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Abstract

In Dynamic Field Theory (DFT) cognition is modeled as the
interaction of a complex dynamical system. The connection to
the brain is established by smaller parts of this system, neu-
ral fields, that mimic the behavior of neuron populations. We
reimplemented a spatial reasoning model from DFT in Python
using the Nengo framework in order to provide a more flexi-
ble implementation, and to facilitate future research on a more
general comparison between DFT and the Neural Engineering
Framework (NEF). Our results show that it is possible to recre-
ate the DFT spatial reasoning model using Nengo, since we
were able to duplicate both the behavior of single neural fields
and the whole model. However, there are statistical differences
in performance between the two implementations, and future
work is needed to determine the cause of these differences.

Keywords: Dynamic Field Theory; Nengo; mental maps;
model reimplementation; spatial relational reasoning

Introduction

The way humans build maps from descriptions of relations
of objects to each other is not yet fully understood. One ap-
proach to model how these maps arise is the spatial reasoning
architecture from Kounatidou, Richter, and Schoner (2018).
Their model implements an application of the Dynamic Field
Theory (DFT), which views cognition as the development of
a complex dynamical system (Schoner, Spencer, & Group,
2016). The model can be supplied with sentences that de-
scribe the relative location of two colored objects in 2-
dimensional space, e.g., “There is a cyan object above a green
object”. From that, it builds a spatial scene in a 2-dimensional
space, represented by activity in a 2-dimensional sheet of sim-
ulated neurons. A more complex spatial scene with more ob-
jects can be built by supplying multiple sentences. The imple-
mentation of the spatial reasoning architecture is realized in
the Graphical User Interface (GUI) framework cedar (Lomp,
Zibner, Richter, Rand, & Schoner, 2013).

In this paper, we present a re-implementation of this model
from Kounatidou et al. (2018). Rather than using their graph-
ical framework, we implement the various components us-
ing Python, and then use the neural modelling toolkit Nengo
(Bekolay et al., 2014) to combine the components together.
There are two main reasons for this endeavor: The cedar
framework, and therefore the spatial reasoning model itself,
is difficult to modify and to use in scenarios that are different
to the one presented in Kounatidou et al. (2018). Its applica-
tion to future research as a general-purpose cognitive model
of spatial reasoning is therefore limited by its implementa-
tion. The second reason to re-implement the model in Nengo

is to approach a more general comparison between NEF and
DFT using the spatial reasoning architecture as an example.
In the following, we will first briefly describe DFT and the
spatial reasoning architecture. We will then specify the cedar
model components used in this architecture, and describe the
reimplementation in Nengo. Lastly, we compare the two im-
plementations using an examplary spatial scene.

The spatial reasoning model
Background

The assumption of Dynamic Field Theory (DFT) is that cog-
nition and behavior arise from the brain’s development as a
complex dynamical system (Schoner et al., 2016). Attractors
in this system are then “functionally significant states of cog-
nitive processes”. An example for such an attractor of the
spatial reasoning architecture is the spatial scene that results
after supplying it with relational information.

The complex system in DFT consists of many subparts
which DFT calls neural fields. They model the activation of
populations of neurons. A complex system like the spatial
reasoning architecture consists of multiple neural fields and
some additional computations between these. Neural fields
themselves are dynamical systems, too, whose dynamics are
described by a differential equation:
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In this equation u(x, ) is the activation of the neural field at
location x and time point 7, & is the resting level of the neural
field, s(x,7) is some external input to the field, and integral
computes local interactions in the field. The neural fields de-
scribed by this equation can be of different dimensionality.
What they have in common is that they can form peaks of ac-
tivation that get passed on to other neural fields and can lead
to further peaks there.

To make the building of complex dynamical systems as
easy as possible DFT researchers have built software that
helps with this task. In the case of the spatial reasoning archi-
tecture this software is cedar, a graphical-user-interface where
computational elements can be added to an architecture with
a simple drag and drop interface (Lomp et al., 2013). In addi-
tion to neural fields other elements can be added to the archi-



tecture, like inputs to the system or projections from a lower
to a higher dimensional space.

Importantly, the spatial reasoning architecture developed
in Kounatidou et al. (2018) was not created with the current
version of cedar and does not perform correctly in the cur-
rent version. The version that was used for this project can
be found in an article by the Autonomous Robotics Group
(2018). Models created in cedar can be saved to and loaded
from JSON files.

The architecture

An overall image of the spatial reasoning architecture from
Kounatidou et al. (2018) can be found in Figure 1. It consists
of five conceptually distinct parts.

The first part of the architecture deals with the concepts
that can be activated by the user. These are the spatial rela-
tions and the objects that are placed in a scene. The archi-
tecture is able to represent up to five different objects which
are identified by their color, i.e. a red object, a blue object, a
cyan object, a green object and an orange object. The transla-
tion from these colors to a continuous space is implemented
by mapping them to the hue dimension. For all objects two
input nodes exist since in each supplied sentence it has to be
specified if an object is the reference object of the sentence or
the target object. There are four spatial relations correspond-
ing to the cardinal directions Left, Right, Above and Below.

The second part of the architecture is the attentional sys-
tem. This system is responsible of ‘attending to’ or activating
objects (i.e., the colored objects described earlier) that are al-
ready in the scene or that should be added to the scene in
a new place, depending on the interaction with other neural
fields from outside the attentional system. It consists of the
color attention field and the 3-dimensional attention field and
forms peaks for objects that are attended.

The scene representation forms the third part of the archi-
tecture. This includes the scene representation field where
the locations of the objects are depicted over two-dimensional
space while the third dimension of the field depicts the color
of the existing objects.

The fourth part of the architecture is the spatial transfor-
mation and object creation system. It enables the architecture
to place objects according to the relational premises that are
supplied to the system. It represents each part of a premise,
i.e. the reference object, the target object and the relation in
a separate neural field and performs the transformations that
are necessary to place a new object in the scene.

The fifth part of the architecture is responsible for the or-
ganization of all processes. It consists of intention nodes that
determine whether a process is currently active or not and of
condition-of-satisfaction (CoS) nodes that represent whether
a process has been finished successfully. A more detailed de-
scription of the five parts can be found in the original paper.

Model components in cedar

A complex model in cedar is built from a set of basic compo-
nents. The following components are needed for this model:

e NeuralField: This module implements the neural field
equation from dynamic field theory. After an update step
with the neural field equation a sigmoid function is applied
to the activations before passing them on to another mod-
ule.

e GaussInput: A Gausslnput module is one of the input
modules of cedar. This means that it does not receive any
input but constantly sends the same signal. In the case of
the GausslInput this signal is a two-dimensional gaussian
peak whose peak position and amplitude are defined as pa-
rameters of the module.

e ConstMatrix: This module is another input module. It
sends a constant 2-dimensional matrix output with one
constant value at all positions of the matrix.

e SpatialTemplate: The SpatialTemplate is another input
module. With the right parameters it creates a funnel-
like pattern directed towards one of the cardinal directions
right, left, above or below.

e Projection: The Projection module projects an input to
a different dimensionality. It can either upscale an input
from a lower dimension to a higher dimension by repeat-
ing values along the new dimension or it can downscale an
input from a higher dimension to a lower dimension by per-
forming a compression along the dimensions that should be
reduced. As a compression operation the sum, maximum,
minimum or average along a dimension can be used.

e StaticGain: The StaticGain module multiplies an input
by a constant value that can be set as a parameter.

e Boost: The Boost module is another input module. It
sends a scalar value that can be set as its strength param-
eter. However, it can be set to being active or not active
during a simulation. Depending whether it is active or not
it either sends no signal or the strength value defined. The
Boost module is the module through which changing input
is supplied to a system.

e ComponentMultiply: The ComponentMultiply module
performs a componentwise multiplication of two inputs. If
the two inputs have exactly the same shape this is an ele-
mentwise multiplication. Otherwise one of the inputs has
to be of a lower dimensionality and each of its values is
then multiplied with the other input’s values along the ad-
ditional dimension.

e Convolution: The Convolution module takes two inputs
and performs a convolution on one of the inputs with the
other input as the kernel.

e Flip: The Flip module receives a two-dimensional input
and flips it along the first dimension, the second dimension
or both.

e Group: A container to organize other components.

Nengo

Nengo (Bekolay et al., 2014) is a software tool that was
originally created to build and simulate large-scale neural
models based on the Neural Engineering Framework (NEF)
(Eliasmith & Anderson, 2003). More recently, the toolkit has
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Figure 1: A conceptual image of the DFT spatial reasoning architecture from Kounatidou et al. (2018) reprinted from the
original paper. The blue and pink circles signify nodes that represent the input concepts of the architecture. The attentional
system consists of the feature attention fields in the middle and the attention field to the right of these. The scene representation
fields can be seen on the right of the image. At the bottom the fourth part of the architecture, the spatial transformation and
object creation system can be seen. The intention nodes are depicted as the red circles at the top, the CoS nodes as the green

circles.

expanded to support deep learning and vector-based cognitive
modelling, making Nengo now support a wider range of mod-
elling approaches. Most importantly, Nengo provides a sim-
ple Python interface for defining new components, and then
the standard Nengo framework can be used for combining
these components, running simulations, and gathering data.
By constructing our re-implementation in this way, we can to
run any cedar model that uses the components we have re-
implemented simply by taking the cedar version, saving it as
a JSON file, and loading that saved JSON file into Nengo.

Model components in Nengo

The Nengo implementation of the cedar modules is based on
the Nengo Node object. Some of the cedar modules (e.g. the
NeuralField) require an update of their state with each sim-
ulation step while others (e.g. the GaussInput) pass on a
constant signal during the whole simulation. The Node ob-
ject provides easy-to-use functionality for both of these op-
tions. In the first case one can define an update function that
depends on time and initialize a Node instance with this up-
date function as the output parameter. In the latter case the
constant signal is simply passed to a Node instance as the
output parameter. In the implementation of the cedar mod-
ules in Nengo each cedar module has a corresponding object
class of the same name. After initialization a Nengo Node in-

stance can be created from this class’s instance by calling the
make_node () method. The Node instance is then accessible
via the node attribute.

The Nengo implementation of the cedar modules is based
on Schoner et al. (2016), as well as on the cedar documenta-
tion and the cedar source code (Autonomous Robotics Group,
2018). Another source of information is the behavior of the
modules in cedar. For each module test instances of the cedar
modules were created to observe their behavior for different
parameter settings or different inputs. The observed behavior
of the modules is also the principal validation for a correct
implementation.

Since the goal was to implement the spatial reasoning ar-
chitecture, not all of cedar’s functionality had to be imple-
mented. This means only the cedar modules that are part
of the spatial reasoning architecture were implemented in
Nengo. Moreover, some parameters of the cedar modules
were not implemented in Nengo if they are not used in the
spatial reasoning architecture or if their value is constant
among all instances of the spatial reasoning architecture.

Nengo Results

Verification of NeuralField implementation

To make sure that the neural field equation is implemented
correctly the temporal development of the NeuralFields of



cedar and Nengo were compared. To examine different pa-
rameters (e.g. different dimensionality or different border
types) several NeuralFields with gaussian input were cre-
ated and compared visually. For the visual comparison color
maps of the NeuralFields’ activation, their lateral inter-
action and their sigmoided output were created for both the
cedar and the Nengo simulations. The appearance of the color
maps and the mininum and maximum values were used as a
measure of resemblance. To avoid random fluctuations the
noise values were set to zero in these comparisons.

Apart from the identical evolution of the neural fields in
terms of activation values the timing of this evolution was
another tested aspect. To compare the timing the maximum
activation value for the comparisons from above was tracked
and contrasted in a plot. Moreover this comparison was per-
formed for several different values of tau. Figure 2 contains
one such comparison for three different tau values. As can
be seen, each pair of curves with the same configuration pro-
gresses similarly through time, suggesting that the timing of
the two implementations is the same.
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Figure 2: Maximum activation of a test NeuralField for dif-
ferent tau values in cedar and Nengo.

One Spatial Scene in Detail

Kounatidou et al. (2018) gives one example for a spatial scene
that can be created with the spatial reasoning architecture.
The scene is created from four successively supplied sen-
tences:

. There is a cyan object above a green object.

. There is a red object to the left of the green object.

. There is a blue object to the right of the red object.

. There is an orange object to the right of the red object.
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This scene was used as a test to see if the whole spatial
reasoning architecture in Nengo works and to compare the
scenes that arise in the original implementation in cedar and
in the Nengo implementation. Figure 3a shows the develop-
ment of the scene in cedar. The precise temporal sequence of
inputs needed to create this scene is given in Table 1. The
same experiment structure was used in the Nengo simula-
tions.

In Figure 3b the development of the scene in Nengo can be
seen. Even though the scenes of cedar and Nengo are slightly
different, overall scene arrangement and development are the
same. Differences in the development of the scene are also
normal in separate runs in cedar due to additive random noise
in the neural fields.

Simulation time

While our results show that the Nengo version of the model
works, our initial Python implementation is much slower than
the cedar version. When running in cedar, there is a “Factor
for the fake DT” (default 0.26) which controls the time reso-
lution of the simulation of the dynamic equations. In Nengo,
the default time resolution is 1ms. This meant that a simu-
lation which takes 2.3 minutes in cedar took 180 minutes in
Nengo, i.e., a speed factor of .013.

While Nengo does allow components to define their own
adaptive time step, we have not yet implemented this. In-
stead, we adjust the time step by a factor tau, where tau=1 is
the original (1ms per time step) and tau=0.01 would be 100ms
per time step. Note that this is the same as the tau parameter
in the NeuralFields definition. If tau is decreased, this leads
to an increase in the step size because the tau parameter is
the divisor of every update step. This adaptation can not be
performed up to any arbitrary factor since the update steps
are a discretization of a continuous time process and at some
point this discretization is too inaccurate to capture the orig-
inal development. To determine a stable value for the factor
of tau at least five simulation runs of the test scene were run
for different tau factors. The rate with which a tau factor led
to the scene predicted by the cedar model and the simulation
times for different t au factors can be seen in Table 2. The test
with the different tau factors also revealed that the standard
update size of 1 does not reliably lead to the correct scene but
seems to be rather unstable since it only lead to the correct
scene in 2 out of 9 runs.

As can be seen in Table 2, simulations with a tau factor be-
low 0.15 do not always lead to the correct scene representa-
tion. Some of these failed simulations are depicted in Figure
4. For these simulations it is likely that the update steps are
too big and processes that would go in the opposite direction
as the previous step can not be integrated due to the few up-
dates. However, there are tau factors smaller 1 for which the
scene seems to reliably develop correctly and which therefore
can provide a time improvement.

We are still looking into other optimizations that we believe
could help speed up the Python implementation of the DFT
equations, which are most of the computation time in this
model. For all subsequent experiments the tau factor of 0.15
was used, since it provided the fastest simulation times while
maintaining high confidence to result in the correct scene.

Testing Results

To explore the behaviour of our re-implementation of the
DFT mental map model, we generated a set of test inputs
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Figure 3: Evolution of the spatial example scene in cedar (a) and Nengo (with updates every ms) (b) with the default parameters.

Table 1: Instructions from the cedar experiment file.

simulation time actions
0.0s Activate the Boost modules “Reference: Green”, ”Spatial relation: Above” and “Target:Cyan”.
0.5s Deactivate the Boost modules “Reference: Green”, ’Spatial relation: Above” and “Target:Cyan”

and activate the Boost module ”Action:Imagine”.

9.0s Activate the Boost modules "Reference:Green”, “Target:Red” and “Spatial relation:Left”.
9.5s Deactivate the Boost modules "Reference:Green”, "Target:Red” and ”Spatial relation:Left”.
18.0s Activate the Boost modules “Reference:Red”, " Target:Blue” and ”Spatial relation:Right”.
18.5s Deactivate the Boost modules "Reference:Red”, "Target:Blue” and “’Spatial relation:Right”.
27.0s Activate the Boost modules "Reference:Blue”, “Target:Orange” and “’Spatial Relation:Left”.
27.5s Dectivate the Boost modules "Reference:Blue”, "Target:Orange” and ”Spatial Relation:Left”.
36.0s End the experiment.

Table 2: Simulation times and success rate of the test scene
for different tau factors in Nengo.

tau factor simulation time success rate
0.02 3.5 minutes 0/7

0.05 9 minutes 3/10

0.1 17 minutes 9/11

0.15 26 minutes 5/5

0.2 35 minutes 8/8

0.5 1.5 hours 6/6

1.0 3 hours 2/9

describing from two to four relational premises with all com-
binations of directions to generate a resulting scene. These
inputs were run in both cedar and Nengo for comparison (see
Figure 5 for examples).

Given these input scenes, we measured the proportion of
time the models generated a correct final representation, i.e.,
the representation predicted by the cedar model. We knew
that for some of the scenes the model would not create a scene
consistent with the input statements due to the phrasing of
the statements. However, they still gave us some information

about the workings of the models. Since the models introduce
random variability, we ran each input multiple times. Inter-
estingly, the Nengo implementation was found to be more re-
liable than the cedar version; the Nengo simulations resulted
in a correct scene in 73.26% of its simulations while the cedar
simulations lead to the right scene in only 50.23% of its sim-
ulation runs. Determining the cause of this difference is the
topic of ongoing work.

It should also be noted that for each test input, there was
always at least one simulation run in cedar that resulted in the
same mental map as a Nengo simulation run. This indicates
that the models are doing similar things in those runs. For this
reason, we believe that the core Python re-implementation in
Nengo is working correctly, but that there are subtle differ-
ences with time steps and noise that are causing the differ-
ences in behaviour.

Conclusion and Future Work

Our goal was to reimplement the spatial reasoning architec-
ture from Kounatidou et al. (2018) in the Python framework
Nengo (Bekolay et al., 2014). The findings from the results
section suggest that this goal is achieved, in that the system
produces the desired behaviour. However, there are signif-
icant differences between the implementations that may be
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Figure 4: Failed scene evolution of the example scene (see Table 1) in Nengo for different tau factors. The shown evolutions
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Figure 5: Example scenes from our test datasets. The scene development on the right is from a cedar simulation. The scene on

the left is from a Nengo simulation.

due to the precise details of the random noise and the time
steps used for calculation.

Importantly, since these low-level implementation details
affect the overall performance of the model (as seen in the
variability in the testing), understanding exactly what is caus-
ing these differences is important for interpretting any DFT
model. We intend to continue to analyze these details and
characterize them.
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