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Abstract 
Post-Traumatic Stress Disorder (PTSD) is a psychiatric       
disorder often characterized by the unwanted re-experiencing       
of a traumatic event through nightmares, flashbacks, and/or        
intrusive memories. This paper presents a neurocomputational       
model using the ACT-R cognitive architecture that simulates        
intrusive memory retrieval following a potentially traumatic       
event (PTE) and derives predictions about hippocampus       
volume observed in PTSD. Memory intrusions were captured        
in the ACT-R Bayesian framework by weighting the posterior         
probability with an emotional intensity term I to capture the          
degree to which an event was perceived as dangerous or          
traumatic. It is hypothesized that (1) Increasing the intensity I          
of a PTE will increase the odds of memory intrusions; and (2)            
Increased intrusions will result in a concurrent decrease in         
hippocampal size. A series of simulations were run and it was           
found that I had a significant effect on the probability of           
experiencing traumatic memory intrusions following a PTE.       
The model also found that I was a significant predictor of           
hippocampal volume reduction, where the mean and range of         
simulated volume loss match results of existing meta-analysis.        
The authors believe that this is the first model to both describe            
traumatic memory retrieval and provide a mechanistic       
account of changes in hippocampal volume, capturing one        
plausible link between PTSD and hippocampus size. 
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Introduction 
Post-Traumatic Stress Disorder (PTSD) is a psychiatric       

disorder that originates after experiencing or witnessing a        
traumatic event, such as rape, domestic violence, assault, a         
serious accident, or military combat. At the behavioral level,         
PTSD is characterized by persistent avoidance, alterations in        
mood, as well as cognitive distortions surrounding the        

trauma. One of the most characteristic and disruptive        
behavioral effects of PTSD, however, is the unwanted        
reexperiencing of the trauma through nightmares,      
flashbacks, and/or intrusive memories. Traumatic     
experiences evoke an emotional response that is       
accompanied by increased activation of subcortical areas       
such as the amygdala. Intrusive memories are thought to         
occur because of the simultaneous activation of the        
amygdala and hippocampus during memory encoding      
(Marks, Franklin, & Zoellner, 2018). At the subcortical        
level, PTSD is also characterized by a marked reduction in          
the volume of the hippocampus—a medial temporal lobe        
structure necessary for memory functioning. It is important        
to note that this change is primarily structural, and, although          
often remarkably apparent, decreased hippocampus size is       
not accompanied by a functional impairment in long-term        
memory performance (Karl et al., 2006). 

The goal of this paper is to derive predictions about the           
changes in hippocampus volume observed in PTSD by        
using a neurocomputational model to simulate intrusive       
memories over time within an integrated cognitive       
architecture. The central idea of the model is that intrusive          
memories operate within the context of a general theory of          
declarative memory, specifically episodic memory. Within      
this framework, the persistent memory intrusions observed       
in PTSD can be seen not as a maladaptive response, but           
rather as the runaway process of an otherwise adaptive         
memory system.  

As a memory is retrieved more frequently, its priority         
increases and its rate of decay decreases. A traumatic         
memory, however, tends to out-compete more contextually       



appropriate memories due to the fact it was encoded in a           
highly emotional state. With each retrieval of the traumatic         
memory, disproportionately more resources are allocated to       
it, leading to the further preservation and growth of these          
unwanted memory intrusions. In this framework, it is        
proposed that the corresponding changes in hippocampal       
volume associated with PTSD can be explained as the         
natural result of a biological process to efficiently allocate         
resources to changing memory demands. 

The model presented herein is framed within ACT-R’s        
theory of declarative memory (Anderson, 2007). This choice        
was motivated by three reasons. First, ACT-R is the most          
commonly adopted cognitive architecture in psychology and       
the cognitive neurosciences (Kotseruba & Tsotsos, 2018).       
Second, ACT-R has a long and established history of         
application to brain sciences, making the process of drawing         
new inferences at the neural level easier and less tentative.          
Finally, ACT-R is based on a Bayesian framework, which         
provides an elegant foundation of declarative memory       
retrieval processes and can be easily extended to incorporate         
the proposed theory of memory retrieval according to their         
emotional intensity.  

The Model 
Before introducing the model from a neural and an         

algorithmic point of view, it is important to frame it within           
Anderson's analysis of human episodic memory in terms of         
“Rational Analysis” (Anderson, 1990), or, as it is called         
currently, Bayesian terms. Throughout this paper, this       
analysis will be referred to as a guiding principle to modify           
ACT-R and make inferences about its neural substrates. 

In the Bayesian framework, a memory m’s probability of         
being recalled in the presence of a context Q = {q1, q2, ... qn }              
reflects the memory’s retrieval need, and is a Bayesian         
function of both the past history of m and the degree to            
which each contextual cue q predicts m. In Anderson’s         
(1990) formulation, the retrieval need of a memory m in a           
context Q is expressed in terms of a memory’s activation          
A(m), a quantity that reflects its log posterior odds of being           
retrieved in the presence of Q. Following Bayes rule, the          
posterior odds can be separated into two different quantities,         
the prior odds and the likelihood odds: 
 

A(m) = log [P(m|Q) / P(m/¬Q)] 
 = log [P(m) / P(¬m)] + log [P(Q|m) / P(Q|¬m)] 

= log [P(m) / P(¬m)] + log ∏q  [P(q|m) / P(q)] 
 = log [P(m) / P(¬m)] + ∑q log [P(q|m) / P(q)]     (1) 

In ACT-R, it is customary to give different names to the           
two quantities that make up the right-hand side of Eq. 1,           
referring to the prior odds as the base-level activation or          
B(m), and to the likelihood odds as the spreading activation          
or S(m).  

A memory’s base-level activation B(m) increases with the        
frequency of its usage and decreases over time, reflecting         
the effects of frequency and recency. In ACT-R, each use of           

a memory m leaves a trace i, and each trace i decays            
exponentially over time with a decay rate d, which         
represents an individual-specific rate of forgetting (Sense et        
al. 2016). A single memory m is associated with multiple          
traces, each of which corresponds to a time during which m           
has been encoded, and re-encoded, or retrieved. Thus, the         
log odds of retrieving m correspond to the sum of the log            
odds of retrieving each of its individual decaying traces, and          
B(m) can be expressed as: 

B(m) = ∑i (t - ti)-d (2) 

Spreading activation S(m), instead, can be interpreted in        
reference to semantic networks, in which memories are        
connected by associative links, and activation flows through        
the links to associated nodes in the network. In this case, the            
activated nodes represent the elements q in the context Q,          
and the links represent the degree of association or         
similarity between q and each memory’s features. By means         
of spreading activation, the proper context can facilitate the         
retrieval of memories whose base-level activation would,       
otherwise, be too weak. The amount of spreading activation         
is proportional to the product between the strength of the          
link connecting q to m (indicated as sq➝m) and an attentional           
weight. The weight is usually simplified as a single scalar          
quantity, W, divided over the number of active elements in          
the context, N: 

S(m) = ∑ q (W/N) sq➝m (3) 

Different values of W in Eq. 3 alter the degree to which            
memory retrieval depends on spreading (and, therefore,       
contextual cues) vs. base-level activation (and, therefore,       
statistical priors).  

ACT-R In the Context of Memory Consolidation 
Although ACT-R has been described in many ways, it is          

useful, given the goal of this paper, to compare it to a            
prominent neural theory of memory consolidation, the       
Multiple Trace Theory (MTT: Moscovitch et al., 2005). The         
MTT assumes that episodic memories originate from       
distributed representations that span multiple cortical areas       
(Figure 1). During the encoding phase (red lines in Fig. 1),           
the different features of an event (q1 … qN) are encoded by            
different cortical areas and bound together into a single         
association map in the hippocampus (as attributes a1 … aN),          
through the multiple descending pathways that converge       
from the cortex through the dentate gyrus. MTT posits that          
the hippocampus is the permanent store of episodic        
memories, and that each encoding episode leaves a        
permanent trace. During retrieval, the hippocampus trace is        
temporarily re-activated (blue lines in Figure 1) and,        
through ascending pathways from the temporal lobe to the         
cortex, causes the re-activation of the original neurons. This         
reactivation, in turn, might be re-encoded as a second trace. 

Base-level activation and spreading activation reflect,      
therefore, two distinct neural processes. Specifically,      



base-level activation reflects processes that are internal to        
the hippocampal network, such as decay or interference due         
to accumulation of memory traces (Alvarez & Squire,        
1994), while spreading activation reflects the mechanism by        
which cortical inputs might trigger contextual memory       
retrieval (Rolls & Treves, 1998). 

 

 
Figure 1: A neuroanatomical interpretation of the model        
presented herein.  

Extending ACT-R to Include Trauma 
It has been noted several times, even by Anderson himself          

(Anderson, 2007, Chapter 3), that one limitation of this         
approach is that it considers all memories as equally         
important. On the contrary, not all memories are. Memories         
of emotional events are thought to persist longer and be          
more readily available for retrieval than non-emotional       
memories because of the activation of the amygdala during         
memory encoding (Marks, Franklin, & Zoellner, 2018).       
Specifically, memories of events that incorporate threat or        
fear are of greater importance evolutionarily because they        
are often critical for survival (Ledoux, 1998). Although        
some authors have generalized this approach to all emotions         
(and advanced strong arguments), this paper will limit itself         
to the responses of the amygdala which are directly         
connected to PTSD and well understood in       
neurophysiological terms (Bryant, et al. 2008).  

In a Bayesian framework, the concept of survival         
importance can be easily captured by weighting the        
posterior probability by an emotional impact term, referred        
to as intensity, 0 < I(m) < ∞, which captures the degree to             
which an event was potentially dangerous or traumatic. The         
posterior odds now become: 

 

A(m) = log [P(m|Q) / P(m/¬Q)] [I(m)/I(¬m)] 
= B(m) + S(m) + log I(m) − log I(¬m)  
= B(m) + S(m) + log I(m) − k (4) 

The last passage was motivated by the consideration that,         
over a lifetime, I(¬m) would approach the mean traumatic         
value of all memories and thus could be considered a          
background constant k.  

In summary, the proposed Bayesian framework suggests       
that traumatic events add a constant bias that makes a          

memory more likely to be retrieved, even in the absence of           
contextual cues and in proportion to the perceived intensity         
of the traumatic event. In biological terms, this perceived         
intensity bias can be interpreted as the contribution of the          
amygdala to hippocampal activation (Fig. 1). The amygdala        
is bidirectionally connected to the hippocampus and is        
known to play a key role in processing event salience          
(Anderson & Phelps, 2001), fear (LeDoux, 1998) and in         
boosting memory for stressful events (references).      
Importantly, and consistently with our interpretation, the       
amygdala is hyper-responsive in individuals suffering from       
PTSD (Shin, Rauch, & Pitman, 2006).  

Deriving ACT-R Predictions For Hippocampus 
Size 

The final step to test this theory consists of deriving          
predictions about hippocampus size from the augmented       
ACT-R framework. To calculate hippocampus size, the       
following analysis was adhered to. In general, it is known          
that the size of the hippocampus changes with experience.         
For instance, in a landmark study (Maguire, Woolett, &         
Spiers, 2006), cab drivers of London were shown to have          
larger hippocampus volume than the general population.       
Additionally, another study showed the volume of the        
hippocampus co-varies with the years of education (Noble        
et al., 2012). An accepted explanation for this effect is that           
the size of the hippocampus reflects the biological        
investment in storing memories that need to be re-used often          
(Wollet & Maguire, 2011).  

An efficient memory storing system would encode cells so         
memories that need to be accessed more frequently use less          
resources (in neural terms, less cells or synapses) than         
memories that need to be accessed less often (Huffman,         
1952). In the Bayesian terms described above, memories        
that are accessed more often have the highest priors and, in           
ACT-R terms, the higher base-level activations. Knowing       
the priors of memory utilization, the size of the         
hippocampus could then be approximated by a measure of         
the homogeneity of the distribution of the priors. Here, the          
long-term memory’s information entropy, H, was utilized,       
i.e., the quantity (Shannon, 1948): 

 

H = −∑m  P(m) log P(m) (5) 

This quantity captures how much information is       
represented in declarative memory, once the different       
probabilities of each memory are taken into account.        
Consider, for example, the case of two London cab drivers          
who have memorized the same number of addresses but use          
them with different probabilities. For one driver, all        
addresses are equally likely to be retrieved, reflecting the         
fact that his clients are equally likely to request a ride to all             
of these locations. For the second driver, on the other hand,           
one single address is requested all the time, while all the           
others are seldom, if ever, requested by clients. Information         
entropy is high for the first driver because it is impossible to            



predict which address will be requested by the next client.          
For the second driver, on the other hand, entropy is low,           
since one memory is highly predictable and all the other can           
be ignored. Biologically, the first driver needs to allocate         
more resources (hippocampal cells) to maintain all of these         
memories than the second, for whom a small number of          
cells could be used to encode the single memory that          
predicts most of the clients’ rides in their daily routine.  

In ACT-R, a memory’s probability of being used, P(m), is          
reflected in its base-level activation (Eq. 1) and, in this          
paper’s specific model, in its intensity I(m). Note the         
base-level activation B(m) reflects the memory’s prior odds        
rather than true probabilities. To translate them into        
probabilities, base-level activations were normalized across      
all memories into long-term memory (LTM): 

 

P(m) = [B(m) + I(m)] /  ∑i ∊ LTM [B(i) + I(i)] (6) 

Hypotheses and Predictions 
Given the theory outlined above, it is hypothesize that (1)          

Increasing the emotional intensity I of a potentially        
traumatic event (PTE) will increase the odds of the event          
memory being retrieved out of context, predicting intrusive        
memory occurrence observed clinically in patients with       
PTSD; and (2) Increased intrusion occurrence will result in         
a concurrent decrease in hippocampal size, driven by the         
altered landscape of memory recall priors, and thereby        
capturing the relationship between trauma and hippocampus       
size.  

Methods 
To test the hypothesis driving this experiment, a series of          

computational simulations were run. The following sections       
describe the details of the simulations 

Memory Representations 
The simulations described herein differ significantly from       

most ACT-R models because they focus on modeling        
episodic memories over extended durations (~6 months)       
rather than on specific tasks for very short times. Thus, they           
adopt a uniform memory representation for all memories        
instead of different, task-dependent structures. Specifically,      
all memories are vectors of N = 8 features. Each feature is            
given a randomly selected value, called an attribute, from a          
pool whose size is determined by a given parameter, A (not           
relevant for this study and thus not discussed). The         
attributes for all “normal” events are always selected from         
the same pool, which captures the common features found         
in one’s daily environment. Attributes of PTEs are selected         
from a different pool of attributes, representing the unique         
extraordinary features associated with traumatic     
circumstances.  

Model Behavior 
The model performs routine behaviors following a       

perceive-retrieve-respond loop. The loop initiates when a       
new event occurs in the external world. The event is          
perceived by the model, and its features are held in sensory           
buffers that, together, form the current context Q (Fig. 1).          
The model responds to the current context by first setting a           
goal to resolve it. When the goal is set, the model retrieves            
the memory with the highest total amount of activation,         
A(m). The retrieval process is influenced by three factors:         
(1) the base-level activation of the model’s memories of         
previous events, B(m), which determines the memories’       
priors; (2) The spreading activation from the current context         
S(m), modulated by the model’s executive attention W; and         
(3) The intensity I(m) of previous events. This loop captures          
a simple decision-by-sampling strategy (Stewart, Chater, &       
Brown, 2012): Facing a new situation, the model responds         
by retrieving the most contextually appropriate situation       
faced in the past, balancing recency, frequency, and        
contextual cues through spreading activation. Once the       
memory is retrieved, the goal is resolved and a new memory           
is formed to encode the current event using the contextual          
cues q1, q2 … qN as its attributes (Fig. 1).  
Daily Event Distribution and Simulation Time Window 

To model the accumulation of memories in a plausible         
manner, new events are presented to the model at a          
frequency that follows a gamma distribution and a realistic         
daily schedule. On average, the model is presented with         
approximately ~20 events per day. Events occur between        
8:00 AM and midnight, with a peak probability at around          
noon. This event distribution was chosen to reflect the         
normal waking hours of a person, with a greater         
concentration of events during working hours      
(8:00AM-4:00PM). Each event’s emotional intensity I was       
randomly selected from a uniform distribution between 0        
and 2, so that their mean was equal to 1 (and thus the bias              
term k in Eq. 4 was equal to zero). 

Each simulated run of the model lasted 160 consecutive         
days, starting 100 days before the occurrence of a traumatic          
event and extended 60 days after that. On the midnight of           
day zero, a PTE was generated and presented to the model.           
The intensity of the PTE was explicitly manipulated        
throughout the simulations, and given the values of IPTE = 1           
(control condition), 20, 40, 60. The model’s time window         
extended to another 60 days after the PTE. 
Dependent Variables 

Two dependent variables are the focus of this study. The          
first is the probability of experiencing an intrusive memory         
during the day. This is defined as the probability that the           
model retrieves a memory of the PTE in response to a           
situation throughout the day. Note that, because the PTE’s         
attributes are different from those of the daily events, its          
retrieval is always contextually inappropriate, and thus its        
recall qualifies as intrusive.  



The other variable is the hippocampal volume reduction,        
which is measured as a percent change from a control          
condition. To get a suitable baseline, the average value of H           
(as a proxy for hippocampus size) over the last 10 days of            
the simulation (corresponding to days 50-60 after the PTE)         
was compared to the average value of H for the same period            
of a model run with an identical combination of parameters          
except I = 1. 

Simulations 
In addition to the intensity I of the traumatic event, a           

number of other parameters were manipulated      
parametrically. These parameters were derived from a       
recent review of the PTSD literature (Marks et al., 2018)          
and reflect idiographic factors that moderate the behavioral        
outcomes of traumatic stress. They include the vividness of         
memory re-experience γ; the vividness of sensory encoding,        
modeled as the size of attributes pool A; individual         
differences in working memory capacity W (see Eq. 3); the          
tendency to ruminate over the traumatic event R; and the          
potential overlap C between features of the traumatic event         
and attributes of daily situations. Although these parameters        
will not be discussed in this paper, they are summarized in           
Table 1 and were left in the analysis as they contribute to            
representative variability in the simulated results. To obtain        
stable estimates, the model was run 50 times for each of the            
576 combinations of parameter values. estimates. In total,        
the simulations spanned 4,608,000 simulated days, and       
103,330,000 simulated events.  

 
Table 1: Model parameters manipulated in the simulations 

 

Parameter Meaning Values 

I Intensity of PTE 1, 20, 40, 60 
A Size of attributes pool 6, 8 

γ Vividness of 
re-experience 0.80, 0.90, 0.95 

W Working memory 4, 8, 12 

C Similarity between PTE 
and daily events 0, 0.25, 0.5, 0.75 

R Number of rumination 
events in a day 0, 20 

Results 
Given the large number of simulations that were run, it is           

impossible to fully report the complete set of results. For the           
purpose of this paper, there are two aspects to concentrate          
on. First, as expected the model does indeed show worse          
clinical outcomes in response to more traumatic events.        
Figure 2, below, shows the daily incidence of traumatic         
memories. A 3x60 ANOVA, using emotional intensity I and         
the days after PTE as factors, revealed that I had a           

significant effect on the probability of experiencing       
traumatic memories in the days following a traumatic event         
[F(2, 1295345) = 37,115.6, p < .0001], with higher values of           
I corresponding to higher intrusion probability.      
Furthermore, I interacted significantly with the day [F(118,        
1295345) = 10.3, p < .0001], resulting in different recovery          
trajectories (Figure 2).  

 

Figure 2: Predicted increase in memory intrusion following        
a PTE on Day 0 (black dashed line) as a function of            
emotional intensity I. The shaded red area marks the time          
interval in which the hippocampus volume was calculated.  
 

 
Figure 3: Effect of trauma intensity on hippocampal volume.         
The violin plots represent the distribution densities of model         
runs resulting in the corresponding decreases of       
hippocampal volumes. Solid circles and lines represent       
means +/- SD. 
 

Having established that the model succeeds in capturing        
these signatures of PTSD, the results were further examined         



to estimate the effects of traumatic stress on hippocampus         
size. It was observed, across all parameters, that there was          
general reduction of simulated hippocampus size, ranging       
from zero to 33.89% with a mean decrease of 7.35%          
[t(21,599) = 140.83, p < .0001]. Both mean and range match           
the results of existing meta-analysis. For example, in        
Smith’s (2005) influential review of structural MRI studies,        
the range: 0 to 44% and the mean 6.9%. A second question            
was whether the severity of the reduction was predicted by          
the severity of trauma. To this end, the model found that the            
emotional intensity I was a significant predictor of        
hippocampal volume reduction [F(2, 21594) = 774.7, p <         
.0001], with the decrease in hippocampus size growing with         
greater values of I (all pairwise comparisons significant at p          
< .0001, Bonferroni corrected). This is shown in Figure 3,          
which shows the distributions of predicted decreases of        
hippocampal volumes in the simulations, visualized (as       
violin plots) separately for different values of intensity I.  
 

Figure 4: Correlation between the probability of traumatic        
memory intrusions in hippocampal volume for varying       
levels of trauma intensity. Each point represents a single run          
of the model; solid lines represent the mean regression line. 
 

The final analysis investigated was whether or not the         
degree of hippocampus volume was correlated to the degree         
of symptom severity. This is important because, although        
symptom severity is clearly driven by the severity of the          
traumatic event, it also depends on other factors that were          
explicitly manipulated in the simulations (see Methods and        
Table 1). To do so, the mean daily probability of memory           
intrusions in the last 10 days of the simulations (red shaded           
area in Figure 2) and the corresponding percentage decrease         
in hippocampus were calculated for each run of the model.          

Three separate linear regressions, one for each level of I =           
20, 40, and 60, were then computed In all cases, a           
significant linear regression was found [I = 20: β = -20.55,           
t(7198) = -157.9, p < .0001; I = 40: β = -25.18, t(7198) =              
-225.6, p < .0001; I = 60: β = -27.35, t(7198) = 205.1, p <               
.0001] as shown in Figure 4. 
 

Discussion 
This paper has presented a computational model that        

draws a link between the prevalence of intrusive memories         
and the changes in hippocampal volume observed in        
patients with PTSD. To the best of our knowledge, this is           
the first model to do so, and to provide a connection           
between Bayesian theories of memories and the underlying        
neurobiology. The results of this model are also consistent         
with estimates from the clinical and medical literature. As         
such, the model may shed light on a number of cognitive           
factors, such as traumatic memory activation, that contribute        
to neurophysiological changes associated with PTSD.  

In the presentation of this computational model, there are         
a few obvious limitations. Although an effort was made to          
account for numerous idiographic factors (see Table 1), it         
was impossible to account for all various factors that have          
been deemed clinically important such as age, gender,        
duration of trauma, recurrence of trauma, comorbidity of        
other psychiatric disorders, presence and occurrence of       
other PTSD symptoms, and genetic predisposition. With       
that in mind, it is feasible that this model can be altered to             
account for some of these varying factors, as well as other           
individual differences not aforementioned. Something     
imperative to take into consideration for future       
improvements of this model would be, for example, the         
specific role of the stress hormone cortisol on hippocampal         
functioning. 

These limitations notwithstanding, the model’s success in       
capturing some behavioral and biological factors is       
encouraging. Theoretically, this model, along with the other        
research concerning PTSD and its perceived effects on the         
hippocampus and amygdala, could be used in the future to          
enhance clinical practice. Targeted, individualized     
treatments could be developed in which an individual’s        
biological and behavioral measures are used to parametrize        
a computational model which is, in turn, used to predict          
long-term recovery trajectories under different medical      
options. 
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