
Using cognitive agents to design dynamic task allocation systems
Christopher R. Fisher (christopher.fisher.27.ctr@us.af.mil)

Cubic Defense
Beavercreek, OH 45324 USA

Mary E. Frame (mary.frame@parallaxresearch.org)
Parallax Advanced Research

4035 Colonel Glenn Hwy, Beavercreek, OH 45431

Christopher Stevens (christopher.stevens.28@us.af.mil)
Air Force Research Laboratory

Wright Patterson, OH USA

Abstract
Although cognitive models are primarily used to formalize the-
ories of cognition, they could be applied in artificial intel-
ligence (AI) systems, such as autonomous managers (AMs)
which optimize team performance through dynamic task allo-
cation. Cognitive models can be incorporated into the AM’s
decision system to understand the implications of alternative
task distributions. They can also be used as simulated agents
to stress test AMs under a wide range of conditions. In a
simulation study, we varied the cognitive model used in the
AM’s decision system and the cognitive model performing a
task to explore the design space of AMs. We found a trade-off
between optimality and robustness in which complex models
performed the best when assumptions were met, but were not
robust to violation of assumptions. These results highlight the
importance of considering simple models when assumptions
could be violated and showcase the utility of cognitive models
in AI systems.
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Introduction
Cognitive models have a multitude of uses ranging from for-
malizing theories of cognition and sharpening research ques-
tions (McClelland, 2009), to measuring individual differ-
ences in cognition among clinical and non-clinical popula-
tions (Riefer, Knapp, Batchelder, Bamber, & Manifold, 2002;
Yechiam, Busemeyer, Stout, & Bechara, 2005). One of the
promises of cognitive architectures—and perhaps cognitive
models more generally—is the ability to scale up to complex
tasks where the limits of theory and practical application can
be pushed (Newell, 1990). Some complex tasks in which
cognitive models have been applied include training teams
involving synthetic teammates (McNeese, Demir, Cooke, &
Myers, 2018) and driving (Salvucci, 2006).

One burgeoning area in which cognitive models could be
informative is artificial intelligence (AI). Deep learning in
particular is a remarkably flexible function learning algo-
rithm. According to the Universal Approximation Theorem,
a deep neural network containing a sufficient number of lay-
ers can approximate any continuous function with sufficient
training data (Zhou, 2020). However, this flexibility comes at
a high cost: copious amounts of data are required for training
in order to compensate for the lack of predefined structure.
In addition, deep learning and similar approaches have been
criticized for being opaque, brittle, and vulnerable to sabotage

(Nguyen, Yosinski, & Clune, 2015). One solution is to incor-
porate scientific models into AI systems in order to provide
a structure that reduces demanding data requirements. Cur-
rently, there are efforts to integrate neural networks with dif-
ferential equation models commonly used in physics, biology
and pharmacology (Rackauckas et al., 2020) to achieve a bet-
ter balance between flexibility and data requirements. Along
similar lines, cognitive models could be integrated into AI
systems in situations that require interacting with or reason-
ing about humans.

We argue that cognitive models can be integrated into
autonomous managers (AMs) designed to optimize perfor-
mance in team-based work environments. An AM monitors
performance of a team and dynamically allocates tasks be-
tween workers in order to improve performance of the team.
An autonomous task manager can draw upon several sources
of information and methods to inform a task allocation de-
cision, including performance history of workers, AI, and
mathematical optimization. Cognitive models can be inte-
grated into an AM in at least two ways. First, an AM could
use a cognitive model to predict and understand the implica-
tions of alternative task allocations. Second, a wide range of
cognitive models can perform a simulated task environment
in order to investigate the robustness of the design space of
AMs.

We performed a series of simulations to explore the design
space of AMs that incorporate different cognitive models into
the decision process. Our primary research goal was to iden-
tify trade-offs between optimality and robustness in the de-
sign space. For example, do some designs perform optimally
when model assumptions are satisfied, but perform poorly
when assumptions are violated? In our simulations, an AM
dynamically allocates sub-tasks of a larger, more complex
task to cognitive agents (i.e. instances of a cognitive model
that perform the task). We varied both the type of cognitive
agent that performed the task and the cognitive model that
the AM used to inform task allocation decisions. The cogni-
tive models/agents varied according to cognitive processing
constraints and the relationship between workload and per-
formance. In some cases, the cognitive agent and the model
used in the AM were the same; in other cases, they differed.



Overview
The remainder of the paper is organized as follows. First, we
discuss the logic behind dynamic task allocation and the need
for automated task allocation systems. Next, we describe the
novel complex task environment used to test the effectiveness
of AMs. Then, we describe the cognitive agents and AMs
used in our simulation. Finally, we present and discuss the
results of the simulation study. To preview a key result, we
found a trade-off between optimality and robustness.

Dynamic Task Allocation
The performance of a team may vary according to numerous
factors, including differences in skill specialization, sensitiv-
ity to workload, and temporal dynamics associated with fa-
tigue. In some cases, team performance could be improved
simply by allocating tasks to workers with the appropriate
specialized skills. However, optimizing team performance is
rarely this simple. For example, a person who skillfully per-
forms two tasks in isolation may struggle to perform both to-
gether if she or he is sensitive to changes in workload level.
Performance may also vary randomly from day to day due to
unknown factors or could vary with fluctuations in task de-
mands or fatigue. Dynamic task allocation is necessary in
order to deal with uncertainty and to adapt to changes in per-
formance across time. Collectively, these factors present a
challenge for optimizing team performance.

Some work environments could benefit from an AM be-
cause it is difficult and costly for a human supervisor to man-
ually monitor and allocate tasks. In addition, some research
indicates that delegating work distribution decisions to work-
ers can be disruptive due to the additional workload imposed
by monitoring the performance oneself and others (Katidioti,
Borst, van Vugt, & Taatgen, 2016; Won, Condon, Landon,
Wang, & Hannon, 2011). One important research question
that remains unanswered is how to design an AM that can
adapt to dynamic situations and is robust to individual differ-
ences. For example, do more complex models provide a large
performance gain compared to simpler models? Are more
complex models less robust to violation of assumptions? We
attempt to address these questions in the present research.

ISR-MATB
We developed a complex task environment called the Intelli-
gence Surveillance and Reconnaissance Multi-Attribute Task
Battery (ISR-MATB) to induce task demands similar to what
is found in ISR operations. The ISR-MATB is a variation
of the Multi-task Attribute Task Battery (Santiago-Espada,
Myer, Latorella, & Comstock Jr, 2011) which was designed
to emulate task demands in aviation. Whereas the MATB
focuses on performing multiple tasks concurrently, the ISR-
MATB focuses on goal switching, information search, inter-
dependence between operational procedures, and synthesis of
information into actionable decisions. The ISR-MATB uses
variations of standard cognitive tasks to tap into each of these
cognitive demands. Although each sub-task is relatively sim-

ple in isolation, they combine into a more complex whole due
to inter-dependencies between sub-tasks. In what follows, we
will describe each sub-task and then explain how they fit into
an inter-dependent task flow.

Psychomotor Vigilance Task
The ISR-MATB uses a modified Psychomotor Vigilance Task
(PVT) (Dinges & Powell, 1985) to emulate unpredictable
changes in goals that may occur in ISR operations. The
PVT is commonly used to measure fatigue and sustained
attention. In a standard PVT, a millisecond counter ap-
pears after a uniformly distributed inter-stimulus interval of
2 to 10 seconds. Participants are instructed to respond as
quickly as possible when the stimulus is presented. Upon
responding, the millisecond counter stops and is displayed
for 1 second as feedback. In the modified PVT, a target
for the current trial is randomly selected from the stimulus
set {grey Q, grey O, black Q, black O} and presented. As ex-
plained further below, the target is used to complete the visual
and auditory search tasks.

Visual Search Task
The ISR-MATB uses the classic conjunctive visual search
task (Treisman & Gelade, 1980) to emulate visually demand-
ing search tasks in ISR, such as searching through a visually
dense video feed for a target. The conjunctive search task
requires participants to search for a target among an array
of scattered distractors. Each stimulus has two dimensions:
color and letter. A stimulus is considered a target if it matches
on both dimensions (e.g. black Q). A distractor matches on
one dimension but differs on the other (e.g. grey Q, black O).
On half of the trials the target is present and on the other half
of trials the target is absent.

Auditory Search Task
The ISR-MATB uses an auditory search task to emulate sim-
ilar search tasks in ISR operations. For example, an opera-
tor might be required to search for keywords and phrases in
communication channels and audio recordings where audio
signals can be degraded or embedded in background noise.
In the auditory search task, a participant is instructed to scan
up to four radio channels containing background white noise
for the search target (e.g. an audio recording of the words
”black Q”). Difficulty is manipulated by changing the num-
ber of radio channels and the signal to noise ratio.

Decision Task
In ISR operations, information from multiple sources must
be synthesized into a decision to act or refrain from taking
action. We capture this aspect of ISR operations with the a
multiple-cue decision task inspired by similar tasks in the lit-
erature (Sieck & Yates, 2001). As summarized in Table 1,
decisions are based on two binary cues: (1) whether the tar-
get state (i.e. present or absent) is the same or different in the
visual and auditory search sub-tasks, and (2) whether confi-
dence in the accuracy of the information is low or high. For



example, if confidence is low and the target is present in the
visual and auditory search tasks, the correct action is to re-
frain. The base rate of cue values is 50-50, meaning it is not
possible to perform better than chance with incomplete infor-
mation.

Table 1: A decision matrix of four rules based on whether
the visual and auditory target states are the same (present in
both or absent in both) or different and the confidence in the
information accuracy.

Confidence Target State Correct Action
Low Same Refrain
Low Different Act
High Same Act
High Different Refrain

Task Flow
The ISR-MATB features an inter-dependent task flow in
which information must be acquired and integrated into a de-
cision to act or refrain. At the beginning of each trial, the tar-
get must be acquired in the PVT before other sub-tasks can
be performed. Once the target has been acquired, it is used
to perform the visual and auditory search tasks. Similarly,
the visual and auditory search tasks must be completed in or-
der to ascertain the the first binary cue for the decision task.
The second binary cue is acquired by clicking on a designated
button, which reveals whether confidence in the information
is low or high. Once the cues are acquired and the correct
rule is retrieved (see Table 1), the participant can decide the
correct course of action.

Cognitive Agents
As illustrated in Figure 1, we developed five types of cogni-
tive agents with performance profiles that differ as a function
of workload. Although the cognitive agents are not based on
high-fidelity cognitive models, they must operate with real-
istic cognitive constraints on performance. Importantly, this
set of cognitive models provides a wide range of performance
patterns against which the AMs can be stress tested.

Before proceeding, we note some common notation and
characteristics across agents: Define θs, j as the accuracy of
agent j on sub-task s ∈ S = {p,v,a,d}, which corresponds to
the PVT, the visual search task, the auditory search task and
the decision task, respectively. All cognitive agents guess on
the visual and auditory search task if no response is provided
to the PVT, which we denote as yp = 0.

Constant
As the name implies, the accuracy of the Constant agent does
not vary according to workload level. However, performance
can differ between sub-tasks. See (Frame, Lopez, & Boyd-
stun, 2019a) for a similar approach. Each parameter value
θs, j is randomly sampled from the following distribution:
Uniform(.50,1). Once a parameter is selected, it is fixed for

the duration of the simulation, making the expected accuracy
constant.

Random-Dynamic
As a stress test for the AM, we developed a Random-Dynamic
agent which changes on randomly selected sub-tasks after a
set of 30 trials have been completed. Initial parameter values
θs, j ∼ Uniform(.50,1). After a block of 30 trials has been
completed, a new value for each accuracy θs, j is re-sampled
with probability pchange = .20. Otherwise, the accuracy pa-
rameter remains the same for the next block.

Capacity-Limited
Performance of the Capacity-Limited Agent decreases as a
function of workload—defined here simply as the number of
tasks assigned to the cognitive agent. The probability of a
correct response on sub-task s is given by the following piece-
wise equation:

θs, j =


1

1+ e−(β0, j+β1, j×w)

.5 if yp = 0 and s ∈ {v,a}

where β0, j is the intercept and β1, j the slope for agent j, and
w is workload level. The slope β1, j represents the sensitiv-
ity of accuracy to changes in workload, such that negative
values of β1, j lead to a decrease in accuracy with increasing
levels of workload. The second piece of the equation above
indicates the model guesses on the visual and auditory search
tasks if no response on the PVT is provided within the re-
sponse deadline. Parameter values are initialized such that
β0, j ∼ Uniform(0,3) and β1, j ∼ Uniform(−1,0), subject to
the constraint that θs, j ≥ .5 under maximum workload to en-
sure that performance cannot drop below chance levels.

Yerkes-Dodson
Accuracy for the Yerkes-Dodson agent follows a parabolic
(e.g. inverse U-shaped) relationship with workload in which
optimal performance is achieved with moderate levels of
workload. Some evidence indicates that the relationship be-
tween arousal and performance might be parabolic under
some circumstances (Yerkes & Dodson, 1908). Following
this logic, if low levels of workload induce boredom or mind-
wandering, and high levels of workload are overwhelming,
then optimal performance for an agent might be achieved at a
moderate level of workload. We make one small modification
to the Capacity-Limited agent to incorporate this assumption:

θs, j =


1

1+ e−(β0, j+β1, j×(w−2.5)2)

.5 if yp = 0 and s ∈ {v,a}

The primary difference is that w is replaced with (w−2.5)2.
Subtracting 2.5 from w places the maximum at the midpoint
between one and four tasks and the exponent of 2 produces
the parabolic relationship. Parameter values are sampled
from the same distributions used for the Capacity-Limited
agent.



Fatigue-Dynamic
The performance of the Fatigue-Dynamic agent is based on a
dynamical system composed of two opposing processes. See
(Patterson, Lochtefeld, Larson, & Christensen-Salem, 2019)
for a related model. One process represents the gradual deple-
tion of cognitive resources due to fatigue which is modulated
by the instantaneous level of workload. An opposing recov-
ery process replenishes the cognitive resource during periods
of sufficiently low workload. If the net effect of the opposing
processes is zero, the system achieves a state of equilibrium
in which no change occurs. We approximate this dynamical
process with the following logistic difference equation:

vt = vt−1 +∆× (β1, j×wt−1 +β2, j)× (vt−1− vmin)×(
1− vt−1− vmin

vmax, j− vmin

)
where vmin and vmax, j are the lower and upper asymptotes of
accuracy, respectively, t indexes the time step, ∆ = 1 (sec-
onds) is the change in time per time step, β1, j the slope the fa-
tigue decrement, wt−1 is the workload level at time step t−1,
and β2, j is the slope for the recovery process. Accuracy is
defined as:

θs, j =

{
vt

.5 if yp = 0 and s ∈ {v,a}

At the beginning of each simulation, parameters were
initialized as follows: vmax, j ∼ Uniform(.85,1) β1, j ∼
Uniform(−.0015,−.0005), and β2, j ∼ Uniform(|β1, j|,2 ×
|β1, j|). The purpose of constraining β2, j in terms of β1, j is
to ensure that the neither the fatigue nor the recovery process
are dominant at all levels of workload. We fixed vmin = .5
to ensure that performance cannot fall below chance. We set
initial accuracy to v0 = .9× vmax, j under the assumption that
initial accuracy is near the maximum.

Autonomous Managers
We developed five autonomous managers (AM) that base task
allocation decisions on different cognitive models 1. Each
AM has the following in common: First, each AM learns the
performance profile of each cognitive agent from observed
data. Second, each AM monitors ongoing performance and
may change the task allocation after each block of 10 trials.
Third, unless otherwise noted, sub-tasks are randomly allo-
cated to cognitive agents on the first block to avoid bias in
initial conditions.

Recent-Maximum
The Recent Maximum AM takes a data-driven approach, us-
ing the most recent block of trials as the best estimate of an
performance of a cognitive agent. In other words, it makes no

1We did not include an AM that uses a Fatigue-Dynamic agent
as a model because parameters could not be reliably estimated with
optimizers freely available in Java.

Time
0.00
0.25
0.50
0.75
1.00

Ac
cu

ra
cy

Constant

Time

Limited-Capacity

0
1
2
3
4

W
or

kl
oa

d

Time
0.00
0.25
0.50
0.75
1.00

Ac
cu

ra
cy

Yerkes-Dotson

Time

Random-Dynamic

0
1
2
3
4

W
or

kl
oa

d

Time
0.00
0.25
0.50
0.75
1.00

Ac
cu

ra
cy

Fatigue-Dynamic

0
1
2
3
4

W
or

kl
oa

d

Figure 1: An illustration performance for each agent type as
a function of workload. Black: agent performance on a single
sub-task. Red: Agent workload.

assumptions about the relationship between workload and ac-
curacy. After each block, the AM allocates the sub-task to the
cognitive agent whose most recent block of data for that sub-
task is the highest. In order to promote exploration in early
blocks, the AM initializes each agent’s performance history
with a high accuracy of .90 for each sub-task.

Constant
The Constant AM assumes that the performance of each cog-
nitive agent may differ by sub-task, but is otherwise constant
across time and does not vary according to workload level.
As such, the constant AM is similar to the Recent-Maximum
AM, except it use all blocks of trials to estimate accuracy of
each sub-task.

Capacity-Limited
The Capacity-Limited AM assumes that all cognitive agents
are Capacity-Limited agents. After each block of trials, the
Capacity-Limited AM estimates the parameters β0, j and β1, j
from each agent’s entire history of data. Using the maxi-
mum likelihood estimates, the Capacity-Limited AM iterates
through all possible sub-task allocations and selects the al-
location that maximizes expected accuracy on the decision
task. Rather than allocating sub-tasks to agents randomly, the
Capacity-Limited AM completes two exploration blocks to
improve parameter estimation. During the first exploration
block, one sub-task is allocated to the first agent, and three
sub-tasks are allocated to the other agent. On the next explo-
ration block, the sub-tasks are swapped between agents.



Yerkes-Dodson
The Yerkes-Dodson AM is identical to the Capacity-Limited
AM, except it assumes the relationship between workload
and accuracy is parabolic (e.g. inverted U-shape) rather than
monotonically decreasing. After each block, the AM esti-
mates the parameters for each cognitive agent. Using the best
fitting parameter estimates, the AM selects the sub-task allo-
cation that maximizes the accuracy of the decision task.

Random
As a point of reference, we include a Random AM, which ran-
domly allocates sub-tasks to agents after each block. Thus,
an AM is minimally successful if it performs better than the
Random AM.

Simulation Design
We performed a set of simulations to assess the ability of dif-
ferent AMs to improve accuracy in the ISR-MATB by dy-
namically reallocating tasks to agents of different types. Each
team consisted of two cognitive agents of the same type. We
crossed cognitive agent type with each AM type to create a
total of (cognitive agent type: 5) X (AM type: 5) = 25 simu-
lation conditions.

All simulation conditions have several design parameters
in common: First, the duration of each simulation was 60
minutes in simulated time. Second, each AM made a deci-
sion to reallocate the tasks among the cognitive agents after
every block of 10 trials. Third, each simulation condition was
repeated 500 times in order to approximate the expected ac-
curacy for each AM.

Performance Evaluation
Our analysis focused on decision accuracy because that is the
most important criterion in ISR operations. We normalized
accuracy as a percentage of maximum possible performance
for each simulation using the following formula:

anorm =
aAM−amin

amax−amin

amin and, amax are the minimum and maximum possible
expected accuracy, and aAM is the expected accuracy of the
AM’s allocation. Using a normalized accuracy metric has
several benefits. First, it adjusts for differences in the range
of possible performance, which varies according to the type
of cognitive agent as well as the difference in performance
between the cognitive agents in a team. Second, it allows one
to identify whether further improvement is possible.

Results
The results of the simulation are summarized in Figure 2.
In most cases, AMs performed better than chance (i.e. the
Random AM). One exception to this finding is that AMs per-
formed similar to chance for Fatigue-Dynamic agents. An-
other finding was that the greatest performance was achieved
when the model of the AM matched the cognitive agent. For

example, the best AM for Yerkes-Dodson agents was the
Yerkes-Dodson AM (see first sub-plot in Figure 2). However,
the advantage of using a model that matches the agent was
not consistently large. Furthermore, complex models tended
to be less robust when their assumptions were violated. For
example, the Capacity-Limited and Yerkes-Dodson AMs per-
formed poorly for Constant and Random-Dynamic agents.
By contrast, the Constant AM, which uses a simple model of
cognitive agent performance, was more robust across differ-
ent types of cognitive agents. Although the Constant AM did
not always achieve the best performance, it performed mod-
erately well even when its internal model did not match the
cognitive agents.
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Figure 2: Sub-plots display % of maximum accuracy for each
AM (colored bars) for a given agent type labeled in the sub-
plot title. AM abbreviations: C: Constant, CL: Capacity-
Limited, R: Random, RM: Recent-Maximum, YD: Yerkes-
Dodson

Discussion
The goal of the present research was to explore how to in-
tegrate cognitive models into AMs to improve work produc-
tivity. AMs are designed to monitor performance of teams
and dynamically allocate tasks to workers to improve perfor-
mance. Cognitive models are an ideal candidate for augment-
ing the decision module of AMs because they can be used to
predict the performance implications of alternative task dis-
tributions. Furthermore, the data requirements for most cog-
nitive models are less onerous compared to deep neural net-
works and similar AI.

In our simulation study, we examined how AMs performed
across a wide variety of conditions on a relatively complex
ISR-themed task. We varied the type of cognitive agents that
performed tasks and the internal model of the cognitive agent
that the AM used to make task allocation decisions. One key
finding is that AMs based on simple models were more robust



compared to those based on more complex models. The re-
lationship between complexity and robustness is due, in part,
to a well-known statistical phenomenon called variance-bias
trade-off (Brighton & Gigerenzer, 2015). Models with more
parameters—an indicator of complexity—produce more error
variance due to over-fitting. In fact, an AM with a sufficiently
complex internal model may perform at chance levels even if
the internal model matches the cognitive agent performing
the task. In addition, more complex models might be more
brittle due to the increased number of assumptions that could
be wrong.

One direction for future research is to investigate the use
of cognitive architectures, such as ACT-R (Anderson et al.,
2004). In the present research, we used simpler cognitive
models because they are tractable and generate a wide variety
of distinct performance profiles. However, cognitive archi-
tectures provide the opportunity to explore additional inter-
ventions, such as providing feedback to strengthen declara-
tive memory, or prescribing more effective strategies for task
completion.

Conclusion
Cognitive models have a wide range of applications. The
present research demonstrates how cognitive models can be
incorporated into technologies and the design process to im-
prove task performance.
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