Capturing Dynamic Performance in a Cognitive Model:
Estimating ACT-R Memory Parameters with the Linear Ballistic Accumulator

Maarten van der Velde' (m.a.van.der.velde @rug.nl), Florian Sense' (f.sense@rug.nl),
Jelmer Borst? (j.p.borst@rug.nl), & Hedderik van Rijn' (d.h.van.rijn@rug.nl)
'Dept. of Experimental Psychology & Behavioural and Cognitive Neuroscience, University of Groningen, the Netherlands
ZBernoulli Institute, Dept. of Artificial Intelligence, University of Groningen, the Netherlands

Abstract

The parameters governing our behaviour are in constant flux.
Accurately capturing these dynamics in cognitive models poses
a challenge to modellers. Here, we demonstrate a mapping
of ACT-R’s declarative memory onto the linear ballistic
accumulator, a mathematical model describing a competition
between evidence accumulation processes. We show that this
mapping provides a method for inferring individual ACT-R
parameters without requiring the modeller to build and fit an
entire ACT-R model. We conduct a parameter recovery study
to confirm that the LBA can recover ACT-R parameters from
simulated data. Then, as a proof of concept, we use the LBA
to estimate ACT-R parameters from an empirical data set. The
resulting parameter estimates provide a cognitively meaningful
explanation for observed differences in behaviour over time
and between individuals.

Keywords: Memory; dynamic performance; individual
differences; ACT-R; linear ballistic accumulator.

Introduction

Cognitive architectures such as ACT-R (Anderson, 2007)
provide a framework for developing models of cognition.
A challenge commonly faced by modellers is to accurately
capture changes in cognitive performance over time, as well
as individual differences between people, in the parameters
of such models. Current approaches tend to rely on compu-
tationally expensive and statistically sub-optimal methods like
parameter sweeps to identify the best-fitting parameter values.
Mathematical modelling methods can serve as a more efficient
and rigorous alternative (Fisher, Houpt & Gunzelmann, 2020).
In this paper, we contribute to previous efforts to connect
cognitive architectures and mathematical modelling by using
the linear ballistic accumulator (Brown & Heathcote, 2008)
to infer ACT-R parameters governing memory retrieval.

Retrieval of information from memory can be viewed as
a process of evidence accumulation, in which internal and
external cues contribute evidence to candidates in memory
that are competing for retrieval (Ratcliff, 1978; Anderson,
2007). The first candidate to accumulate enough evidence to
cross a boundary wins the race and is retrieved. The dynamics
of this process are determined by the amount of evidence each
candidate needs to accumulate to cross the boundary, and the
rate at which this evidence accumulates.

While such evidence accumulation models have seen most
use in the domain of decision making (e.g., Ratcliff, Smith,
Brown & McKoon, 2016; Smith & Ratcliff, 2004; Usher &
McClelland, 2001; Brown & Heathcote, 2008), there have

been some applications in the domain of memory retrieval.
Van Maanen et al. showed that a leaky competing accumulator
model could explain performance in picture-word interference
tasks (van Maanen & van Rijn, 2007; van Maanen, van Rijn
& Taatgen, 2012). In this model, memory chunks accumulate
activation by receiving positive and negative spreading
activation from other chunks. More recently, Nicenboim and
Vasishth (2018) and Fisher et al. (2020) implemented the
ACT-R model of declarative memory in a lognormal race
model (LNR; Rouder, Province, Morey, Gomez & Heathcote,
2015), in which the rate at which evidence for a chunk
accumulates depends on its activation.

Here, we extend this formalisation of ACT-R memory re-
trieval as an LNR to a more flexible linear ballistic accumulator
model (LBA; Brown & Heathcote, 2008). Unlike the LNR,
the LBA is able to estimate the rate of accumulation separately
from the distance accumulators need to travel to reach the
decision boundary. This is useful, because both accumulation
rate and distance to the boundary have natural counterparts in
ACT-R: the accumulation rate corresponds to the activation of
the chunk, while the distance can be linked to the latency factor
(F) parameter. As such, the LBA provides a cognitively mean-
ingful interpretation of ACT-R’s F' parameter as a measure of
response caution—the larger the distance, the more evidence
needs to collected before a response is made—and offers a
method by which it can be estimated from response data.

In the following sections, we first describe the formal
link between ACT-R and the LBA. We then demonstrate
how the LBA can be used to recover ACT-R parameters in
a simulation study. Finally, we fitted the LBA to an empirical
data set, showing how it can offer insight in the mechanisms
underlying changes in retrieval performance over time.

Casting ACT-R’s Declarative
Memory as a Linear Ballistic Accumulator

The linear ballistic accumulator model (Brown & Heathcote,
2008) proposes that response behaviour can be explained
through a race between accumulators. Each accumulator has a
certain amount of starting evidence & that increments linearly
at a drift rate v until it reaches a decision boundary d. The first
accumulator to reach the boundary determines the response
choice and latency. A constant non-decision time 7y is also
added, representing the time required for other components of
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Figure 1: Casting ACT-R memory retrieval as a linear ballistic accumulator. A: ACT-R retrieval with two competing chunks
visualised as an LBA, with marginal RT distributions shown at the top. See the main text for details. B: RT distributions of
an ACT-R model (histogram) and the equivalent LBA model (orange curve). Error responses are shown as negative RTs.

the response process, such as perceptual and motor functions.
There are two sources of variability between trials: the
starting point k ~ U(0,A), and drift rate v; ~ N(u;,0;) for
each response option i. The LBA assumes a constant rate of
evidence accumulation over a trial, so the time required for an
accumulator to reach its boundary on a trial j is the distance
d — k; divided by the drift rate, plus non-decision time:

d—k;
Vj

RT; = +1o (1)

Across trials, the average starting point is A/2 and the
average drift rate is y;, so the expected finishing time for an
accumulator is:

E(RT) =

d_i‘é/z +1 )

Hi

We can map the LBA parameters onto ACT-R memory
parameters. ACT-R models declarative memory as a set of
symbolic chunks, each with a sub-symbolic activation that de-
cays over time and is subject to noise (Anderson, 2007). The
time required to retrieve a chunk depends on its activation: the
more active the chunk, the faster its retrieval will be, but like
the LBA, the time course of memory retrieval is deterministic
once the starting values are known. If multiple chunks match
a retrieval request, the chunk with the highest activation—and
therefore the lowest retrieval time—at the time of the request
wins. A full response also involves non-memory operations,
such as stimulus encoding and response execution, which can
be captured by adding a term ¢, to the retrieval time.

ACT-R defines the full time required to retrieve a chunk i
with an activation A and respond accordingly by the following
equation, in which F is the latency factor, a positive scaling

pararneter1 :
RT; =F xe i +t, 3)

We can rewrite this equation in a similar form to (2):
F
RTi - E +ter (4)

The mapping between ACT-R’s parameters (left) and those
of the LBA (right) then becomes straightforward:

F=d—A/2 5
A,’ = ln(,u,-) (6)
tor = 1o (7N

With this mapping, ACT-R’s latency factor (F) is equivalent
to the average distance between starting point and boundary in
the accumulator model, often conceptualised as the response
caution: given a constant activation, a higher value of F' means
that more evidence is required to complete a retrieval. The
mapping relates the activation A; of a chunk to its drift rate y;,
meaning that a highly activated chunk can be seen as accumu-
lating evidence more rapidly than one with a lower activation.
Put differently, the drift rate y; is equivalent to e, the odds
of needing the chunk. Finally, there is a direct equivalency
between the non-retrieval time (z., and #y) in both models.
Figure 1A visualises the ACT-R retrieval process in the
style of an accumulator model. It shows two chunks, ¢ (blue)
and f (red), competing for retrieval over multiple trials.
In each trial, both accumulators race to cover the vertical
distance F' to the boundary. The winner gets retrieved in
the time it takes to reach the boundary. There is normally
distributed trial-to-trial variability, or noise, in the activation
of the chunks, and therefore in the rate at which each chunk

! An additional parameter f may be used to scale the activation:

RT = F xe~/*Ai 41, This parameter is typically held constant at
1, and we make the same simplification here as it has no bearing on
the outcomes.



accumulates evidence: A; ~ N(u;,0;). As such, drift rates
follow a lognormal distribution. The resulting RT distributions
can be shown to be lognormal too:

RT; ~ LN (uj + In(F), 6;) + tor (8)

Figure 1B demonstrates that ACT-R and the LBA gen-
erate identical response time distributions for a given
set of parameters when using the mapping in equations
(5)—(7). Interactive versions of these figures, in which the
model parameters can be freely adjusted, are available at
https://cogmod.shinyapps.io/actr-1lba/.

Simulation: Recovering ACT-R Parameters

Given this mapping, it should be possible to identify ACT-R
memory parameters from response data (RT and choice) using
existing methods for fitting the LBA. Therefore, we performed
a simulation study with two goals: to investigate whether the
LBA can recover ACT-R memory parameters from a typical
participant sample completing a reasonable number of trials,
and to ensure that parameter recovery works regardless of
specific parameter values. The code required to reproduce this
simulation study is available at https://osf.io/wpvij7/.

Data

ACT-R was used to simulate 25 distinct model participants,
each performing a sequence of retrieval trials. Retrieval was
modelled as a competition between two chunks, ¢ and f,
representing a correct and incorrect response to a retrieval cue,
respectively. For each model participant, ACT-R parameters
were sampled randomly from plausible distributions, listed
in Table 1. To ensure that parameters recovered by the LBA
would all be on the same scale, we fixed the standard deviation
of the activation of the correct response (G.) to 1, both in
ACT-R and in the LBA?.

We repeated the process with differently sized data sets,
ranging from 25 to 50,000 trials per participant, to gauge the
effect of data set size on recovery accuracy.

Model fitting

The LBA was fitted separately to each model participant’s re-
sponses using the nlminb optimiser in R (version 3.6.3; R Core
Team, 2020). We ran this optimiser 250 times with randomly
generated starting values, and kept only the parameter values
that yielded the highest summed log-likelihood across all runs.
The dLBA density function from the rtdists package (version
0.11-2; Singmann, Brown, Gretton & Heathcote, 2020) served
as the objective function. For each model participant, we
derived individual ACT-R parameters from the best-fitting
LBA using the mapping in equations (5)—(7).

Results
The results of the parameter recovery process are shown in
Figure 2. As Figure 2A indicates, original parameter values

2See Brown and Heathcote (2008) for alternative solutions to the
scaling problem in accumulator models.

Table 1: ACT-R parameters used in the simulation study.

Description Distribution
Ue  Mean activation of correct answer e ~N_(=.5,.5)
ur  Mean activation of incorrect answer  uy ~ N_(—1.5,.5)
o, SD of activation of correct answer c.=1
67  SD of activation of incorrect answer 67 ~ N, (1.5,.5)
F  Latency factor F ~N,(1,.5)

ter ~ N4 (.75,.5)
Note: N4 and N_ are truncated normal distributions, limited to
positive and negative values, respectively.

ter  Non-retrieval time

could already be recovered with reasonable accuracy from
a data set with 100 trials per participant. Some parameters
(e.g., oy and t,,) appear easier to recover than others, but even
the larger errors do not appear to show systematic over- or
underestimation.

Figure 2B shows how recovery accuracy changed as a
function of data set size. Recovery accuracy, measured as the
absolute error of recovered parameter values relative to the
original values, is shown separately per parameter (coloured
points) as well as across parameters (black points). Unsurpris-
ingly, recovery accuracy improved when there were more trials
constraining the fit, though the current fitting method reached
a plateau once there were at least 250 trials per participant.

Example Application: Modelling Changing
Retrieval Performance in Empirical Data

To demonstrate how the method may be used to explain
dynamic memory performance in terms of cognitively
meaningful constructs, we fitted the LBA to empirical data
from a multi-session retrieval practice task.

Data

We use data from a retrieval practice task completed by recruits
of the Commando Corps, Royal Netherlands Army (Korps
Commandotroepen), in which participants learned the names
of ficticious safehouses on a map. On first presentation, a safe-
house was shown with its name, while subsequent repetitions
required participants to select the correct name themselves
from a set of four answer options. Participants completed three
8-minute sessions over the course of a week. They studied a
different map in every session, and maps were counterbalanced
between participants. The task was presented within an adapt-
ive learning system that schedules each item to be repeated
whenever its activation is expected to hit a threshold (van Rijn,
van Maanen & van Woudenberg, 2009; van der Velde, Sense,
Borst & van Rijn, 2021). As such, we could expect the activ-
ation of the chunks being retrieved to be fairly stable across
trials, despite the novelty of the materials. Response accuracy
and response time were recorded in every trial.

Session 1 was scheduled on the first day of the week,
while the second and third sessions took place several days
later and were scheduled immediately before and after a
high-intensity loaded speed march of about 40 minutes. We
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Figure 2: Recovery of ACT-R parameters using the LBA. A: Original versus recovered parameter values for a data set with
100 trials per participant. Parameter descriptions are given in Table 1. B: Recovery accuracy (absolute error) for data sets with
different numbers of trials per participant. Light coloured points show individual errors, dark coloured points show the mean
error per parameter, and black points show the mean error across parameters.

expected performance to change for two reasons: increased
familiarity with the task might lead to better performance
after the first session, and the physical exertion of the speed
march might affect performance in the third session.

For the analysis, we removed the first trial for each item
(in which the answer was shown on screen), trials in which
participants did not respond within 30 s, and trials in which the
recorded response time was lower than 300 ms. Since the simu-
lation study showed that recovery was worse in small data sets,
participants had to have completed at least 50 practice trials
per session to be included. In addition, we required that parti-
cipants made at least 5 error responses per session, to give the
model a chance of fitting the error response distribution. These
criteria struck a balance between ensuring a sufficient number
of observations per participant and including as many parti-
cipants as possible. They yielded a data set with 12,568 usable
observations (out of 29,441) from 50 (out of 127) participants.

Model fitting

We fitted the LBA separately to each of the three retrieval
practice sessions for each participant. The fitting procedure
was the same as in the simulation study. The analysis code
is available athttps://osf.io/wpvi7/.

Results

Figure 3 shows participants’ performance on the task over the
three sessions. Despite the task difficulty being the same in
all three sessions, performance improved in two ways. Firstly,
response accuracy increased and then plateaued: a logistic

mixed-effects model with a main effect of session and random
intercepts for participants showed that accuracy increased
from the first to the second session (z = —4.680, p < .001), but
found no evidence for a change from the second to the third ses-
sion (z = —0.253, p = .8). Secondly, responses became faster:
a generalised mixed-effects model with a Gamma link func-
tion and with a main effect of session and random intercepts
for participants found a decrease in response times on correct
trials from session 1 to session 2 (t = 2.250, p = .0244), and
from session 2 to session 3 (t = —7.182, p < .001).
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Figure 3: Performance on the retrieval practice task by
participant. A: percentage correct responses per session. B:
median response time on correct responses per session.
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Figure 4: Best fits of the LBA to the response data of four participants over three retrieval practice sessions. Error responses are
shown as negative RTs. The number of available trials and the response accuracy are shown in the top left corner of each plot.
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Figure 5: ACT-R memory parameters inferred from the data. Coloured points show individual estimates; large black points
indicate the median value across participants. Parameter descriptions are given in Table 1. Note: Y-axes differ between plots.

Figure 4 shows the best fit of the LBA to the response time
distributions of four randomly selected participants. These
examples suggest that the model captured the shape of the data
quite well, although the low number of trials and high response
accuracy did make it challenging to fit the error responses.

The inferred ACT-R parameters are shown in Figure 5.
There is substantial variation in the parameter values for
individual participants, but they are nonetheless clustered
quite neatly around the sample averages. As one would expect,
the activation of the correct answer (u.) tended to exceed the
activation of the incorrect answer (uy), reflecting participants’

better-than-chance performance. To explore possible changes
in parameter values over time, we fitted separate linear mixed-
effects models to each parameter, testing whether there was a
session effect on the parameter value, with random intercepts
for participants. These models suggested that the parameters
generally remained fairly constant between sessions.

3 Aside from the reported effects, there was some evidence for a
decrease in the F' parameter from session 2 to session 3, though the
corresponding model failed to converge. More generally, these results
should be interpreted with a degree of caution, as repeated LBA fits
yield slightly different parameter estimates due to random variation.



However, the activation of the correct answer (u.) did appear
to increase from session 1 to session 2 (#(98) = —2.050,
p = .043). Furthermore, since the outcome of the retrieval
depends on which of the two candidate chunks has the highest
activation, rather than on the individual activation of either
chunk, we also fitted a linear mixed-effects model with the
difference in activation u. — uy as the dependent variable.
This model similarly suggested that the activation difference
was higher in session 2 than in session 1 (¢(98) = —3.133,
p = .00228), indicating that, on average, participants’ chances
of retrieving the correct answer improved. Finally, the non-
retrieval time 7, showed a significant decrease from session
2 to session 3 in particular (7(98) = —2.351, p = .0207),
reflecting a speed-up in perceptual and/or motor functions.

In conclusion, exploratory analysis of the inferred ACT-R
parameter estimates suggests that the observed increase in
accuracy and response speed from session 1 to session 2 could
be the result of a higher mean activation of the correct answer
and a greater difference in activation between the correct
and incorrect answer, while the drop in response times from
session 2 to session 3 may be attributable to a decrease in
non-retrieval time z,,.

Discussion

We have demonstrated a mapping of the parameters of
the linear ballistic accumulator onto parameters governing
declarative memory retrieval in ACT-R. By fitting the LBA to
retrieval data and mapping the inferred LBA parameters onto
ACT-R memory parameters, we can arrive at a mechanistic ex-
planation for observed performance changes, without needing
to build and fit an ACT-R model directly. The resulting ACT-R
parameters—activation of chunks, duration of non-retrieval
processes, and latency factor—have cognitively meaningful
interpretations within the wider context of the architecture,
enhancing the interpretation that could be given by the LBA
alone. The mapping extends upon an earlier mapping between
the lognormal race model and ACT-R (Nicenboim & Vasishth,
2018), by adding the ability to fit the latency factor. From a
theoretical standpoint, ACT-R benefits from this connection
to the LBA too: the latency factor is given a more concrete
meaning, namely as a measure of response caution.

The method described here allows one to disentangle
several factors contributing to memory retrieval performance.
In many settings, inside and outside the laboratory, the
parameters governing our behaviour are inevitably in flux: we
learn and forget, we become tired or impatient, our goals and
desires change, we let our minds wander. There is clear ex-
planatory power in being able to capture such changes within
a mathematical model. Linking the terms of that mathematical
model to constructs defined in a cognitive architecture can
further aid the interpretation of observed behaviour.

An important limitation of this method is that it assumes
that the distribution of drift rates—and therefore the activation
of memory chunks—remains constant across a block of trials.
This assumption is most likely to be met when information

is so ingrained that there is no appreciable decay in its
activation (e.g., sentence processing; Nicenboim & Vasishth,
2018), or when retrieval attempts are timed such that they
occur whenever a particular activation is reached (e.g.,
adaptive scheduling, as used in our empirical example).

We used a relatively simple procedure for fitting the
LBA. Extending this approach to a hierarchical Bayesian
LBA may be beneficial (e.g., Nicenboim, 2018). It would
enable modelling multiple participants and sessions simul-
taneously, improving the ability to estimate and compare
participant-level and group-level effects, while also capturing
the uncertainty in those estimates (Fisher et al., 2020). This
could be particularly valuable in smaller data sets, where our
current approach still struggles.

In summary, we have demonstrated how a mapping between
the linear ballistic accumulator and the ACT-R cognitive
architecture can aid in capturing dynamic performance in a
cognitive model, thereby contributing to growing efforts to
integrate formal modelling approaches.
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