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 Abstract 
In humans, learning is a complex phenomenon that depends on the joint            
contribution of multiple interacting systems, most notably memory        
(WM), long-term memory (LTM) and reinforcement learning (RL).        
There are vast individual differences in learning mechanism        
deployment. It is also, often, difficult to assess, through behavioral          
measures, the relative contributions of these systems during learning as          
well the specific strategies individuals rely on in performing a task.           
Collins (2018) put forward a working memory-reinforcement learning        
combined model that addresses these issues within a simple domain, but           
largely ignores the long-term memory component. In this project, we          
built four (two single-mechanism RL and LTM, and two integrated          
RL-LTM) idiographic learning models based on the ACT-R cognitive         
architecture. We aimed to examine individual differences and estimate         
parameters that could explain preferential use of learning mechanisms         
using the Collins (2018) stimulus-response association task. We found         
that different models provided best-fits for individual learners with         
more variability in learning and memory parameters observed even         
within the best fitting models. Our conclusion is that irreducible           
differences in learning and meta-learning strategies exist within        
individuals even within relatively simple tasks, and that model-based         
approaches are necessary to characterize and explain behavioral data.  
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Introduction 
Individual differences in the ability to learn new        

associations are foundational to most measures of aptitude— a         
construct that describes the readiness with which one can acquire          
a complex skill. But even basic associative learning paradigms,         
like stimulus-response mappings, have been shown to rely on a          
mixture of learning mechanisms including working memory,       
reinforcement learning, and long term memory (Stocco et al.,         
2010). Though a considerable amount of research has        
investigated how task characteristics drive these mechanisms       
during learning (Collins & Frank, 2012), less work has been          
devoted to understanding how and when they may be deployed          
differently in different learners. To examine this, we built two          

single-mechanism and two multi-system stimulus-response     
learning models using the Adaptive Control of Thought -         
Rational (ACT-R) cognitive architecture, and used them to        
examine individual learning mechanisms for the same learning        
task. Specifically, Anne Collins’ Reinforcement Learning      
Working Memory task (RLWM task: Collins, 2018) was used as          
the task paradigm .  

It can be difficult to assess the independent contributions of          
these learning mechanisms behaviorally. Modelling is a robust        
approach to evaluating the independent contributions of these        
mechanisms (Collins, 2018). This method further allows us to         
estimate individual parameters that would give us insight into         
the cognitive properties that resulted in different forms of skill          
acquisition (Daw, 2011). We adopted the RLWM task because it          
provided a single experiment with simple manipulations to        
dissociate learning mechanisms.  

But in the task’s simplicity lies a difficulty: long-term         
memory and reinforcement learning guide actions and responses        
that are nearly indistinguishable in the context of the task using           
behavioral outcomes only. In the RLWM task, participants are         
asked to learn associations between images (e.g. objects, shapes,         
and colors) and key responses through trial-and-error with        
feedback. The task, as designed by Collins, sought to quantify          
the relative contributions of working memory and reinforcement        
learning through two training conditions over 14 blocks–a        
working memory, resource-sparing, 3-image condition for 8       
blocks and a resource-intensive, 6-image condition for 6 blocks.         
After training, participants performed an unrelated, 10-minute       
distractor task followed by a surprise test block. Collins et al.           
expect that that the 3-image associations, learned quickly        
through working memory, should not be remembered after the         
distracting break, whereas the 6-image associations, acquired       
through reinforcement learning, should be retained after the        
break and demonstrated during the test phase. This largely aligns          
with what we know about the durability of reinforcement         
learning (Stocco et al., 2010). Collins has demonstrated that         

 



 
learning object-letter associations most probably occurs through       
the interaction of Reinforcement learning (RL) and Working        
Memory (WM) using a combined, interacting (RL+WMi)       
model (Collins 2018; Collins & Frank, 2012). They        
hypothesized that the fast-learning (high learning-rate) WM       
resource, which is limited in capacity and decays rapidly,         
represented by a decay parameter, cooperatively interacts with        
the RL portion of the model, directly influencing the         
computation of the reward prediction error. This model        
contributes less to reward prediction error when the set size is           
high. This model fit participant data best compared to other, RL           
and non-interacting RL+WM  models (Collins, 2018). 

One critical limitation of Collin’s original modeling effort is         
that it implicitly assumes that all long-term associations between         
stimuli and responses are stored in a procedural, RL-based         
system, and, conversely, that all of the explicit representations of          
the correct responses must fit within a temporally constrained         
working store. This is apparent in the assumption, for example,          
that performance after a 5-minute interval must reflect the RL          
system only (Collins, 2018). Instead, our replication of the         
experiment shows that participants have also used their        
long-term declarative memory. Upon completion of the main        
task, participants in our study were also asked to answer the           
open-ended question, “Do you recall using a specific strategy to          
learn the images?” A substantial number of them reported, for          
instance, relying on colors, names, or other salient features of the           
stimuli to remember the corresponding responses. Many answers        
followed the common pattern “Pictures ‘A’ and ‘B’ shared an          
attribute and were both associated with the keyboard response         
‘V’, so they were grouped together”. An informal evaluation of          
these responses lent a trickle of confidence to the use of a            
possible LTM strategy, as well as the fact that participants seem           
to explicitly control they learning strategies Additionally, we        
have observed clear individual differences in learning as well as          
demonstration of learned associations in our subjects that stray         
away from the WM-RL dichotomous view of learning. For         
instance, a proportion of our subjects learned quickly in both          
object-set conditions, suggesting working memory use, but also        
showed that learned associations prevailed after the 10-minute        
break (Figures 4 and 5).  

To further complicate the story, Collins’ model relies on a          
simplified working memory system, which, in essence, is a         
fixed-capacity storage with fading contents. This is exactly how         
short-term memory was originally conceptualized by Atkinsons       
and Shiffrin (1968) and, while useful as a modeling tool, it is            
also known to be inadequate. Critically, contemporary theories        
think of working memory as a process arising from the          
interaction between attention and the strategic retrieval of        
long-term memory information (Kane et al., 2001; Miller,        
Lundqvist, & Bastos, 2018). In essence, Collin’s modeling        
efforts confound the temporal axis of learning (long vs. short          
term representations) with the learning representation (implicit       
and procedural, driven by RL, and explicit, driven by WM). 

 
 

The ACT-R Cognitive Architecture 
To capture the interplay between reinforcement learning,       

long-term memory, and working memory within an integrated        
model, we decided to follow an alternative approach and build a           
series of models using the ACT-R cognitive architecture        
(Anderson, 2007). ACT-R was an obvious choice for this study          
because of its expansive, flexible and manipulable integration of         
cognitive mechanisms. In ACT-R, knowledge is represented in        
two possible formats, procedural and declarative. Procedural       
knowledge is represented as procedural rules, is identified with         
the basal ganglia, and is learned through reinforcement learning         
(Stocco, Lebiere, Anderson, 2010; Ceballos, Stocco, Prat, 2020).        
Declarative knowledge is represented in explicit memories.       
Explicit memories decay over time, but their activation can be          
momentarily increased through spreading activation, an      
attentional mechanism that can be used to maintain information         
for a brief amount of time and predicts individual differences in           
working memory capacity (Daily et al 2001). Finally, ACT-R is          
a realistic “end-to-end” modeling tool, and includes multiple        
models to capture sensorimotor interactions with a task.  

In this study, we built four models to model typical learning           
trajectories and outcomes in a declarative learning, LTM only         
system with a variable WM analog, a reinforcement learning         
system and combined RL, WM and LTM models. These models          
would allow us to test if the RLWM task can potentially be            
performed using declarative memory. Further, by exploring a        
range of parameters for learning rate (α), RL noise (τ), working           
memory (Imaginal-activation), memory retrieval noise and      
decay rate, we could estimate individual parameters and        
establish a link to the differences that amount to varied          
deployment of learning mechanisms.  

 
Materials and Methods 

Participants. 83 undergraduate students from the University of        
Washington participated in this experiment. All participants       
were monolingual English speakers recruited through the UW        
Psychology subject pool (47 females, aged 18-35 years). Data         
were collected after receiving informed consent in one 2-hour         
session.  
Behavioral Task The Reinforcement Learning Working      
Memory task (Collins, 2018) involves learning      
stimulus-response associations through a series of 14 blocks.        
Participants are instructed to respond with a key-press of either          
‘C’, ‘V’ or ‘B’ to the displayed images. In half the blocks,            
participants have to learn to associate key-presses with three         
unique images, presented 12 times in random order and in the           
other half with 6 unique images each presented 12 times within           
the block. The stimulus-response associations are deterministic       
and participants learn through reward (+1 point for correct         
responses and 0 points for incorrect responses). Following this         
learning phase, a 10-minute distractor task is administered        
before a surprise 206-trial test block. Participants make        
responses without feedback to items taken from both 3- and 6-set           
learning blocks. Stimulus presentations and data collection were        
done in MATLAB (mathworks.com).  

 



 
 
Computational Models 
All of the models experienced the same experimental set-up — 2           
learning blocks of 3 and 6 objects respectively, a 10-minute          
break and a test phase without feedback. 
Reinforcement Learning Model. The first model (Figure 1)        
most closely adheres to Collin’s RL model. This model uses          
production rules to represent all of the possible        
stimulus-response associations,and uses reinforcement learning     
to progressively learn which associations are correct. Each        
production rule p has an associated utility value, U(p), that          
reflects its expected rewards and is learned through a temporal          
difference rule. Specifically, 
 

Ut (p) =Ut  -1 (p) + α [Rt  - Ut-1 (p)] (1) 
 

in which α is the learning rate and Rt is the reward given at              
time t. In our experiment, Rt is binary and corresponds to the            
feedback (“Correct”, Rt = 1, and “Incorrect”, Rt = -1) given by            
the task interface. Competing responses are selected on the bases          
of their respective utilities, using a soft-max rule controlled by a           
noise parameter τ. The model initially responds randomly, until         
the correct rule accrues sufficient rewards to overcome the         
competitors, given the noise τ. The entire procedural/RL model         
is controlled by two parameters, the learning rate α and the           
selection noise τ. 

 
Figure 1: Overview of the procedural RL model, as implemented          
in ACT-R. 
 
Declarative Learning Model. In lieu of Collins’ pure WM         
model, we developed a declarative model (Figure 2), which         
manages both long-term and short-term explicit associations       
between a stimulus and its correct response This model stores          
memories of specific task events for later recall and use. To start,            
the model attempts to retrieve a memory of a previous response           
to the current stimulus that had resulted in a correct response. If            
such a memory is found, the same response is used. If no            
memory can be found, the model makes a random response. The           
outcome of this response to the current stimulus are then          
memorized. Although this model is computationally simple,       
ACT-R allows for a sophisticated control of the memory         
management processes through three parameters: (a) activation       
noise s, which captures random fluctuations in a memory’s         

activations and associated probability of retrieval, (b) decay rate         
d, which captures the rate at which memories fade away and are            
forgotten (Sense et al., 2016); and (c) spreading activation         
weight W, which captures the attentional resources allocated to         
activating relevant memories during retrieval, and has been        
shown to capture individual differences in working memory        
capacity (Lovett, et al., 2000; Daily et al, 2001). We hypothesize           
that individual differences may occur in this three-parameter        
space and might be an intrinsic source of strategy choice during           
learning and retrieval. 

  
Figure 2: Overview of the declarative model, as implemented in          
ACT-R. 
 
Integrated LTM-RL models. Our third and fourth models        
integrate the two single-system models into one model. Both         
models initiate each new trial by first deciding which of the two            
strategies to use---the procedural or the declarative strategy. The         
mechanism for integration provided a specific challenge. What is         
the most likely way that these two systems collaborate or          
compete during learning and recall? We decided to test two          
possible ways a meta-learner could arbitrate which system to         
use. The first, perhaps more elegant, solution was to have a           
reinforcement learner that learned the best strategy given the         
specific set of parameters. This model has five parameters total,          
the two inherited from the pure RL model (α and τ) and the three              
inherited from the Declarative model (s, d, and W). This model           
assumes that individuals are adaptive learners, and can optimally         
choose strategies based on their relative success over a short          
time. For example, if the long-term memory strategy proves too          
difficult (as in the case of too many stimuli), the model would            
switch to a RL-based learning strategy. RL learned associations         
are shared with the LTM system by inserting explicit         
information into the memory module. 

The second integrated model has a built-in preference bias         
towards one system, quantified as a bias parameter β. Thus, at           
the beginning of every trial, the model selects the procedural/RL          
strategy with probability β and the declarative strategy with         
probability 1 - β. In contrast to the previous model, this bias is             
fixed and does not change over the course of the task. This            
model embeds the hypothesis that individuals might have        
established preferences towards one way to learn or another,         
perhaps honed over many years of “learning to learn” across          

 



 
contexts and circumstances. For instance, if an individual has a          
preference for declarative learning, it would persist in trying to          
memorize stimulus-response associations even when switching      
to a RL strategy would be more convenient.  

 
Figure 3: Overview of the two “integrated” models that employ          
both RL and declarative learning. The two models differ only in           
how they arbitrate between the two strategies.  

 
Simulations 

In this study, models are used as investigative tools to better           
characterize each individual. To do so, each model was run          
across a discretized version of its parameter space. Despite being          
computationally expensive and coarse, this method was       
preferred to convex optimization methods because it gives the         
full view of parameter space (including local and global minima)          
and, once computed, does not need to be recalculated for each           
participant. To obtain stable estimates, each model was run 100          
times for each possible combination of parameters. In        
discretizing the range of each parameter, values were chosen to          
form an interval that surrounds the recommended value in the          
ACT-R documentation. A full description of parameters and the         
range of values that were manipulated is given in Table 1. 

 
 

Table 1: Model parameters manipulated in the simulations 
 

Parameter Meaning Values 

α Learning rate in RL 0.10, 0.15, 0.20 

τ Procedural rule selection 
noise 0.2, 0.3, 0.4 

d LTM decay rate 0.4, 0.5, 0.6 
s LTM activation noise 0.2, 0.3, 0.4 

W 
Spreading activation 
(Working memory 
capacity) 

1, 2, 3 

 
Data Analysis And Participant Fitting  

Each participant’s meta-learning strategy and latent,      
idiographic characteristics were then measured by identifying       

the model that best reproduced their observable data Y.         
Specifically, Each participant matched to a particular model M         
and set of parameter values θM, that minimized that following          
function: 
 

M, θ = argmin BIC(Yp, YM  | M, θ) 
 

in which Yp is the observable task performance from         
participant p, YM is the simulated task performance, M is one of            
our four given models, θM is its associated set of parameters, and            
BIC is the Bayesian Information Criterion (Schwarz, 1978),        
which can be further expressed as: 
 

BIC = n + n log (2π) + n log (RSS)/n) + log(n) (k + 1) 
 

in which n is the number of data points to fit, k is the              
number of parameters in each model, and RSS is the residual           
sums of squares. In our case, the n data points are the 24 means              
accuracies associated with the presentations of each individual        
stimulus (12 for Set3 and 12 for Set6), plus the two post-learning            
test accuracies. 

The BIC was chosen because it incorporates both fit and          
model complexity in a Bayesian framework, thus natively        
accounting for the fact that a more complex model has an a            
priori greater likelihood to fit a given individual and that, given           
two models that fit equally well the same data, the one with the             
smallest number of parameters is the more likely to the be best            
model for that particular individual.  

 
Results 

Behavioral Results 
By and large, our experimental results replicated the        

experimental findings of Collins (2018). This is shown in         
Figures 4 and 5, which illustrate the average performance of          
participants across the learning phase (Figure 4) and a         
comparison of the end of the learning phase vs. the test phase            
(Figure 5) of the task. 

On average, participants’ performance improved throughout      
the learning phase of the experiment, as shown by a significant           
effect of the stimulus repetition on its response accuracy         
[F(11,984) =405.67 p <0.001]. As previously reported, stimuli in         
Set3 condition was generally learned sooner and better than         
those of Set6. Finally, the two conditions interacted across         
learning and test phases [F(1,328), p < 0.01], with learning for           
Set3 being more likely to decline from the end of the learning            
phase to the test phase. 

As noted in Collins (2018), these group-level results        
strongly suggest that individuals use a mixture of declarative and          
procedural strategies. This is shown by the effects of the test           
phase (which suggest a decaying of information over time,         
possibly compatible with declarative memory) and by the        
superiority of the Set3 condition during learning (which rules out          
RL). 

 



 

 
Figure 4: Accuracy across successive stimulus presentations       
during the RLWM task (Collins, 2018). 
 

 
Figure 5: Accuracy during the test phase in the RLWM task           
(Collins, 2018). 
 
Overview of Modeling Results 

To give an idea of the general behavior of the four models,            
Figure 6 illustrates the mean performance of each of the four           
models during the learning phase. Although this data is averaged          
over all parameters and thus obscures the considerable        
variability across models (much like the group data in Figure 4           
obscures the variability within subjects), it clarifies two        
important points. First, all of the four models, in general, capture           
the group-level learning rate. Second, even within the variability         
entailed by the different parameters, the models do predict         
different trends. As Collins (2018) pointed out, the pure RL          
model predicts no difference between Set3 and Set6. Notably,         
the pure LTM model also predicts no difference between the two           
sets, at least within our set of LTM parameters. The mixture           
models, however, do predict differences between the two        

conditions, with the difference being stronger for the explicit,         
biased meta-learning model. This is a side effect of the model           
using different strategies for Set3 and Set6 stimuli. 

 

 
 
Figure 6: Learning trajectories for Set3 and Set6 stimuli for the           
four models. 
 
Model Fitting Procedure 

After examining the behavioral results, each participant was        
matched to an ideal model using the BIC criterion minimization          
procedure described above.  

The results of this model fitting procedure yielded        
somewhat different results than the original study. We did not          
find that one model outperformed the others reliably. Rather, we          
found that different models steadily fit different subsets of         
participants (Figure 7). This was true even when, as in the case            
of integrated models, they effectively included the basic models         
as particular cases. In principle, this could be due to the fact that             
the BIC procedure does penalize more complex models.  

Importantly, individual subgroups emerge even within the       
integrated models, suggesting that individual differences persist       
even at the level of meta-learning, or deciding which learning          
mechanisms to apply. 

 
Conclusion 

This study has used computational models to explore individual         
differences during learning. Specifically, this study has explored        
how different individuals engage alternative learning subsystems       
(declarative vs. procedural). 

To do so, the study has capitalized on the use of idiographic            
computational models, that is, models designed to best fit a          
specific individual with a high degree of fidelity, rather than a           
group average—an approach that has recently gained       
prominence in cognitive neuroscience (Ceballos, Stocco, & Prat,        
2020; Collins, 2018; Daw, 2011).  

 



 

 
Figure 7: Count of the number of subjects that are best  matched 
by each of the models.  
 
It was found that different models fit different individuals, not          
only when models were effectively using different strategies (RL         
vs. declarative, LTM-based model) but also when one model         
was effectively nested within the other (basic models vs.         
integrated models). More importantly, it was found that the         
principle that different individuals fit different models also        
applies to higher-level models. In our case, the two “integrated”          
models were found to better fit different participants, with some          
adapting their learning strategy during the task, and some         
maintaining a bias towards one learning system. To the best of           
our knowledge, this is the first study to report such findings. 

A number of limitations must be acknowledged. First, the         
number of models we explored is still limited. Second, and most           
importantly, the size of the parameter space that was explored          
was extremely small. Both of these limitations will need to be           
overcome in future research and are currently limited by         
computing power. We are leveraging the use of cloud         
computing, as suggested by one of our reviewers, to search a           
wider range of parameter values. This will also afford us better           
fit between our models and behavioral data and parameter         
estimation than we have currently achieved.  

These limitations notwithstanding, a number of important       
points need to be made. The first is that individual differences do            
matter and, as it is becoming increasingly apparent, group data          
might not reflect the true behavior of any of its component           
individuals. Computational models provide a new and unique        
method to understand, measure, and uncover the dimensions in         
which individuals differ from one another.  

A second, point to be made concerns the importance of          
declarative memory in learning strategy, at least in humans, even          
in its long-term form. The success and prominence of RL theory           
in neuroscience has led to probably overlooking how much         
individuals rely on declarative strategies in learning simple        
response associations tasks. This is apparent in Collins’ (2018)         
and Collins and Frank’s (2012) conclusions, which, while        

acknowledging working memory, dismiss the possibility of       
participants forming long-term declarative associations     
altogether. Instead, our modeling results suggest that       
declarative-based models fit large sub-groups of individuals.       
Even the simplest, non-integrated model, accounts for 36% of         
our participants, and, altogether, models that at least include         
declarative components account for 73 out of 83 participants         
(Figure 7). Our results are also consistent with the increasing          
popularity of declarative memory-based approaches to learning       
and decision-making, such as the popular decision-by sampling        
(Stewart, Chater, & Brown, 2006) and Instance-Based Learning        
(Gonzalez, Lerch, & Lebiere, 2003).  

A third and related point that needs to be made is that,            
while models do matter, the specific type of modeling approach          
that is used matters even more. It would have not escaped the            
attentive reader that, while our empirical results largely mirror         
those of Collins (2018), our conclusions do not. This is mostly           
due to the fact that our choice of modeling paradigms was           
different, and carries different assumptions about the cognitive        
system. Consider the difference in learning between Set3 and         
Set4 conditions. Collins’ (2018) explanation is that Set3 items         
are more likely to be still in working memory during learning,           
thus facilitating performance by direct reading of the associated         
response from a short-term buffer. Our explanation is that         
participants probably relied on different learning systems LTM        
vs. RL for the two sets of stimuli. Because the space of possible             
models is so large, it is practically impossible to empirically          
decide on this matter. For this reasons, we advocate for          
developing idiographic (i.e., individual-level) models within an       
integrated cognitive architecture, so that the different models are         
more clearly comparable and benefit from a common, well         
established set of constraints (which seems to be evolving         
towards a consensus: Laird, Lebiere, & Rosenbloom, 2017). By         
doing so, we believe we have put this research on a better            
footing for future developments. 
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