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Abstract
Differential payoffs can bias simple perceptual decisions. Drift
Diffusion models (DDM) have been successfully used to si-
multaneously model for response times (RTs) and accuracy of
binary decisions. The DDM allows for identification of latent
parameters that represent psychological processes underlying
perceptual decisions. These parameters characterize decision
making as a noisy process that accumulates evidence towards
one of the two boundaries. Previous research in two alternative
forced choice (2AFC) experiments has found that asymmetric
payoffs result in a bias towards those decisions that result in
higher payoff. We manipulate the reward structure resulting
in symmetric and asymmetric payoffs for a simple orientation
discrimination task and test for the differences in parameters
of drift diffusion model that might relate to reward-induced
bias in perceptual decisions. To understand the mechanisms of
how reward information might be integrated with perceptual
decisions, we altered the relative timing i.e. processing order
of reward information and perceptual stimuli.Computational
modelling using a hierarchical DDM revealed starting point
bias towards stimuli oriented in the direction of higher rewards
in asymmetric as well as symmetric rewards.The drift rate re-
flected the average reward expectation when reward informa-
tion was presented before, but not after the perceptual stimulus.
Our results suggest that integration of rewards with perceptual
decisions is mediated by modulating motivation for evidence
accumulation over time and prior bias in starting point.

Introduction
Computational models for Perceptual decision making de-
scribe the dynamic evolution of preferences across time un-
til a decision is reached, rather than assuming a fixed state
of preference. The Decision field theory (Busemeyer &
Townsend, 1993) is a member of a general class of sequen-
tial sampling models. Models such as drift-diffusion model
(DDM: Ratcliff, 1978) suggest accumulation of varying sen-
sory evidence that leads to a choice beyond a certain thresh-
old. The DDM models decision-making in two-choice tasks
represented by two boundaries separated by distance (repre-
sented by threshold parameter a). Lower threshold makes re-
sponding faster in general but increases the influence of noise
on decision making and can hence lead to errors or impulsive
choice. Higher threshold leads to more cautious responding
(slower, more skewed RT distributions, but more accurate).
Different studies have shown that the parameter a is sensitive
to speed versus accuracy instructions (e.g., Voss et al., 2004).
Additionally, there is a large body of research showing that
age-related slowing in response time tasks can be partially ex-
plained by more emphasis on correct responses (e.g., Ratcliff
et al., 2000, 2006, 2010, 2011). A drift-process accumulates

evidence over time with certain speed (drift-rate parameter v)
until it crosses one of the two boundaries indicating the choice
made. Due to noise in each trial of the drift process, the time
taken to reach a particular boundary would vary across tri-
als. If such a consistent variation is observed over different
conditions the drift rate reflects task-difficulty with smaller
drift rates representing more difficult tasks. In the compari-
son of participants, drift is a measure for individual cognitive
or perceptual speed of information processing (Schmiedek et
al., 2007). The DDM model also includes bias parameter z
to account for starting point closer to one of the boundaries
and non-decision time parameter t that encodes processes un-
related to decision making such as stimulus perception and
movement (Smith & Ratcliff, 2004).

Previous research using the DDM has revealed that the
effects of payoff manipulations on a perceptual decision-
making task can be identified through various parameters.
Dunovan et al. (2014) made a distinction between a prior bias
in starting point parameter z and a dynamic bias in drift rate
parameter v. The former model suggests influence of the pay-
offs on perceptual decisions to be only during the initial stage,
while the latter suggests these influences to persist until reach
the decision boundary. Van Ravenzwaaij et al. (2012) found
that prior information influences starting point rather than the
drift rate. Bias parameter is responsible for the starting point
of response time distributions for each trial. Difference in
bias parameter across conditions can reflect choices encoun-
tered with different payoff matrices. For example, Voss et al.
(2004) showed that the starting point is moved toward a re-
sponse threshold when the corresponding response leads to
greater rewards (for a review see Voss et al., 2013). Similarly,
in the domain of motivated perception, it has been found that
the starting point is closer to the ”positive” threshold than
to the ”negative” threshold in an evaluation task, even when
expectancy values for both responses were symmetric (Voss
et al. 2008). Diederich and Busemeyer (2006) tested three
models (1) the Bound Change Model that results in maximis-
ing payoffs through a change in the decision threshold pa-
rameter, (2) the Drift - rate change model suggests a bias in
drift rate owing to difference in payoffs, and (3) the Two-
stage processing model proposed by Diederich (1997) where
the decision task is separated as two evidence accumulation
processes that occur sequentially. The first stage involves evi-
dence accumulation process for the reward structure followed



by sensory evidence accumulation for the perceptual discrim-
ination task. In a recent study, Diederich (2016) manipulated
processing order of perceptual and payoff information and
found further evidence in support of their multi-stage pro-
cessing model. These prior studies establish a clear link for
integration of contextual bias of reward information with per-
ceptual decision making.

In the current study, we investigate how the temporal dy-
namics and structure of reward information bias perceptual
decisions. The reward structure consists of two types of infor-
mation - symmetric or asymmetric payoffs and is presented
during an orientation discrimination task. As in previous
studies, we presented reward information prior to the percep-
tual stimulus during the PreStim experiment. We conducted
a second experiment, PostStim where the reward information
was presented after the perceptual stimulus, but before requir-
ing a response. Using hierarchical drift diffusion modeling,
we tested separate models varying drift rate, decision thresh-
old, and bias parameter to explain the choice distributions
and response times. The models considered left and right re-
sponses as the two boundaries. Our results suggested that
reward modulates perceptual decision making for both sym-
metric and asymmetric rewards encoded by a bias in starting
point. Our results support the multistage model proposed by
Diederich (2016) integrating the reward information in per-
ceptual decisions.

Materials and Methods
Participants
PreStim experiment had 10 student volunteers (age range 19-
31 years) and the PostStim experiment had 11 student vol-
unteers (age range 19-31 years). All participants were right
handed and had normal or corrected to normal vision. All
participants gave written informed consent and were paid for
their participation.

Stimuli
Each stimulus was composed of Gabor patches which were
composed of a Gaussian envelope with a spatial frequency
of 0.01 cycles/pixel. Maximal Michelson contrast of grat-
ings was 0.9. Orientation of Gabor patches varied from -85
to 85 degrees with reference to vertical in step sizes of 5 de-
grees. A scrambled image was constructed by a combination
of left and right oriented images of 45 degrees and was used
for masking the gabor stimuli.

Design
The experiment was designed to test how reward information
influences perceptual decisions. We manipulated the timing
and the type of reward information presented that reflected
the outcome (payoff) of the perceptual decisions. Therefore,
reward Information presented was irrelevant for performance
of the perceptual task of detecting the orientation of gabor
stimuli. Two types of reward information were presented -
high reward magnitude (20 points) and low reward magnitude

Figure 1: Experimental settings:- A. Structure of a single trial
for both the PreStim and PostStim experiments. B. The four
experimental conditions indicating High(H) and Low (L) re-
wards associated with left and right responses. Symmetric
rewards are when both left and right responses would be as-
sociated with same reward. Asymmetric rewards conditions
differentially reward left and right responses. C. Sample per-
ceptual Gabor stimuli and mask stimulus. Participants were
required to indicate the orientation of the Gabor stimulus.



(10 points). The reward information was displayed as the text
written inside a square box and further coded in distinct col-
ors. Reward information for the left and right oriented stimuli
was presented on two sides of the screen centered vertically.
The outcome of the trial was the reward displayed on the side
that matched the orientation of the gabor stimulus. The re-
ward information was manipulated in two ways - Symmet-
ric and Asymmetric rewards. Symmetric conditions could be
high rewards (HH) or low rewards (LL) in which both left
and right correctly identified orientations were high or low
rewarding, respectively. The Asymmetric conditions further
was one of HL or LH conditions. In the HL condition, cor-
rect identification of left oriented gabor stimuli was rewarded
with higher (20) points and the correct identification of right
oriented gabor stimuli was rewarded with lower points (10).
The LH condition was similar to the HL condition with the
high and low reward contingencies being flipped.

Hierarchical drift diffusion modeling
We used an open source python toolbox for the hierarchical
Bayesian estimation of the drift- diffusion model parameters
(Wiecki et al., 2013). The toolbox uses Markov chain monte-
carlo (MCMC) inference algorithm to estimate the joint pos-
terior distributions of the different model parameters. We
used Gelman-Rubin statistic to assess the convergence of the
Markov chains by comparing the inter-chain and intra-chain
variance of 5 different runs of the same model, resulting in
± 0.01 MC error suggesting 15000 samples were sufficient
for convergence. For each model we generated 15000 poste-
rior samples and discarded the first 5000 samples using burn
to allow the MCMC chains to stabilize. The models were
response coded with correct responses for right orientation
terminating at the upper boundary and the left responses at
the lower decision boundary.

To examine which model parameters are affected by the
different type of reward structures and their timings we ran
three different models allowing the parameters v, a and z to
vary across experimental conditions, one at a time (model-
V, model-A, model-Z), a composite model all three param-
eters to simultaneously vary between conditions, and a base
model in which non of the parameters were allowed to vary
across conditions. We then compared these different models
using deviance information criterion (DIC) and posterior pre-
dictive checks (PPC) to find the best fitting model. DIC is a
measure of relative goodness of fit for hierarchical Bayesian
models (Speiegelhalter et al., 2012). DIC uses the trade-off
between model fit and model complexity to compare relative
goodness of the models. The best model is regarded as the
one with the lowest DIC values. Difference of greater than
10 between different model DIC values is regarded as signif-
icant (Dunovan et al., 2014; Zhang & Rowe, 2014). Since, it
is known that DIC is sometimes biased towards models with
higher complexity we also ran Posterior Predictive Checks on
group and subject data to assess the best fitting model (Mich-
mizos & Krebs, 2014). We generated 500 simulated datasets
from posterior predictive distributions of parameters corre-

sponding to the Composite model that was best-fit to the data
based on lowest DIC value. We then compared the observed
data distribution (empirical values from our experiment) with
the simulated data generated which were found to be within
95% credible interval. Model goodness of fit is assessed using
the mean standard error (MSE). Comparatively lower values
of MSE for a model suggest that the model is able to repro-
duce observed data pattern distributions with less variability
and more accuracy (Michmizos & Krebs, 2014).

The model parameters a, v and z thus estimated from the
best fit model and their posterior distributions were used for
statistical analysis. Our primary goal of the current research
was to identify whether or not the different parameters var-
ied across different conditions. We use posterior compari-
son for significance testing by calculating the proportion of
overlap between the probability density of the two condi-
tions being compared (Wiecki et al., 2013; Michmizos &
Krebs, 2014). We also performed classical significance tests
on mean parameter estimates as described further in Results
section (Zhang & Rowe, 2014).

Results
Drift diffusion models
The drift diffusion models we considered were computed sys-
tematically allowing one parameter to vary across conditions
keeping the other parameters invariant. Three models were
formed to explore the modulations of parameters V, A, and
Z: model-V, model-A, and model-Z, respectively. Model-V
assessed for different drift-rates of evidence accumulation for
left and right oriented perceptual stimuli across symmetric
and asymmetric reward conditions. Similarly, model-A and
model-Z assessed for decision threshold and starting point,
respectively, for any biases in these parameters dependent
on the reward structure. These three models were compared
to a basic model in which all parameters remained invariant
across conditions (BASE) using Deviance Information Crite-
rion DIC. It was observed that all three models had lower DIC
(model-V: 3426.32, model-A: 2950.80, model-Z: 3650.63)
than BASE model indicating better fit to the data (3707.42).
We ran a composite model that allowed for the above three
parameters to vary across the four reward conditions that was
found to be the best fit model (2782.35). The parameters es-
timated from the composite model were comparable to the
independent models and future analysis are based on the esti-
mates from the composite model. We ran a composite model
including non-decision time (t) as a parameter. Mean esti-
mates of parameter ’t’ were close to zero across reward con-
ditions and hence are not discussed further.

Group parameter estimates from model fits of individual
subjects were estimated using the hierarchical DDM. Group
parameter estimates were tested for differences within the
symmetric (HH and LL) and asymmetric (HL and LH) condi-
tions using two complementary approaches (Zhang & Rowe,
2014). We compared mean parameter estimates across partic-
ipants using a classical frequentist approach (i.e. t-test). We



Figure 2: Group posterior estimates (y-axis) of the hierarchical drift-diffusion model parameters for the PreStim (dark gray
bars) and PostStim (light gray bars). a.) Boundary separation parameter a b.) Drift-rate variability v and c.) Bias in starting
point z. Error bars show standard error of mean from the posterior estimate samples.

Figure 3: Posterior estimates (y-axis) of bias parameter z for
a.) PreStim Symmetric conditions b.) PreStim Asymmetric
conditions c.) PostStim Symmetric conditions d.) PostStim
Asymmetric conditions.

compared the group posterior distributions obtained for each
parameter using Bayesian approach.
Drift rate In PreStim experiment, we found bias towards
high reward for drift rate corresponding to symmetric con-
ditions (HH > LL, t(9) = 2.47, p < 0.05;PBayes = 0.84) but
not for asymmetric conditions (HL > LH, t(9) =−0.32, p =
0.38;PBayes = 0.46). The drift rate for asymmetric conditions
(HL, LH) was found to be intermediate to the symmetric high
(HH) and low (LL) conditions possibly reflecting expecta-
tion of reward (Figure 2). In PostStim experiment we found
no difference within the two symmetric (HH > LL, t(10) =
−0.17, p = 0.43;PBayes = 0.43) and the two asymmetric re-
ward (HL> LH, t(10) =−1.24, p= 0.12;PBayes = 0.27) con-
ditions. Overall drift rates for the PostStim experiment were
higher compared to the PreStim Experiment reflecting faster

response times (Figure 2). This could be due to the process
of evidence accumulation being initiated during the reward
information period prior to making a response.

Decision Threshold The decision threshold parameter
showed no significant difference for both PreStim (HH >
LL, t(9) = −1.05, p = 0.16;PBayes = 0.18) and (HL >
LH, t(9) = 1.37, p = 0.10;PBayes = 0.79) and PostStim
(HH > LL, t(10) = 0.13, p = 0.45; PBayes = 0.51 and
(HL > LH, t(10) = −1.38, p = 0.09;PBayes = 0.19) experi-
ments across conditions. This reflects that the boundary sep-
aration between left and right choices was not significantly
different for the two symmetric and asymmetric reward con-
ditions. The decision threshold for PostStim was observed to
be greater than PreStim experiment (Figure 2) possibly due
to the accumulated evidence not being allowed to reach the
boundary (i.e. more conservative) while waiting for the ”go”
signal before the response execution.

Bias The posterior estimates of the response bias param-
eter for the PreStim experiment were found to be different
in both the symmetric and asymmetric reward conditions.
High reward condition showed relatively higher bias as com-
pared to the low reward condition (HH > LL, t(9) = 2.64, p<
0.05;PBayes = 0.93). The asymmetric reward conditions
had significant bias towards the boundary with high reward
compared to the low reward (HL > LH, t(9) = −2.08, p <
0.05;PBayes = 0.03). These results reflect a prior bias for the
starting point of the drift process towards the boundary with
higher reward (Figure 6). For the PostStim experiment, the
bias parameter was significantly different in symmetric re-
ward conditions (HH > LL, t(10) = 2.49, p < 0.05;PBayes =
0.96), but was not significantly different for asymmetric re-
wards (HL > LH, t(10) = −0.68, p = 0.25;PBayes = 0.36).
These results reflect absence of response bias when reward
information is presented after the stimulus. On average, the
bias parameters were similar for PreStim and PostStim exper-
iments (Figure 3).



Discussion

Our results of bias parameter being dependent on re-
ward structure supports the two-stage model proposed by
Diederich and Busemeyer (2006). The timing of our exper-
iments allows us to explicitly test support towards the two-
stage model, specifically the mechanisms involved in integra-
tion of reward values during perceptual decisions. The model
proposes two accumulation processes. Payoffs influence the
starting point in the first stage by introducing a prior bias to-
wards the response with higher reward. Then in the second
stage, evidence accumulation is done for the perceptual stim-
ulus. By manipulating the relative timing of presentation of
reward information and the stimuli, we tested whether a dy-
namic bias can be induced by reward structure after the pro-
cess of evidence accumulation has already begun upon stim-
ulus presentation. Our results support the two-stage model as
we find a bias in starting point for asymmetric rewards when
the reward information is presented before but not after the
stimulus presentation (Figure 3). The differences in starting
point can therefore be attributed to the first stage of evidence
accumulation process initiated by reward structure. When the
reward information is presented after the stimulus, the two
stage model would correspond to the second stage alone, in
which evidence accumulation occurs for perceptual stimuli
(Diederich & Busemeyer, 2006). Hence, we do not observe
differences in starting point in PostStim experiment for asym-
metric rewards.

Bias parameter encodes both symmetric and asymmet-
ric rewards when reward information is presented before
the stimulus. Further, when the reward information is pre-
sented after the stimulus, the bias parameter no longer en-
codes starting-point bias, rather encodes a decision bias for
symmetric rewards. Similar proposal to distinguish between
response-execution bias from decision bias have been made
earlier (Voss et al., 2010). Reward conditions with high re-
wards (HH) have higher starting point relative to the reward
conditions with low rewards (LL). This could possibly be due
to greater motivation for perceptual discrimination in high re-
ward conditions. This motivation-induced decision bias in
decision needs to be interpreted differently from a response
bias. Response bias refers to the starting point of evidence
accumulation for the perceptual stimuli being biased towards
the boundary corresponding to higher reward. This response
bias was observed when the reward information was pre-
sented before, but not after the stimuli. The starting point
in an unbiased setting would be midway of the two decision
boundaries. Allowing the response bias to be estimated as a
free parameter, which in turn allows us to re-interpret the bias
parameter as a decision bias. Our results can be compared
to previous findings (Voss et al. 2008) of motivational influ-
ences for perceptual and judgmental bias in which starting
point parameter is biased towards the gain threshold. How-
ever, the current research does not explicitly dissociate the
specific interpretation of the bias parameter arising from a re-
sponse bias, or can be considered to be a decision bias.

The influence of reward structure on perceptual decisions
can be described by two kinds of bias. The starting point
reflects a prior bias, while the drift rate can encode for a dy-
namic bias (Dunovan et al., 2014). We found the drift rate en-
codes an average reward expectation for the PreStim Experi-
ment. Our computational models estimate a single drift rate
towards the two boundaries with complementary sign (v, -v).
Hence, the finding that higher drift rate for high compared
to low reward conditions (Figure 2) reflects a dynamic bias in
processing the perceptual stimuli, consistent with previous re-
search that claim that influence of payoffs persists over time,
rather than only changing the starting-point (Dunovan et al.,
2014; Voss et al., 2008). Together with other findings that do
not find encoding of a dynamic bias in drift rate (e.g.: Mulder
et al., 2012), and our manipulation of processing order, our
results suggest that the reward information is encoded differ-
ently by prior bias in starting parameter and average reward
expectation by dynamic bias i.e. drift rate parameter.

An intriguing result is that when the parameters from Post-
Stim Experiment are compared to the PreStim experiment, we
find higher drift rate and decision threshold (Figure 2). These
could reflect the fact that the evidence accumulation process
in support of the perceptual decision had already taken place
before the reward information, following which the cue for
indicating the response is given. Unlike previous studies that
investigated influence of payoffs on subsequently presented
perceptual stimuli, our study design separates the timing of
choice execution from the perceptual decision process. Thus,
we can dissociate whether the reward information influences
the choice execution or the evidence accumulation mecha-
nisms of the decision process. The results supports the notion
that when stimulus is presented prior to the payoffs, evidence
accumulation processes result in faster and more accurate re-
sponses, i.e. higher drift rate and more conservative decision
thresholds.

Our study contributes towards understanding the mecha-
nisms of integration of reward (value- based) information
with perceptual decisions. Previous research by Rorie and
colleagues (Rorie et al., 2010) demonstrated that perceptual
decisions by monkeys being influenced by asymmetric but
not symmetric rewards. Using computational model (DDM)
analysis in the current research, we are able to identify la-
tent parameters that correspond to influence of payoffs in
perceptual decision making. The reward information per-
tains to value-based computations, but is unrelated to perfor-
mance of the perceptual task. The reward information indi-
cates the payoff (outcome) arising after perceptual decision.
Our results demonstrated that parameters of the drift diffusion
model, a model of perceptual decisions are influenced by the
reward structure. This finding, though not completely novel,
is further corroborated with manipulation of processing order
(i.e. timing) to study the mechanisms of integration of re-
ward values with perceptual decisions. While the behavioral
results might simply suggest that it is crucial for reward in-
formation to be presented before, but not after the perceptual



stimulus, the computational modeling approach has been use-
ful to understand the specific parameters that are encoded by
the timing and structure of reward information on perceptual
decisions.

In sum, our results show that symmetric and asymmetric
rewards bias the starting point towards stimuli oriented in the
direction of higher rewards, and also reflect the average re-
ward expectation by the drift rate. These results can be inter-
preted as integration of rewards with perceptual decisions is
mediated by modulating motivation for evidence accumula-
tion over time and prior bias in starting point.
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