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Abstract

Models based on classical probability theory have difficulty
accounting for order effects, which occur when the order of
question presentation affects response probabilities. Recently,
quantum models have garnered support as an account of order
effects. In particular, the pattern of order effects is consistent
with a critical property of the quantum model called the QQ
equality. We investigate whether the ACT-R cognitive archi-
tecture can produce order effects and satisfy the QQ equality
based on memory retrieval mechanisms. In the ACT-R model,
the answer to the first question creates a new context through
which spreading activation influences retrieval probabilities for
the second answer. Our analysis shows that spreading acti-
vation can produce order effects and satisfy the QQ equality,
depending on the composition of declarative memory. Across
a wide range of conditions, violations of the QQ equality are
typically small, but moderate to large in a smaller set of cases.
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Introduction
An order effect occurs when a response depends on the order
in which stimuli are presented. In cognitive science, order
effects are commonly treated as a nuisance factor in exper-
imental design and data analysis. Typically, stimulus order
is counter-balanced, marginalized out, and subsequently ig-
nored. Recently, however, there has been growing interest in
developing theoretical accounts of order effects (Trueblood
& Busemeyer, 2011; Jones, Curran, Mozer, & Wilder, 2013;
Wang, Solloway, Shiffrin, & Busemeyer, 2014). What makes
order effects interesting is that they are difficult to account
for using models based explicitly or implicitly on the founda-
tion of classical probability theory. In particular, order effects
violate the commutative law of classical probability theory
according to which Pr(A∧B) = Pr(B∧A). Furthermore, or-
der effects are interesting because they highlight the context-
dependent nature of cognition.

One example of order effects comes from a national poll
asking respondents about the trustworthiness of former Pres-
ident Clinton and former Vice President Gore in two sep-
arate questions. One set of respondents judged “yes” or

“no” whether Clinton is generally trustworthy followed by
the same judgment about Gore, whereas the other set of re-
spondents made the same judgments in the opposite order. In
Table 1, the results for both question orders are transcribed
from (Wang et al., 2014). The third sub-table shows the or-
der effect, calculated as the difference between corresponding
cells of the Gore-Clinton table and the Clinton-Gore table. A
clear violation of the commutative law can be seen, as the
values differ from zero.

During the 20th century, quantum probability theory was
developed to account for order-dependence of measurement
in physics. More recently, it has been adopted in cogni-
tive science in response to similar violations of classical
probability theory found in human cognition (Busemeyer,
Pothos, Franco, & Trueblood, 2011; Atmanspacher, Römer,
& Walach, 2002). Quantum probability theory is based on an
alternative set of axioms which violate the commutative law
under specific conditions. Several lines of research provide
strong support for quantum probability account of order ef-
fects. For example, a quantum model provided a superior ac-
count of sequential belief updating compared to several com-
peting models (Trueblood & Busemeyer, 2011). Perhaps the
most compelling line of evidence is that the results from a
large corpus of surveys and several experiments were con-
sistent with a critical property of quantum probability the-
ory called the Quantum Question (QQ) equality (Wang et al.,
2014). The QQ equality is a structural property of the quan-
tum model that constrains the possible patterns of order ef-
fects.

Very few alternative accounts of order effects have been
proposed to date—perhaps reflecting the inherent challenge
of the task. From a purely mathematical perspective, a
Bayesian updating model can produce order effects with
the inclusion of order-dependent events (Trueblood & Buse-
meyer, 2011). However, such a model is problematic be-
cause it is saturated, and thus merely re-describes any pattern
of data without providing a principled way to assign values



to its numerous terms. Recently, a multinomial processing
tree called the repeat-choice model was developed to account
for order effects and the QQ equality (Kellen, Singmann, &
Batchelder, 2018). Multinomial processing trees use a tree-
like structure of processing stages to describe choice behav-
ior. According to the repeat-choice model, there is a probabil-
ity distribution of over preference states, such as the prefer-
ence to respond yes to both questions. With some probability,
the responses will be made based only on the preference state.
However, additional information will be considered with the
complementary probability. If additional information is con-
sidered, there is some probability that the second response is
the same as the first (assimilation effect) and the complimen-
tary probability that the second response will differ from the
first (contrast effect). Some variations of the repeat-choice
model provided a similar fit to the data as the quantum model,
thus demonstrating that model based on classical probability
theory can account for the data.

One question that remains is whether a cognitive architec-
ture can account for order effects. A cognitive architecture is
a framework for simulating and developing unified theories of
cognition (Newell, 1990). The primary goal of cognitive ar-
chitectures is to provide a broad account of human cognition,
spanning areas such as memory, multi-tasking, and percep-
tion among others. For this reason, order effects provide a
new and important benchmark for testing cognitive architec-
tures. Our goal in the present paper is to develop a model
of order effects based on the ACT-R cognitive architecture
(Anderson et al., 2004) and outline its predictions. Order
effects present an interesting challenge for ACT-R because,
unlike the quantum model—which was developed in physics
to account for order dependence in measurement—it was not
developed specifically to account for order effects. Instead,
order effects must emerge from existing cognitive processes
and mechanisms postulated by ACT-R. In what follows, we
will demonstrate that ACT-R can produce order effects us-
ing memory retrieval mechanisms. In some cases, the model
satisfies the QQ equality, while in other cases it violates the
QQ-equality to varying degrees. The pattern of predictions
depends critically upon the composition of declarative mem-
ory.

Overview
The remainder of the paper is organized as follows. We will
begin with a brief overview of the quantum model and intro-
duce the QQ equality. Next, we will provide a formal descrip-
tion of the ACT-R model of order effects. In the following
section, we will describe its properties in terms of order ef-
fects and the QQ equality. Finally, we will discuss directions
for future research.

Quantum Model
Quantum probability theory is based on an alternative set of
axioms which allows non-commutative behavior (Busemeyer
et al., 2011). Unlike classical probability theory in which
events are subsets of a universal set, quantum probability

Table 1: Joint probability table for Clinton-Gore order, the
Gore-Clinton order, and the order effect. Column and row
labels C and G correspond to Clinton and Gore. Subscripts y
and n correspond to yes and no.

Clinton-Gore Gore-Clinton

Gy Gn Gy Gn
Cy 0.4899 0.0447 Cy 0.5625 0.0255
Cn 0.1767 0.2886 Cn 0.1991 0.213

Order Effect

Gy Gn
Cy −0.0726 0.0192
Cn −0.0224 0.0756

theory is based on a geometric representation of uncertainty.
Events are sub-spaces within an n dimensional vector space
called a Hilbert space. A cognitive state represented as a state
vector which is a linear combination of basis vectors that de-
fine the Hilbert space. In the quantum model, probabilities
are formed by projecting the state vector onto a target sub-
space and computing the squared magnitude of the projection.
A key distinction between classical and quantum probability
theory is the concept of compatibility. Compatible events can
be evaluated with respect to the same basis vectors, in which
case quantum and classical probability theory make the same
predictions. By contrast, incompatible events cannot be eval-
uated with respect to the same basis vectors. Instead, the basis
vectors are rotated to create new set of basis vectors for the in-
compatible events. In other words, incompatible events can-
not be evaluated simultaneously. Importantly, rotation leads
to non-commutative behavior and other violations of classi-
cal probability theory. At a psychological level, rotation of
the basis vectors represents a change of perspective.

Although rotation of the vector space provides the quan-
tum model with the flexibility to produce order effects, the
range of behavior is highly constrained by a critical prop-
erty known as the QQ equality (Wang et al., 2014). The QQ
equality imposes a symmetrical relationship on the order ef-
fects in which both the diagonal elements and off-diagonal
elements of the difference table must sum to zero. For ex-
ample, in the third sub-table of Table 1, the diagonal el-
ements −.0726 + .0756 ≈ 0 and the off-diagonal elements
−.0224+ .0192 ≈ 0. Importantly, the QQ equality holds re-
gardless of the initial state vector, the degree of rotation of
the basis vectors, and is preserved in aggregated data (Wang
et al., 2014). Formally, the QQ equality is defined by the fol-
lowing two statements:

q1 = Pr(Yc = yes∧Yg = yes)−Pr(Yg = yes∧Yc = yes)+
Pr(Yc = no∧Yg = no)−Pr(Yg = no∧Yc = no) = 0

(1)



q2 = Pr(Yc = yes∧Yg = no)−Pr(Yg = no∧Yc = yes)+
Pr(Yc = no∧Yg = yes)−Pr(Yg = yes∧Yc = no) = 0

(2)

where Yp represents the response to question about person p∈
{c,g}, and c denotes Clinton and g denotes Gore. Through-
out, we will designate Yp as a random variable and yp as a
specific realization of Yp.

ACT-R Model
We developed a memory-based model of order effects within
the ACT-R cognitive architecture (Anderson et al., 2004).
ACT-R operates as a production system and is organized as
a set of specialized processing modules which includes mem-
ory, visual/auditory perception and motor execution. Each
module can process only one request at a given time and con-
tains a buffer that holds a maximum of one chunk of declar-
ative knowledge. For our present purposes, we will focus
primarily on the declarative memory module. Although we
will frame the model in terms of the Clinton-Gore example
above, the model is applicable to many other cases in which
responses are based on memory.

The model assumes that declarative memory contains
chunks which represent true or false statements made by Clin-
ton or Gore. When a question about a person is posed, a
retrieval request is issued to declarative memory where the
most active chunk about the target person is returned. The
answer to the question is yes if the chunk contains a true
statement. By contrast, the answer to the question is no if
the retrieved chunk contains a false statement. During the re-
trieval of the first answer, there is no influence of contextual
information. However, the answer to the first question creates
a new context for answering the second question. In partic-
ular, the chunk for the first answer is stored in the imaginal
buffer where activation spreads to chunks in declarative mem-
ory that share the same truth value, resulting in order effects
under specific conditions.

Declarative Memory
Within ACT-R, a chunk is a basic unit of declarative knowl-
edge given by a collection of slot-value pairs. For example
a memory chunk could contain the slot ‘name’ with value
‘Sigma’ and the slot ‘animal-type’ with value ‘dog‘. For the
remainder of the paper, we use the following notation for
chunks: We use cm to indicate a chunk in memory, where
m is an index that ranges over all of the chunks in memory.
We write the relationship between the slot s and value v for
chunk m as cm(s) = v. We will also need to reference the slots
in the chunk for which a value is defined, which we denote
Qm. Note that all chunks do not necessarily (and generally do
not) have the same slots, so to maintain the generality of the
notation, we assume cm(s) = /0 for any s that is not a slot in
chunk cm i.e., for all s /∈ Qm,cm(s) = /0.

Like chunks, retrieval requests in the ACT-R architecture
are collections of slot-value pairs, which we designate using
set notation, r = {(si,vi)}i∈I .

Knowledge Representation
Each chunk cm in declarative memory contains a name slot, a
statement slot, and a truth slot: Q = {name,statement, truth}.
The name slot contains the name of the person, the statement
slot contains the content of the statement and the truth slot
contains the truth value of the statement.

Activation
The probability of retrieving a chunk increases monotonically
with its activation value. Activation for chunk m is the sum
of the following three components:

am = β+Sm + εm (3)

where β is the base level constant, which scales activation up
or down, Sm is spreading activation, and εm ∼Normal(0,σ) is
normally distributed noise. Spreading activation reflects the
influence of context whereby active information in the archi-
tecture facilitates the retrieval of chunks containing the same
values. Spreading activation has been used to explain the fan
effect whereby concepts associated with more facts require
more time to retrieve (Anderson, 1974). In the model, acti-
vation can only spread from the truth value of the chunk in
the imaginal buffer to chunks in declarative memory. This
follows from the simplifying assumption that statements are
unique, and thus do not contribute to spreading activation.
Given these simplifications, we can express spreading activa-
tion as:

Sm(x) =
γ+ log

( 1
1+x

)
|Q|

where x is the number of chunks in declarative memory with
a same truth value as cr,imaginal(truth), γ is the maximum as-
sociation parameter, and |Q| is the number of slots in each
chunk, which is 3 in this case.

Retrieval Process
After the first question is encoded, a retrieval request r =
{(name,v1)} is submitted to declarative memory where a set
of matching chunks R = {cm ∈ M : (name,cm(name)) ∈ r}
compete for retrieval and the chunk with maximum activa-
tion cr ∈ R is retrieved. During the retrieval of the first an-
swer, there is no influence of spreading activation because the
imaginal buffer is empty. The retrieved chunk is placed into
the imaginal buffer and becomes cr,imaginal = cr where it will
influence memory retrieval for the second answer through
spreading activation.

Response Mapping
The mapping between the truth value of the retrieved chunk
and the response y for person p is given by:

yp =

{
yes cr(truth) = true
no cr(truth) = false



Retrieval Probability
The retrieval probability is found by comparing the response
set Wx ⊂ R to the retrieval set R. The response set is the sub-
set of chunks in the retrieval set that map to the observed re-
sponse yp. The response set for yes and no are defined as:

Wyes = {cm ∈ R : cm(truth) = true}

Wno = {cm ∈ R : cm(truth) = false}

The probability of responding x on the first question is given
by the following softmax function:

Pr(Yp = x) =
∑

cm∈Wx

e
µm
σ

∑
ck∈R

e
µk
σ

=

e
β

σ ∑
cm∈Wx

e0

e
β

σ ∑
ck∈R

e0
=
|Wx|
|R|

where µ is mean activation, σ = s
√

2 controls activation noise
and s is the logistic scale parameter. The expression sim-
plifies to the ratio of chunks leading to response x over all
chunks that match the retrieval request because eβ/σ can be
factored out of each term. We can rewrite the expression in
terms of the number of true and false statements for Clinton
and Gore. Let T = Tc+Tg be the total number of chunks con-
taining a true statement and F = Fc +Fg be the total number
of chunks containing a false statement, where subscript c rep-
resents Clinton and subscript g represents Gore. For example,
the probability of responding yes to Clinton on the first ques-
tion is defined as

Pr(Yc = yes) =
Tc

Tc +Fc

which is simply the ratio true statements made by Clinton
compared to all statements made by Clinton. The expression
for the second question includes a term for spreading acti-
vation, which can be simplified as: z

( 1
x+1

)h
where h = 1

|Q|σ
and z = eγh. For example, the probability of responding yes
to Gore on the second question given a response of yes to
Clinton on the first question is defined as:

Pr(Yg = yes | Yc = yes) =
Tg · z ·

( 1
T+1

)h

Tg · z ·
( 1

T+1

)h
+Fg

In this example, spreading activation increases the probability
of responding yes to the question about Gore. The full set of
equations can be found in Table 2 for the Clinton-Gore order
and Table 3 for the Gore-Clinton order. Note that each joint
probability table sums to 1 as required by classical probability
theory. Under certain conditions, however, spreading activa-
tion causes the probability mass to shift to different cells in
each table, producing two different joint probability distribu-
tions. In some sense, this is similar to using a different set
of basis vectors to define events in the quantum model. In
the ACT-R model, the table for each order is consistent with
classical probability theory. Similarly, in the quantum model,

probabilities based on projection any of a set of orthonormal
basis vectors are consistent with classical probability theory.
However, just as the ACT-R model is not necessarily consis-
tent with classical probability theory across tables, the quan-
tum model is not necessarily consistent with classical proba-
bility theory across different rotations of the basis vectors.

Predictions
In what follows, we describe the predictions of the ACT-R
model for order effects and the QQ equality. Although we
have proved the following properties, the proofs are omitted
due to space limitations.

Table 2: Predictions of the ACT-R order model for the
Clinton-Gore order. Column and row labels C and G cor-
respond to Clinton and Gore. Subscripts y and n correspond
to yes and no.

Gy Gn

Cy
Tc

Tc+Fc
· Tg·z·( 1

T+1 )
h

Tg·z·( 1
T+1 )

h
+Fg

Tc
Tc+Fc

· Fg

Tg·z·( 1
T+1 )

h
+Fg

Cn
Fc

Tc+Fc
· Tg

Tg+Fg·z·( 1
F+1 )

h
Fc

Tc+Fc
· Fg·z·( 1

F+1 )
h

Tg+Fg·z·( 1
F+1 )

h

Table 3: Predictions of the ACT-R order model for the Gore-
Clinton order. Column and row labels C and G correspond to
Clinton and Gore. Subscripts y and n correspond to yes and
no.

Gy Gn

Cy
Tg

Tg+Fg
· Tc·z·( 1

T+1 )
h

Tc·z·( 1
T+1 )

h
+Fc

Fg
Tg+Fg

· Tc

Tc+Fc·z·( 1
F+1 )

h

Cn
Tg

Tg+Fg
· Fc

Tc·z·( 1
T+1 )

h
+Fc

Fg
Tg+Fg

· Fc·z·( 1
F+1 )

h

Tc+Fc·z·( 1
F+1 )

h

Order Effects
According to the model, order effects depend on the ratio of
true to false statements for each person. Four order effects can
be obtained by subtracting the corresponding cells of Gore-
Clinton and Clinton-Gore joint probability tables. Figure 1
shows that the predicted order effect depends on the ratio of
true to false statements for each person. For example, in the
top left panel, Tc is varied from 0 to 6 while Fc = Tg = Fg = 1.
The order effect is large when Tc = 0 and small to moder-
ate for all other values. Similar patterns can be found in the
remaining panels.

Equal Ratios The model predicts no order effects for
matching responses (e.g. yes, yes) when the ratios are equal.
However, the order effect for a yes, no response is the nega-
tive of the order effect for a no, yes response, which ranges
over negative and positive values. More formally, we de-
fine Oyc,yg as the order effect for response yc to the Clinton
question and yg to the Gore question. With this notation,



we can write: Oyes,yes = Ono,no = 0 and Oyes,no = −Ono,yes
if Tc = v · Tg, Fc = v ·Fg. As a special case, if Tc = Fc and
Tg = Fg, then Oyes,no = Ono,yes = 0. Intuitively, this means
that the effects of spreading activation in both question or-
ders cancel out because the ratios are 50-50, thus eliminating
the order effect. This can be seen in Figure 1 where the values
on the x-axis equal 1.

0 1 2 3 4 5 6
Tc

0.0

0.1

0.2

0.3 Clinton Gore
no no
no yes
yes no
yes yes

0 1 2 3 4 5 6
Fc

0.0

0.1

0.2

0.3 Clinton Gore
no no
no yes
yes no
yes yes

0 1 2 3 4 5 6
Tg

0.0

0.1

0.2

0.3 Clinton Gore
no no
no yes
yes no
yes yes

0 1 2 3 4 5 6
Fg

0.0

0.1

0.2

0.3 Clinton Gore
no no
no yes
yes no
yes yes

Figure 1: Order effect predictions. Each plot shows the abso-
lute order effect along the y-axis for the number of chunks of
the type specified in the x-axis while the chunk types are hold
constant at a value of 1.

QQ Equality
The ACT-R model follows the basic mathematical constraint
whereby q1 =−q2, but satisfies the QQ equality (q1 = q2 = 0)
under specific conditions that depend on the ratio of true to
false statements for each person. Figure 2 shows the q values
as a function of the value on the x-axis while the other three
values are fixed at 1. When value on the x-axis is zero, a large
violation of the QQ equality is predicted. In other cases, the
predicted violation of the QQ equality is small or zero.

Equal Ratios ACT-R satisfies the QQ equality when the
ratios of true to false statements are equal for each person.
More formally, q1 = q2 = 0 if Tc = v ·Tg, and Fc = v ·Fg. This
occurs in Figure 2 where the value on the x-axis is equal to 1.

Complementary Ratios ACT-R satisfies the QQ equality
when the ratios of true to false statements are complementary
for each person, but the number of chunks for each person are
equal. More formally, q1 = q2 = 0 if Tc = Fg and Tg = Fc.

Q Distribution To investigate the extent to which the ACT-
R model violates the QQ equality, we computed q values
across all permutations of memory composition for values
from 0 to 6. As shown in Figure 3, most of the density is cen-

0 1 2 3 4 5 6
Tc

−0.3
−0.2
−0.1
0.0
0.1
0.2
0.3 q1

q2

0 1 2 3 4 5 6
Fc

−0.3
−0.2
−0.1
0.0
0.1
0.2
0.3 q1

q2

0 1 2 3 4 5 6
Tg

−0.3
−0.2
−0.1
0.0
0.1
0.2
0.3 q1

q2

0 1 2 3 4 5 6
Fg

−0.3
−0.2
−0.1
0.0
0.1
0.2
0.3 q1

q2

Figure 2: q-value predictions. Each plot shows the q values
for the number of chunks of the type specified in the x-axis
while the other chunk types are hold constant at a value of 1.

tered near zero. In particular, approximately 77% of q val-
ues range between -.1 and .1 and approximately 68% range
between -.05 and .05. The remaining portion of the distribu-
tion extends towards -.4 and .4 in a roughly uniform manner.
Collectively, these results suggest that violations of the QQ
equality are typically small, but can be quite large under some
circumstances.

−0.4 −0.2 0.0 0.2 0.4
Q-value

0

10

20

30

40

De
ns

ity

Figure 3: Distribution of q values across all 74 = 2,401 per-
mutations of Tc, Fc, Tg, and Fg for values 0 to 6.

Discussion
In the present paper, we developed a memory-based model
of order effects within the ACT-R cognitive architecture and
outlined many of its predictions and properties. Our analy-
sis reveals that ACT-R can produce order effects and satisfy
the QQ equality depending on the composition of declarative



memory. Across a large range of memory sets, the model
produces q values that either satisfy the QQ equality or vio-
late it only by a small degree. In other cases, there is a clear
divergence from the QQ equality.

Some points of similarity and difference between the quan-
tum model and the ACT-R model are worth noting. One point
of similarity is that context is an important determinant of or-
der effects in both models. In the quantum model, order ef-
fects arise from non-commutative evaluation processes when
events are incompatible. In the ACT-R model, the answer to
the first question creates a new context through which spread-
ing activation modulates the retrieval probabilities for the sec-
ond answer. The models differ in several important regards.
One difference is the distinction between memory-based vs.
online judgments (Hastie & Park, 1986). In ACT-R, judg-
ments are formed from a set of experienced events stored in
memory, whereas in the quantum model, judgments are con-
structed online through comparison processes and do not re-
quire a definite reference class. One direction for future re-
search is to determine whether ACT-R can perform online
judgments by comparing chunks in different buffers.

Although we have demonstrated as a proof of concept that
ACT-R can produce order effects and satisfy the QQ equal-
ity under specific conditions, the model has not been tested
against empirical data. For this reason, it remains unclear
how it compares to the quantum model in terms of empir-
ical support. As a memory-based model, ACT-R requires
a well-controlled experiment in which the composition of
declarative memory is manipulated to test the properties out-
lined above. Existing data sets are not suitable for testing
the ACT-R model because factors influencing memory were
not controlled or measured. For example, respondents in the
national survey likely differed in terms of political knowl-
edge and information sources, which, in turn, could intro-
duce heterogeneity in judgments about Clinton and Gore. Un-
certainty and heterogeneity in memory composition would
render the results uninterpretable from the standpoint of the
ACT-R model. In future research, we plan to design a mem-
ory based experiment to test the predictions outlined above.

Our analysis shows that the predictions hold for different
values of maximum associative strength and activation noise
so long as maximum association strength is sufficiently large
to produce a positive spreading activation term. One may
wonder how the predictions might change when certain as-
sumptions of the model are relaxed. For example, relaxing
the assumption that β is equal across chunks leads to a some-
what more complex model, but the predictions ultimately de-
pend on the ratio of activation of true and false statements for
each person rather than the ratio of chunks.

Conclusion
Order effects are an interesting benchmark for testing the
ACT-R cognitive architecture because it was not developed
to account for such effects. Nonetheless, we demonstrated
that ACT-R can produce order effects using existing memory

retrieval mechanisms and can satisfy the QQ equality under
some conditions. Although more work is required to test the
model, we regard this proof of concept as an important first
step towards stress testing the architecture against new bench-
mark phenomena.
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Atmanspacher, H., Römer, H., & Walach, H. (2002). Weak
quantum theory: Complementarity and entanglement in
physics and beyond. Foundations of Physics, 32(3), 379–
406.

Busemeyer, J. R., Pothos, E. M., Franco, R., & Trueblood,
J. S. (2011). A quantum theoretical explanation for proba-
bility judgment errors. Psychological Review, 118(2), 193.

Hastie, R., & Park, B. (1986). The relationship between
memory and judgment depends on whether the judgment
task is memory-based or on-line. Psychological Review,
93(3), 258.

Jones, M., Curran, T., Mozer, M. C., & Wilder, M. H. (2013).
Sequential effects in response time reveal learning mech-
anisms and event representations. Psychological Review,
120(3), 628.

Kellen, D., Singmann, H., & Batchelder, W. H. (2018).
Classic-probability accounts of mirrored (quantum-like)
order effects in human judgments. Decision, 5(4), 323.

Newell, A. (1990). Unified theories of cognition. Harvard
University Press.

Trueblood, J. S., & Busemeyer, J. R. (2011). A quantum
probability account of order effects in inference. Cognitive
Science, 35(8), 1518–1552.

Wang, Z., Solloway, T., Shiffrin, R. M., & Busemeyer, J. R.
(2014). Context effects produced by question orders reveal
quantum nature of human judgments. Proceedings of the
National Academy of Sciences, 111(26), 9431–9436.


