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Abstract

The similarity-based interference paradigm has been widely
used to investigate the factors subserving subject-verb agree-
ment processing. A consistent finding is facilitatory interfer-
ence effects in ungrammatical sentences but inconclusive re-
sults in grammatical sentences. Existing models propose that
interference is caused either by misrepresentation of the input
(representation distortion-based models) or by mis-retrieval of
the interfering noun phrase based on cues at the verb (retrieval-
based models). These models fail to fully capture the observed
interference patterns in the experimental data. We implement
two new models under the assumption that a comprehender uti-
lizes a lossy memory representation of the intended message
when processing subject-verb agreement dependencies. Our
models outperform the existing cue-based retrieval model in
capturing the observed patterns in the data for both grammati-
cal and ungrammatical sentences. Lossy compression models
under different constraints can be useful in understanding the
role of representation distortion in sentence comprehension.

Keywords: Similarity-based interference; lossy memory rep-
resentation; cue-based retrieval

Introduction

Similarity-based interference in subject-verb agreement de-
pendencies has played an important role in understanding the
mechanisms underlying sentence comprehension (Wagers,
Lau, & Phillips, 2009; Lago, Shalom, Sigman, Lau, &
Phillips, 2015). In this paradigm, a noun phrase matching
in agreement features with the verb—called a distractor—is
presented along with the subject noun. For example, in the
following sentences (a) and (c), the distractor noun phrase the
cabinet(s) matches the number feature of the verb in contrast
to conditions (b) and (d), where it does not.

(a) Grammatical, interference condition

The key to the cabinet unsurprisingly was rusty.
(b) Grammatical, no-interference condition

The key to the cabinets unsurprisingly was rusty.
(¢) Ungrammatical, interference condition

* The key to the cabinets unsurprisingly were rusty.
(d) Ungrammatical, no-interference condition

* The key to the cabinet unsurprisingly were rusty.

A consistent finding is that of facilitation in ungrammat-
ical conditions: reading times at the verb ‘were’ in condi-
tion (c) are, on average, faster than in condition (d) (Jiger,
Engelmann, & Vasishth, 2017; Wagers et al., 2009; Lago et
al., 2015; Dillon, Mishler, Sloggett, & Phillips, 2013; Jiger,
Mertzen, Van Dyke, & Vasishth, 2020). By contrast, the
results are inconclusive in grammatical conditions: reading
times at the verb in condition (a) can be faster, slower, or
comparable to condition (b). Figure 1 shows the observed in-
terference effects in the grammatical and ungrammatical con-
ditions from 11 published datasets.

Several models have been proposed to explain the facilita-
tory interference effect in the ungrammatical conditions, but
these models cannot explain the range of effects in the gram-
matical conditions. Most of these models can be placed into
one of two categories, cue-based retrieval accounts, and rep-
resentation distortion-based accounts.

The cue-based retrieval account (Lewis & Vasishth, 2005)
assumes that dependency completion between the subject and
the verb is driven by a cue-based retrieval process: encoun-
tering a verb triggers a content-addressable search in mem-
ory using feature specifications such as [+subject] or [+plu-
ral], called retrieval cues. The cue-based retrieval model cor-
rectly predicts the facilitatory effect in ungrammatical condi-
tions. But the model predicts an inhibitory effect in gram-
matical conditions: a slowdown in condition (a) compared to
(b). This prediction is not supported by the interference effect
data in the grammatical conditions shown in Fig. 1.

Representation distortion-based accounts assume that the
representation of the pre-verbal sentence material—subject
noun and/or distractor noun—undergoes distortion with time.
One of the representation distortion-based accounts—the
encoding-based model (Bock & Eberhard, 1993; Eberhard,
1997)—maintains that the plural feature of the distractor
noun percolates up to the subject noun phrase causing a
misrepresentation of the subject in a proportion of trials.
The encoding-based model predicts facilitatory effect in both
grammatical and ungrammatical conditions, which is not sup-
ported by the observed pattern of effects (see Fig. 1).



Lago et al. (2015) Exp3b -

Wagers et al. (2009) Exp3 (plural) -
Lago et al. (2015) Exp1 -

Jager et al. (2020) agreement -

Lago et al. (2015) Exp2 -

Wagers et al. (2009) Exp2 -

Wagers et al. (2009) Exp4 -

Wagers et al. (2009) Exp5 -

Lago et al. (2015) Exp3a -

Wagers et al. (2009) Exp3 (singular) -

Dillon et al. (2013) Expl agreement k

Grammatical Ungrammatical
—— e

Fre—i ——

F—t— ——

I I

——i ——

—e—— ——,
}—0—:—{ }—o—IL{

i ——i

}—0—:{ }—o—:{

I . I i i I ] i :
-80 -40 0 -80 -40 0

Interference effect

Figure 1: The pattern of interference effects in subject-verb agreement dependencies. Here, “interference effect” means the
difference in reading times at the verb between the interference and no-interference conditions.

Another class of representation distortion-based models
are based on lossy compression of the linguistic input
(Futrell, Gibson, & Levy, 2020). These models assume
that a comprehender obtains a distorted representation of the
true intended message due to lossy memory encoding, and
they reconstruct a set of possible true representations us-
ing their prior linguistic knowledge. A well-tested model of
this type is the lossy-context suprisal model of Futrell et al.
(2020). The model captures working memory effects within
an expectation-based framework. It assumes that after read-
ing or hearing a series of words, the words can be corrupted
by deleting content words (e.g., nouns or verbs) at a con-
stant rate. Processing difficulty at a new word is the ex-
pected surprisal of the word given this lossy memory repre-
sentation of its preceding context. Futrell et al. (2020) show
that the model explains structural forgetting effects (Vasishth,
Suckow, Lewis, & Kern, 2010), and Futrell (2019) explain in-
formation locality across languages using the lossy compres-
sion model.

An important limitation of the literature on similarity-
based interference effects is that researchers either invoke
cue-based retrieval or some kind of lossy compression model
to explain the data. Moreover, the two classes of model
have never been pitted against each other in any systematic
quantitative evaluation, even though a considerable amount of
benchmark data are available on interference effects. A fur-
ther intriguing possibility, which needs to be quantitatively
evaluated, is that both lossy compression and cue-based re-
trieval could play a role in a hybrid model.

We address these open issues by implementing two lossy
compression models of similarity-based interference to try to
capture the observed effects in both grammatical and ungram-
matical conditions in subject-verb agreement dependencies.
We compare the performance of our models against the cue-
based retrieval model of Lewis and Vasishth (2005); Vasishth,
Nicenboim, Engelmann, and Burchert (2019) on interference

effect data from the 11 publicly available datasets shown in
figure 1.

A lossy compression model of interference
effects

We implement a lossy-context surprisal model as described
in Futrell et al. (2020) with some additional assumptions to
model interference effects in subject-verb agreement depen-
dencies.

Assumptions

Consider the sentence “The key to the cabinets unsurprisingly
was rusty”. The observed pre-verbal noun phrase in this sen-
tence is the key to the cabinets. We call this input /. The lossy
compression model assumes the following:

1. The linguistic input received by the comprehender has un-
dergone lossy compression: there was some true represen-
tation r; due to lossy memory encoding, the true represen-
tation r distorts to the observed input / such that the plural
marker on the nouns can either be deleted or inserted or left
unchanged at constant rates

2. The comprehender reconstructs a set of possible true repre-

sentations from input / conditioned on their prior linguistic
knowledge and the rates of deletion/insertion in the system

3. The processing difficulty at the verb is the expected (aver-

age) surprisal of encountering the verb given all possible
true representations of the input /

Next, we derive the processing difficulty and reading times
at the verb in subject-verb agreement dependencies.

Calculating processing difficulty and reading times

at the verb

In the sentence “The key to the cabinets unsurprisingly was
rusty”, the input is



I=N P N.pl
where N represents a noun, P represents a preposition, and
.pl represents a plural marker on a noun.
The possible true representations, r;, that can lead to input
I due to lossy compression are,
rr=N.pl P N.pl rn=N.pl P N
r3s=N P N.pl r4s =N P N
The processing difficulty for the upcoming verb will be
proportional to the expected suprisal of the verb given all pos-
sible true representations ry,rs,..,ry:

N
D(V|I) o< Y —logP(V|ri)- P(ri|l) (1)

i=1

where —log P(V|r;) is the surprisal — negative log condi-
tional probability — of seeing a plural/singular verb after
the context r;; we compute conditional probabilities from the
COW corpora (Schifer, 2015; Schifer & Bildhauer, 2012).
And, P(r;|I) is the probability density of reconstructing a rep-
resentation r; from the given input, /. We can derive P(r;|I)
using Bayes’ rule,

P(rill) o< P(I|r;)P(ri) )

where P(r;) is the prior probability density of a possible
true representation r; and can be estimated from corpus data.
P(I]r;) represents the lossy memory encoding function: the
likelihood that a representation r; distorts to I given a con-
stant deletion rate d and constant insertion rate a:

I|ri ~ Memory(r;,d,a) 3)

where d is the rate of deleting a plural marker and a is the
rate of inserting a plural marker. Table 1 shows the likelihood
of obtaining / from each possible representation r;. Finally,
we transform processing difficulty into reading times using a
linear linking function. Reading times in j" trial, RT;, will
be:

RT; =S-D(V|I)+¢; “4)

where § is a scaling parameter and €; is the random noise in
the j" trial such that €; ~ Normal(0,20). The model has thus
3 free parameters: deletion rate d, insertion rate a and scaling
parameter S.

Possible true representation Likelihood of generating / from r;

ri P(]‘l’,)
N.pl P N.pl d(1—d)
N.pl P N da

N P Npl (I—a)(1—d)
N P N (I—a)a

Table 1: The lossy memory encoding function: the likelihood
of obtaining the observed input I (N P N.pl) from lossy com-
pression of a possible true representation r;

Prior predictions

We use the model equations stated in the previous section and
generate prior predictions from the model. This allows us to
determine the range of effects the model can generate and
compare them against the observed interference effect data.
The joint distribution of interference effects in grammatical
and ungrammatical conditions — {Egam, Eungram} — 1s as-
sumed to come from the lossy compression model conditional
on its free parameters, the deletion rate d, the insertion rate a,
and the scaling parameter S

{EgramvEungmm} ~ MOdel(d,a»S) (5)

We specified the priors as follows. For deletion rate d and
insertion rate a, we choose a weakly informative prior be-
cause we do not want to make any strong assumptions about
these parameters:

dn~ Normallb:()’ubzl (0, 0.25) (6)
a ~ Normaljp—g yp=1(0,0.25) @)

where [b = 0 and ub = 1 indicate a lower bound of 0 and up-
per bound of 1 respectively. For the scaling parameter S, we
choose a Gaussian prior centered at 25 and with standard de-
viation of 5; this range was chosen so that the model does not
generate unreasonably large or small reading times (see Jager
et al., 2017, for meta-analysis estimates of reading times):

S ~ Normal;,—(25,5)

Figure 2 shows the prediction space of the lossy compres-
sion model against the observed interference effect data. The
model is able to predict a facilitatory effect in ungrammatical
conditions and positive, zero or negative effects in grammat-
ical conditions. Thus, the prior predictions of the model are
consistent with qualitative pattern of the observed interfer-
ence effects, but the magnitudes of predicted effects do not
often align with the human data.

The lossy compression model, presented here, assumes
that the link between the lossy memory representations and
reading time effects is the average surprisal of the upcom-
ing word. However, one is free to choose a different linking
function. In the next section, we introduce a hybrid model
that integrates the lossy compression and cue-based retrieval
mechanisms in order to predict reading times at the verb.

Lossy-compression-plus-retrieval model
Recent work has shown that a model unifying representation
distortion- and retrieval-based mechanisms shows a better fit
to interference effect data from subject-verb agreement de-
pendencies (Yadav, Smith, & Vasishth, 2021). Given this
modeling evidence, it is interesting to explore a model com-
bining lossy compression and cue-based retrieval in a single
set of processes. We implement the lossy compression-plus-
retrieval model with the idea that the cue-based retrieval at
the verb is preceded by lossy memory representation of the
intended message. Here, reading times are determined by the
cue-based retrieval mechanisms, but the retrieval process op-
erates on a noisy version of the intended input.
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Figure 2: The prior predictive interference effect (in millisec-
onds) generated by the lossy compression model is shown as
a contour of the joint distribution of effects in the grammati-
cal and ungrammatical conditions. The red triangular points
and errors bars around them represent the observed interfer-
ence effects and their 95% credible intervals obtained from
published datasets. The predictions differ across experimen-
tal designs because prior density of possible true representa-
tions p(r;) is estimated to be different for each design. Design
1: English subject relative clause constructions; Dillon et al.
(2013), Exp 1 and Jager et al. (2020). Design 2: English ob-
ject relative clause constructions; Wagers et al. (2009) Exp
2, Exp 3, and Lago et al. (2015) Exp 2. Design 3: English
prepositional phrase constructions; Wagers et al. (2009) Exp
4, Exp 5. Design 4: Spanish relative clause constructions;
Lago et al. (2015) Expl, Exp 3a, and Exp 3b.

Assumptions

The lossy compression-plus-retrieval model assumes that

1. Dependency completion between the subject and the verb
is driven by a cue-based retrieval process

2. Cue-based retrieval is affected by changes in representaton
of the subject and the distractor nouns due to lossy com-
pression of the intended message (as described in the pre-
vious section)

Next, we derive the updated retrieval time equation to ac-
count for representation change due to lossy compression.

Calculating retrieval times

The retrieval time at the verb in the j/ trial, RTj, is an expo-
nential function of the activation of the retrieved chunk,

RT} = Fe_Aj.retrieved (8)

where F is a scaling parameter called the latency factor which
reflects overall processing speed.

Under cue-based retrieval, the chunk with the highest acti-
vation gets retrieved in each trial. The activation of the chunk

retrieved in j* trial would be the maximum of the activation
of the subject and the distractor noun:

Aj,retrieved = maX{Aj,xuhject ) Aj,di.ytmct()r} (9)

The activation of the subject and the distractor in a trial is
determined by the amount of activation they receive via cue-
feature match. The noun phrase that matches more cues re-
ceives a higher activation. Thus, activation of the subject and
the distractor in j/” trial is a function of their representation,

{Aj.subjecl7Aj,distractar} ~ Activation(rj) (10)

where r; is the representation of subject and distractor noun
in the j/* trial. The lossy compression-plus-retrieval model
assumes that the representation in the j/ trial is sampled from

probability density of reconstructing r from input /,
rj~P(r|l,a,d) (11)

where a and d are the insertion and deletion rates, respec-
tively. The probability density function P(r|I,a,d) can be de-
rived in the same way as in equation 2. Using these equations,
the lossy compression-plus-retrieval model allows us to make
reading time predictions at the verb, which we now compare
to reading time data from 11 experiments.

Prior predictions

We generate prior predictions from the lossy compression-
plus-retrieval model conditional on its three free parameters,
the deletion rate d, the insertion rate a, and the latency factor
F. For the deletion rate and the insertion rate, we specify the
same priors as in equation 6 and 7. For the latency factor, we
used a truncated normal distribution:

F ~ Normaljy—1(0.15,0.03)

where 1b = 0.1 indicates a lower bound of 0.1 on latency factor
values. We choose this lower bound because a latency factor
of less than 0.1 generates unreasonably fast reading times.
Figure 3 shows the prediction space of the lossy
compression-plus-retrieval model against observed interfer-
ence effect data. The model predictions are consistent with
the facilitatory effect in ungrammatical conditions, but incon-
sistent with the range of effects in grammatical conditions.

Model comparison

We compare the performance of the lossy compression mod-
els (which assume that representation undergoes distortion
due to information loss) against the cue-based retrieval model
(which assumes that representation is intact and a retrieval
process drives processing) on 11 published datasets. We use
stratified k-fold cross-validation for model comparison: (1)
We split each dataset into 6 folds (subsets) such that each
fold contained observations from all participants for all con-
ditions, (2) we prepared 6 sets of training and test data by
leaving out one fold as test data and taking other 5 as training
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Figure 3: The prior predictive interference effect (in mil-
liseconds) generated by the lossy compression-plus-retrieval
model is shown as a contour of joint distribution of effects
in the grammatical and ungrammatical conditions. The red
triangular points and errors bars around them represent ob-
served interference effects.

data, (3) in each iteration, we fit the models on training data
using Approximate Bayesian Computation' (Sisson, Fan, &
Beaumont, 2018) and computed the predictive accuracy of
the fitted model on the test data in terms of log pointwise pre-
dictive density. Figure 4 shows the comparison of estimated
log pointwise predictive density (el/p\d) of the models on 11
datasets. We find that:

1. The 6717\61' values for the lossy compression model are
larger than the cue-based retrieval model for 6 out of 11
datasets suggesting stronger evidence in the favor of lossy-
compression model. The models are indistinguishable for
the remaining five datasets.

2. The lossy-compression-plus-retrieval model shows higher
predictive accuracy than the cue-based retrieval model for
six out of 11 datasets.

3. The lossy-compression-plus-retrieval model and the lossy
compression model show comparable performance.

Overall, the results suggest that a lossy compression model
or a lossy compression-plus-retrieval model can explain the
data better than the standard cue-based retrieval model.

Discussion

We have implemented two models—a lossy compression
model and a lossy compression-plus-retrieval model—and
investigated whether they can outperform the cue-based re-
trieval model. More specifically, we investigated whether,

! Approximate Bayesian Computation (ABC) allows us to fit
complex models when the likelihood of a model cannot be expressed
mathematically. We use a particle filtering-based ABC algorithm to
estimate posterior distributions of free parameters in the models.

compared to the cue-based retrieval model, these two models
can furnish a better account for the pattern of interference ef-
fects in grammatical and ungrammatical subject-verb agree-
ment dependencies. Both models are based on the idea of
lossy memory representations of the intended message. The
lossy compression model assumes that the linguistic input re-
ceived by a comprehender is subject to information loss, and
that the comprehender infers a set of possible true representa-
tions from the given input using their prior linguistic knowl-
edge. Reading times are then predicted to be proportional
to the expected surprisal of the next word given the set of
possible true representations. By contrast, the hybrid lossy
compression-plus-retrieval model assumes that dependency
completion is driven by a cue-based retrieval process which is
affected by a change in the representation of memory chunks
due to lossy compression. Reading time predictions here are
derived from the assumptions of cue-based retrieval (Lewis &
Vasishth, 2005).

The evaluation of the three models’ predictive performance
shows that both lossy compression and lossy compression-
plus-retrieval models are better at explaining the interference
effect data than the cue-based retrieval model of Lewis and
Vasishth (2005). An important implication of the modeling
results is that the cognitive processes underlying dependency
completion in sentence comprehension might involve repre-
sentation distortion due to lossy compression of the intended
message.

An interesting open question is whether the deletion and in-
sertion rates assumed in the lossy memory encoding function
are sensitive to factors like the syntactic position of the nouns
and the distance between the nouns and the verb. For exam-
ple, a noun that appears earlier in the sentence may enjoy a
primacy advantage (H&ussler & Bader, 2015), and therefore
be less likely to be distorted by deletion/insertion noise. Sim-
ilarly, there could be a subject advantage in memory such that
the representation of subject nouns is distorted at slower rates
than other noun phrases (Futrell et al., 2020). Another rea-
sonable assumption can be that the memory representation of
nouns is susceptible to only deletion noise and not insertion
noise. Our model is currently agnostic to these factors. But
they can be explored by developing constraints on deletion
and insertion rate for different noun phrases in our model.
We plan to take this up in future work.

In sum, the modeling presented here demonstrates, for
the first time, that a prominent and well-accepted explana-
tion for interference effects—cue-based retrieval—is outper-
formed by models that assume lossy compression. The fact
that the two lossy compression models (the one with and
without cue-based retrieval) show comparable fits raises an
interesting question: is the cue-based retrieval assumption
needed at all to explain interference effects? This is an impor-
tant open question that should be addressed in future work.
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Figure 4: Estimated log pointwise predictive density for each model for each dataset based on stratified k-fold cross validation.
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