to generate data to test
an early prototype of the cognitive twin. We do not assume
that the simulation is veridical on any meaningful dimension
but use it, instead, to generate data in lieu of human data. As
we progress, we fully intend to develop the simulation fur-
ther, however, in this analysis we are more concerned about
evaluating the cognitive twins, with respect to properties we
believe would effect its performance due to underlying cog-
nitive assumptions.

The simulation is comprised of a ‘world’, populated by
agents going about their daily lives. In our previous work
our world was comprised of 100 agents, whereas in this anal-
ysis, we have doubled the number of agents to 200 (largely
to add stability to social networks). Importantly, the agents
in the simulation are distinct from their cognitive twins. The
agents in the simulation represent ‘real’ humans (in lieu of
real human data) and the twins use the data they generate to
plan party attendees. The simulation creates a population of
agents by first generating families with sizes controlled by
a weighted distribution (parameter). A family is generated,

populated, and then new families are generated and popu-
lated until the desired population has been reached. Although
the analysis we do in this paper is with regards to social in-
teractions, social dynamics between family members are not
yet simulated any different than social interactions with other
members of the population. We hope to account for differ-
ences in social dynamics where appropriate in future work.

Since our proof-of-concept scenario is dinner-party plan-
ning, we have developed the simulation to include: social
interactions (to develop social links between agents), daily
activities (scheduling concerns), and food consumption (to
model dietary restrictions). Given space constraints, we will
only discuss social interactions (the main focus of this paper).

Social Interactions Each agent in the simulation has both
incoming and outgoing social links, that range between -1
(extreme dislike) to +1 (extreme friendliness), to other agents.
When a world is generated, the social links are selected from
a truncated normal distribution. The mean and standard de-
viation of the distribution are free parameters but currently
set to a mean of 0.4 (under the assumption that social links
are generally positive) and a standard deviation of 0.5 (wide
enough that negative relationships can still occur). The so-
cial links are independent and, as a result, can be asymmetric
(i.e. one agent may favor another but may not be favored
in return). While negative values represent dislike and pos-
itive values represent positive feelings, we explicitly divide
positive links into two classes: positive relationships (links
greater than zero but less than 0.50) and friends (links greater
than or equal to 0.50). In our previous work we set that split
at 0.75 but due to changes in the simulation (modified how
links change), we are able to better track changes in friend-
ship circles over longer periods of time, by including more
people. The initial seeding of social links is used during run-
time when setting up social interactions. Roughly, friends
become more likely to interact and enemies less likely, as de-
scribed below. Social interactions (parties) are created during
run-time at the start of each simulation day. Each party has a
host and each host is selected randomly from the population.
The parameter p is set as a proportion of the total population
from which the hosts are selected. In our previous work and
in the current work we used a value of 0.25 to ensure that we
are generating sufficient data to test the model. Modifying
this parameter would effect the rate of change in the simu-
lation but we have kept it steady in favor of a parameter that
affects the change more directly. Once we have selected hosts
for the parties, attendees are selected. Attendees to each party
are selected based on their connection to the host. The out-
going links from each center, to each individual in the popu-
lation is transformed into a weighted probability distribution
such that stronger links result in higher likelihood of being
selected. The outgoing links from the host are transformed
with the following considerations: a) links lower than a min-
imal value of -0.1 (a free parameter) are excluded; b) a small
bias (additive, 0.3, also a free parameter) is added to weights
for connections above the ‘friend’ threshold. These parame-



ters were set qualitatively in previous work to produce steady
world statistics.

Even though 25% of the population are chosen as party
hosts, not all hosts will result in a social interaction. Once
the attendees are selected, the party has to be scheduled and,
due to scheduling conflicts, prospective parties may be can-
celed. For each potential party, a minimum party size is se-
lected randomly from a truncated normal distribution (a free
parameter). If the party does not meet that minimum size,
the social interaction is canceled. Social interactions are re-
solved in a queue, which is ordered by the original selection
of hosts. Attendees who become committed to a party that is
resolved early in the queue may be too busy to attend parties
further in the queue. Finally, it is worth noting that although
people with large negative connections with the host will not
be scheduled by the host, people with negative links could
find themselves at someone else’s party. The simulation does
not try to maximize the overall average connection between
guests.

During an interaction, all agents in attendance receive an
interaction score with all other guests. In the current work, the
interaction score is: the mean links between the agents (in-
coming and outgoing) plus a randomly selected score value.
The score values are selected from a truncated normal distri-
bution between -1 and 1 and the shape of that distribution is
a free parameter. We simplify this work from previous work,
setting the mean of that distribution to 0.0 (instead of a posi-
tive value). In this work, we modify the parameter, σ, which
represents the standard deviation of the score value distribu-
tion. We consider higher levels of σ as higher levels of noise
in the ratings. In the analysis below, we test the robustness of
the models to different levels of σ. The final score (mean +
score value) is truncated to a range of -1 to 1. This form of
scoring is an update from previous work. The social interac-
tion scores are independent: agent A will score the interaction
with agent B differently than B will score the interaction with
A.

Change in Social Networks The social interactions are the
means through which social networks change within the sim-
ulation. In this work we have updated how the social links
are updated in response to social interactions. We introduce
a new parameter, α to represent a rate of change in the simu-
lation that we then systematically modify to test our models
against. Social links between agents are updated with the fol-
lowing equation: Lt = α · Lt−1 + 1−α ∗ scoret , where Lt is
the outgoing link at time t and score is the interaction score.
Higher α values should result in small changes in the net-
works (because your links are only marginally affected by
interaction score), whereas small values of α should result in
higher rates of change in social network.

In the present work, we test the robustness of the model
at different values of both α and σ. By modifying these two
parameters we create low- and high-change simulation con-
ditions (α), and low- and high-noise conditions (σ), creating
4 categories: low-change-low-noise, low-change-high-noise,

high-change-low-noise, and high-change-high-noise.

Simulation Analysis
Figure 1 presents different measures of the simulation at
each of the four parameters settings: α = {0.95,0.25}×σ =
{0.25,0.75}.

Figure 1: Summary measures of the simulation at different
parameters of α and σ. A) shows the world averages of per-
cent positive connections at each parameter settings (blue)
and the world average percent of friends (red). B) Illustrates
the change in the network from simulation start through two
years for both positive connections (orange) and and friend-
ships (green). C) Illustrates the the measures of party success:
percent of people who are friends with the host (brown), and
the average link between party attendees (black).

Figure 1-A shows the world average percent of positive
connections over two years of simulation (blue) and the world
average percent of friends, i.e. positive connections greater
than 0.50, (red). This plot suggests that, other than α =
0.25,σ = 0.75n (high-change-high-noise), changes in social
networks are not due to a net loss positive connections. The
net loss of positive connections (dotted blue line), demarcates
a quality boundary, and, therefore provide a good point to
limit the adjustment of the α and σ parameters. We expect, in
the high-change-high-noise condition, that the cognitive twin
would score lower due to overall loss in positive connections.

Figure 1-B illustrates the change in the social networks
from time zero through two years of data. Orange lines de-
note changes in networks of positive connections, while the
green lines denote changes in networks of friends (social links
greater that 0.50). The change in the networks decay as you
might expect: an increase of change with a smaller α and
an increased change with increasingly noisy ratings. And, of
course, the effect combines, with the greatest rate of change
occurring with changes in both α and σ.



Finally, Figure1-C shows the scoring the simulation gets
with respect to the percentage of guests who are friends with
the host (brown) and the average connection between all
guests at a party (black). All parameters are plotted but, due
to the fact that those values are somewhat noisy, and the over-
lapping lines, there is no appreciable difference at different
parameter settings. However, they do provide a ball-park es-
timate how well the simulation does on those measures (the
same measure of the model, below). These are the measures
we use to evaluate the models.

Cognitive Twin Model

At a high-level, the cognitive twin is an automated decision
maker. It uses your data to make the kinds of decisions you
would make. In the party-planning scenario, your cognitive
twin is intended to do some of the leg-work of party plan-
ning for you. The cognitive twin was developed in ACT-
UP (Reitter & Lebiere, 2010), a toolkit implementation of
ACT-R, developed to make it easier to integrate with simu-
lations, with limited footprint, and network-size scaling re-
quirements. It leverages the key equations for declarative
memory, reflecting tradeoffs in recency and frequency in gen-
eralizing patters of user activity. Finding the most compati-
ble set of guests relies on ratings of past social activity. The
ratings generated by the simulation are represented in the
model as chunks in memory consisting of: a) the agent with
whom the user interacted, and b) the rating of the interac-
tion (described above). Each of those chunks have an asso-
ciated base-level activation that reflects the recency (and fre-
quency if the same rating between the same agent has been
provided multiple times) of the ratings. Each chunk activa-
tion can therefore be interpreted as the relative importance of
that rating among competing ones, and factored accordingly
by memory retrieval processes. Specifically, the blending re-
trieval process (Lebiere, 1999) is used to produce a consensus
estimate of social rating between two agents by retrieving and
aggregating individual ratings weights according to their ac-
tivation.

These social compatibility ratings are used in a greedy al-
gorithm that starts with the central user organizing the gath-
ering. The rating of all potential guests are evaluated against
the current set of invitees, starting with the host, and the guest
with the highest rating is selected. In the centered version of
the algorithm, the selection process is simply repeated until
the guest list is full. In other words, only the social rating
between potential guests and the host are taken into consid-
eration. In the distributed version of the algorithm, however,
after each guest is selected, the social ratings between that
guest and the rest of the potential guests are added in, and
the next guest is selected. Again, the process repeats until the
guest list is full. Note that it is possible that this process does
not yield an optimal outcome because the sequential selec-
tion process could lead to a local optimum. For instance, it
could select a guest that has the highest social rating with the
current guests but very poor social ratings with all remaining

potential guests.

Model Analysis
Not only do we test the models with respect to the α and σ

parameters in the simulation, we also analyse how robust the
models are data sparsity (weeks, probability), and a base-level
learning parameter in architecture.

Base-Level The base-level learning parameter controls the
rate of power law decay in memory. Memory chunks always
remain present in memory, but their activation gradually de-
cays, unless it is boosted again by another experience or re-
hearsal, reflecting the power law of practice. Since activation
controls the retrieval of chunks, activation decay slows and
ultimate prevents access to those memories (forgetting) as
well as reduces the salience of the chunks in the blending pro-
cess. While forgetting seems like an unwanted characteristic
in an intelligent social agent, it constitutes an adaptive mech-
anism to the rate of change in the environment, as hypothe-
sized by the rational analysis of cognition (Anderson, 1990;
Anderson & Schooler, 1991). As attitudes change and old
events becomes less relevant as time passes, favoring more
recent information through gradual decay of older memories
provides a rational approach to optimizing one’s interactions
with the world.

We test the effectiveness of the base-level in a number of
ways. First, we test how well it responds to modifications
of α and σ (which both increase the rate of change, though
for different reasons). Second, by modifying the n-previous
weeks worth of data, we include increasingly older data in
the model. In the high-change conditions, we would expect
old data to naturally degrade the twin performance (if it did
not have base-level activation) because the social networks
have changed, and agents that have interacted long ago may
longer be friendly (and visa versa with enemies). Because
base-level decay gracefully reduces the impact of older data,
we expect the model to be robust, even as we increase the
data to the full two-years. Finally, We also test the base-level
parameters (BLL) explicitly, specifically In this analysis we
start at a generally accepted level of BLL = 0.5, and increase
it gradually, to explore how well it responds to the increased
rate of change.

We also test the robutness of the models with respect to
data quantity in two ways described below: n-previous-weeks
and probability.

n-Previous Weeks
In our previous work (Somers et al., 2020), we examined how
robust the model was to different amounts of data. The simu-
lation at that time, did not have the same social change func-
tion (with parameter α). We run a similar analysis here by
running the model but including only the last n weeks of data.
Figure -(1) and -(2) shows the results of running the model
with 1-, 2-, 4-, 8-, 26-, 52-, and 104-past weeks of data.

As expected, the central version of the model (solid)
outperforms the distributed model (dotted) in the percent-



Figure 2: Central (solid) vs. Distributed (dashed) models for each combination of α and σ. The measures are the percent of
friends in attendance at a party (left column) and average connection between guests at a party (right column), for n previous
weeks worth of data (top), probability of including a rating (middle), and the base-level learning parameter of the model
(bottom).

friends-with-host (PFH) measure (expected because the cen-
tral version maximizes for the host, and the distributed max-
imizes for all attendees). Note, reading left to right on the
“n Previous Weeks”, although exhibits an increasing amount
of data, is actually backwards with respect to time with n-
previous being the weeks previous to the end of the simula-
tion. This is important because the simulation is, generally,
more stable later in the simulation. In general, the model is
quite robust with a small amount of data, with perhaps a slight
dip in performance in PFH, in the simulations with the most
change (yellow and green), as data reaches back further. In
general, the model improves with more data, except in the
highest change conditions (yellow and green). In the yel-
low and green simulation conditions (high change), there is
no noticeable improvement in attendees beyond two previous

weeks worth of data. Note that although there is no increase,
the important trend is limited loss (we want the base-level to
naturally degrade old information). In that light, we see a
very limited dip in performance at 104 weeks worth of data,
suggesting the base-level is mitigating effects of old data in a
dynamic environment.

Both the central and distributed model show relatively poor
performance in the low-change conditions (blue, red), with
few n-previous weeks of data, in the PFH measure. The mod-
els exhibit a gradual increase in performance with more data.
In these conditions there is very little change to account for,
so the base-level appears to over-compensate, benefiting from
old data.

In the average-connection-between-guests (AG) measure -
(2), the distributed model outperforms the central model (as



expected). The performance of the central model is compara-
ble to the simulation itself (see Figure 1-(c), black lines), with
average connection between guests just below the ‘friend’
threshold (0.50). The central model shows negligible change
with increasing number of weeks’ data. The distributed mod-
els generally improve up to twenty weeks worth of data.
There is a fairly strong benefit for the distributed model in
the α = 0.25,σ = 0.25 condition which may indicate a local
maximum: a high rate of change (which is taken advantage
of by the base-level learning) and a low amount of noise. Be-
yond 52 weeks, the average connection between friends is
above the ‘friend’ threshold (0.50).

The trend in the AG measure is, overall, similar, showing
fairly flat results, suggesting robustness to outdated data in a
dynamic environment. There is a slight increase, again, in the
low-change conditions (blue, red), for the distributed mode,
suggesting, again, that in a static environment, the base-level
overcompensates, but recovers with increased data.

Probability

Another measure of data sparsity, one that is probably more
naturalistic, is to exclude data probabilistically. We would ex-
pect, in reality, to have imperfect participation in our assumed
social rating system. In this analysis we encode data in the
model probabilistically, simulating agents not providing rat-
ings. Figure -(3) and -(4) illustrates the results of running the
model with data probabilities 1.0, 0.5, 0.25, 0.1, 0.05, 0.02,
and 0.01. Note that values in this analysis should have the
same results at a probability of 1.0 as the weeks analysis had
at 104 weeks (they are the same conditions).

Again, central and distributed models preform as expected
relative to one another in the respective measures (PFH vs
AG). Unlike weeks data, the models typically prefer more
data. This difference in amount of data preference is expected
because the data is lost evenly with respect to time, so there
is no benefit or detriment of the base-level activation. Note
that the low-change conditions (blue, red) respond similarly
to increased data as in the n-previous weeks. This helps to
confirm that the lower performance of the models in those
conditions is due to overall data loss, suggesting that those
conditions are static, and would benefit from increased data,
regardless of how old the data is (as in the n-previous weeks
analysis).

The values in both the PFH and AG measures are not too
dissimilar from the weeks data, though, notably, the models
are not as robust to noise (i.e. red vs blue, green vs orange).
The noisy conditions (red, green) perform more poorly in
this condition than they had in the n-previous-weeks condi-
tion. The lowered performance does make sense, when you
consider that in the n-previous-weeks condition, data was re-
moved in blocks, allowing trends to be captured; whereas in
the probability condition, data is lost spuriously, amplifying
the noise, as might be expected.

Base-Level Learning

In the base-level learning (BLL) analysis, we modify the
base-level learning parameter in the architecture from gener-
ally accepted range of 0.5, to high value of 0.9 in increments
of 0.1. Like the previous analysis, this model plans attendees
after the two years of simulation data.

As expected, the central model performs better in the PFH
measure (-(5) and -(6)). There is no noticeable change in the
PFH scores for the central model, in the highest change condi-
tions (orange, green). The central and distributed model show
a decrease performance with an increase in BLL, indicating
that increasing the decay rate has an amplified, detrimental
effect in a static environment.

In this AG measure, the models are relatively unaffected
by the BLL increase. There is not much striking here, other
than general inferences, discussed in the next section.

Conclusions
Despite the mildly lower performance in the probability con-
dition, compared to the n-previous-weeks, overall perfor-
mance of the model is really quite high, especially in com-
parison to the scheduler in the simulation. In all conditions,
other than the high-change-high-noise conditions, the model
outperforms the simulation scheduler and in many cases, by a
large margin. The distributed model performs especially well
scoring reasonably well in both n-previous-weeks and proba-
bility conditions, for both PFH and AG measures.

With with respect to change, the model generally prefers a
high-change environment (yellow/green vs blue/red) though
it responds more poorly with noisy data (e.g. green vs. or-
ange). This is further evidenced in the BLL conditions, with
the model scoring more poorly in low-change (blue/red) with
increasing BLL parameter. In the low-change conditions, it
suggests the cognitive constraints could be a detriment. Look-
ing at Figure 1, however, the low-change conditions are per-
haps unrealistically low, showing very little change in social
networks over the course of two-years. Future work could ex-
plore lowering the BLL parameter in the model to better deal
with low-change situations.

Perhaps the most straightforward conclusion from the anal-
ysis is that the model is fairly robust to sparse amounts of
data. In both n-previous-weeks and data-probability cases,
the models perform quite well (in comparison to the simula-
tion). While the models generally show improvement with
more data, there is a steep jump (in most cases) with a mild
increase in data.

Developing our cognitive twin in a cognitive architecture
that is limited by human-like cognitive capacities, though at
first glance may seem bizarre, given reliance on big-data ap-
proaches, is evidenced to naturally manage data in a dynamic
environment. In a dynamic environment, old data eventually
may become outdated and detrimental. We have shown that
by developing a hybrid learning system, embedded in a cog-
nitive architecture, can be robust to change and data loss.



References
Anderson, J. R. (1990). The adaptive character of thought.

Psychology Press.
Anderson, J. R. (2007). How Can The Human Mind Occur In

The Physical Universe? New York, NY: Oxford University
Press.

Anderson, J. R., & Schooler, L. J. (1991). Reflections of
the environment in memory. Psychological science, 2(6),
396–408.

Gonzalez, C., Lerch, J. F., & Lebiere, C. (2003). Instance-
based learning in dynamic decision making. Cogni-
tive Science, 27(4), 591–635. doi: 10.1016/S0364-
0213(03)00031-4

Laird, J. E., Gluck, K., Anderson, J., Forbus, K. D., Jenk-
ins, O. C., Lebiere, C., . . . Kirk, J. R. (2017). Interactive
task learning. IEEE Intelligent Systems, 32(4), 6-21. doi:
10.1109/MIS.2017.3121552

Lebiere, C. (1999, 06). The dynamics of cognition: An act-r
model of cognitive arithmetic. Kognitionswissenschaft, 8,
5-19. doi: 10.1007/s001970050071

Reitter, D., & Lebiere, C. (2010). Accountable modeling
in act-up, a scalable, rapid-prototyping act-r implementa-
tion. In Proceedings of the 10th international conference
on cognitive modeling, iccm 2010 (pp. 199–204).

Somers, S., Oltramari, A., & Lebiere, C. (2020). Cognitive
twin: A cognitive approach to personalized assistants. In
Aaai spring symposium: Combining machine learning with
knowledge engineering (1).


