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Abstract 

This project’s purpose was to simulate human periodic motor 
behavior in a simple self-paced tapping task that involved 
period error correction and feedback processing. When humans 
try to tap at a certain period, their inter-tap times are normally 
distributed with a standard deviation that is proportional to the 
period.  When they try to change the period of their tapping, 
they do so in a single tap instead of a progressive correction 
taking place over multiple taps. We calibrated ACT-R’s new 
periodic tapping motor extension based on human 
experimental results and showed that ACT-R can simulate 
human motor behavior. Future research can leverage these 
findings and ACT-R’s periodic tapping motor extension to 
simulate fast-paced skilled motor behavior in complex 
perceptual-motor environments. 
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Introduction 
Cognitive scientists have recently shown a growing interest 
in video games and have started to uncover evidence 
supporting their potential cognitive benefits (Bediou et al., 
2018). From a psychological standpoint, video games can be 
useful as a way to investigate complex skill learning 
processes involving the integration of perceptual, cognitive, 
and motor information (Anderson et al., 2019). In terms of 
skill acquisition, it is generally acknowledged that skill 
learning involves a shift from high-level processing of task-
related declarative information to the progressive 
automatization of motor skills (Ackerman, 1988; Anderson, 
1982). Acquiring skill in a motor task often involves 
progressively lower levels of motor variability, potentially 
due to improved feedback control (Shmuelof, Krakauer & 
Mazzoni, 2012). In a motor timing video game specifically, 
skilled behavior was found to be predicted by decreased 
motor timing variability and increased rhythmicity in motor 
behavior (Gianferrara, Betts & Anderson, 2020). 

Another characteristic of video games is that they often 
require fast-paced actions which tend to be shorter than a 
second, and are characterized by more rhythmic motor 
actions than speeds slower than a second (Gianferrara, Betts 
& Anderson, 2020). In the brain, actions in the sub-second 
range are more likely to recruit sub-cortical structures 
implicated in the motor system such as the basal ganglia and 
the cerebellum whereas actions in the supra-second range are 
more likely to recruit cortical structures (Wiener, Turkeltaub 

& Coslett, 2010). From a modeling perspective, cognitive 
architectures ought to include suitable motor mechanisms 
that may account for skilled motor behavior at fast speeds. 

We augmented the motor module in the adaptive control of 
thought rational (ACT-R) architecture with a motor extension 
to enable ACT-R to engage in rhythmic motor behavior. The 
starting point for such motor extension is to model human 
behavior in a self-paced periodic tapping task. Most existing 
work on periodic tapping has commonly been presented in 
the context of sensorimotor synchronization studies. Such 
studies often investigate the process whereby participants 
first learn to align their taps to a periodic auditory stimulus 
(synchronization phase) and then continue to tap at that same 
period (continuation phase; Repp, 2005; Wing, 1980). 
Though synchronization-continuation paradigms are useful 
to model periodic tapping and error correction, they often do 
not provide an account of error correction based on external 
non-periodic feedback, in which case the adjustment of one’s 
tapping period does not rely on sensorimotor synchronization 
with a periodic sensory cue. 

The goal of this project was to calibrate ACT-R’s periodic 
tapping motor extension based on the human experimental 
results from a novel game called ChemLab, which involves 
self-paced tapping. In this task, participants learn to adjust 
their tap frequency based on external feedback that they need 
to attend to. We first present our results and choice of ACT-
R parameterization. We then conclude with some remarks 
and important implications for future cognitive models. 

ChemLab Periodic Tapping Video Game 
The goal of ChemLab is to fill as many rows of 8 beakers as 
possible by periodically pressing the space bar. Each beaker’s 
total capacity was set to 100 pixels and each tap within the 
right tapping interval resulted in an incremental increase of 
1/8 of the beaker capacity as well as a brief mid-pitched sine 
tone (625 Hz). Thus, 8 taps were required to completely fill a 
beaker. When participants did not press the space bar within 
the right tapping interval, one out of two possible outcomes 
could happen: 1) When taps were too fast, a panel with the 
message “too fast” immediately turned red and a brief high-
pitched sine tone (890 Hz) was triggered. Each too-fast tap 
was penalized by a loss of 5% of the max beaker capacity. 
The “too fast” light only turned off when taps were at least as 
slow as the lower (fast) bound of the prescribed tapping 
interval. 2) When taps were too slow, a panel with the 



message “too slow” immediately turned blue and a brief low-
pitched sine tone (460 Hz) was triggered. Unlike “too fast” 
feedback, the beaker level progressively decreased at a 
constant rate of 0.125 % of the beaker’s max capacity every 
1/60 s. The “too slow” light turned off and the beaker level 
stopped shrinking when taps became at least as fast as the 
upper (slow) bound of the tapping interval. An illustration of 
the ChemLab interface is depicted in  Figure  1. One can play 
ChemLab by clicking on the following link: 
http://andersonlab.net/demos/chemlab-v1/ 

 

 
Figure 1: ChemLab video game interface. 

Experimental Methods 
Experimental Design 
In this experiment, players completed 9 ChemLab sessions of 
5 minutes each. In each session, players filled rows of beakers 
that were selected in a pseudorandom order. Rows of beakers, 
named trials, belonged to one out of 6 possible conditions that 
are introduced in Table 1. Each condition included two 
speeds with two consecutive tapping intervals. The four 
possible tapping intervals were [200-300 ms], [300-500 ms], 
[500-800 ms], and [800-1200 ms]. Tapping intervals were 
non-overlapping and had a range whose width increased at 
slower speeds. The serial order of trials within sessions was 
indicated at the top of the screen, along with the score.  

 
Table 1: Description of the 6 ChemLab conditions 

 
Each trial included 8 beakers that were divided into two 

phases: the pre-switch phase, and the post-switch phase. 
Beakers from the pre-switch phase and post-switch phase 
respectively shared the same tapping interval (“Speed 1” and 
“Speed 2” in Table 1). When the first post-switch beaker 
came up the subject would get feedback that they were too 
fast or too slow and they would have to adjust the period of 

their tapping accordingly.  The transition between the pre-
switch and post-switch phases was scheduled pseudo-
randomly and could either happen after the completion of 3, 
4, or 5 beakers. For each condition, points were earned 
proportionally to the width and speed of the tapping interval 
such that slower intervals led to a higher reward than faster 
intervals. The total reward per trial was computed prior to the 
start of that trial by computing the sum of points per beaker 
within each phase (see Table 1) and then adding up the sums 
from each phase respectively. The total number of points for 
a trial was then divided by 8 (since there are 8 beakers in each 
trial), and 1/8 of the total was earned after the completion of 
each beaker within trials regardless of phase.  
 
Measures 
In this experiment, periodic tapping skills were measured in 
terms of performance within sessions, and in terms of tap 
variability. One critical ChemLab measure related to skill and 
period error correction was tap feedback. 
 
Performance Score The main way of assessing subjects’ 
ChemLab performance was to compute each participant’s 
game score within 5-minute sessions using the scoring 
system described in Table 1. 
 
Motor Behavior & Tapping Variability We assessed motor 
behavior by measuring the time between consecutive 
keypresses’ onsets within beakers. This time interval is often 
referred to as inter-press interval (IPI) in the literature 
(Diedrichsen & Kornysheva, 2015). Using this measure, it is 
possible to compute the coefficient of variation (CV), which 
is the standard deviation divided by the mean of the IPIs. 
Following previous work on video games, we assessed a 
logarithmic transformation of CV which measures motor 
variability and has been shown to be linearly related to 
performance in a motor timing video game (Gianferrara, 
Betts & Anderson, 2020). 
   Finally, we estimated participants’ tap regularity levels 
across speeds by computing the autocorrelation of vectorized 
tap holds and releases following the methodology from 
previous work (Gianferrara, Betts & Anderson, 2020). In this 
computation, keypress holds and releases had a temporal 
resolution of 1/60 s and we measured the autocorrelation of 
100 lags of 1/60 s. We then extracted the correlation 
coefficient corresponding to the first non-zero positive peak 
of the autocorrelation function and used this as our tapping 
regularity estimate. 
 
Tap Feedback In ChemLab, skill learning and period error 
correction mostly happened via the online processing of 
feedback that followed each individual tap. As mentioned 
earlier, taps could be categorized as “OK”, “too fast”, or “too 
slow”. Recording the feedback type that resulted from 
individual taps is useful because that helps the researcher 
understand how period error correction happens as a result of 
exposure to feedback.  
  



Human Participants 
A total of thirty-two human participants completed the 
ChemLab experiment. Out of these, one participant was 
excluded because of poor performance (less than 100 points 
per session in the last 7 ChemLab sessions). A second 
participant was excluded because their average performance 
was close to 3 SDs below the mean (z = - 2.9; M = 1034 
points; SD = 151 points), and their average tap variability 
level was 4 SDs above the mean in terms of the log CV of the 
IPIs (z = 4.0; M = - 1.35; SD = 0.55). 

The 30 remaining participants were aged 22 to 50 years-old 
(M = 32.8, SD = 7.1). Twenty were male and 10 were female. 
All participants were recruited on Amazon Mechanical Turk 
(mTurk). Subjects earned a base pay of $4 for completing the 
experiment, in addition to a bonus which was proportional to 
their performance (in points) as specified in Table 1. On 
average, participants earned a bonus of $5.50. 
 
Procedure 
To qualify for the experiment, participants needed to 
correctly answer at least 3 out of 4 multiple choice questions 
on an English comprehension quiz. The experiment then 
proceeded as follows: Participants first filled out short 
background questionnaires. They then read a quick 
description of ChemLab which included instructions on how 
to proceed. Once ready, participants completed 9 ChemLab 
sessions lasting 5 minutes each. Finally, they filled out some 
additional questionnaires where they provided feedback and 
wrote about strategies they found helpful. 

Human Results 
Behavioral Results 
We first present some general results pertaining to human 
performance and human behavior in the ChemLab 
experiment. Figure 2 provides an illustration of human 
performance. Figure 2a shows that humans’ average game 
score progressively increased in the 2 first sessions and 
eventually reached a learning plateau at game 3 onwards 

when the average game score was consistently greater than 
1000 points, which corresponded to more than 90 % of 
subjects’ max performance score in ChemLab. Since this 
study is mostly concerned with skilled motor behavior and 
the modeling of periodic tapping, we elected to focus on the 
last 7 sessions at which most of the task-specific skills have 
been acquired. These included a total of 1014 trials across all 
subjects and speeds. 

 
 

Figure 2: a) Mean game score (performance) over the 9 
ChemLab sessions. The shaded area indicates the standard 

error of the means b) Correlation between subjects’ average 
game score across sessions and tap variability as the 

logarithmic coefficient of variation. 
 

    Figure 2b compares individual subjects’ performance and 
motor behavior during the learning plateau (last 7 sessions). 
Subjects’ tap variability is measured in terms of the 
logarithmic CV and plotted against subjects’ average game 
score across sessions. The main result is that game score is 
negatively correlated with tap variability (r = - 0.88) meaning 
that the best performing subjects were also the ones with the 
lowest levels of tap variability. In terms of motor behavior, 
tap regularity levels defined with the autocorrelation ranged 
between r = 0.43 and r = 0.49 across the four different speeds.  
   With respect to subjects’ adaptation to the new tapping 
period after the switch point, we found that human 
participants successfully transitioned from speed to speed as 
can be seen on Figure 3a. Table 2 displays the taps’ categories 
 

 
Figure 3: Inter-press interval (IPI) boxplot across the 6 conditions in the pre-switch and post-switch phases. Each speed 

corresponds to a different color. Human IPIs are depicted to the left (a) and ACT-R model IPIs are depicted to the right (b). 



Table 2: Human and ACT-R model tap category proportions across speeds and feedback types. 

 
in the assigned tapping interval in the last 2 beakers (stable 
behavior) of either phase, sorted according to speed and agent 
(humans vs. ACT-R model). Overall, human subjects 
executed taps that were in the correct tapping interval ~80% 
of the time or more. 
 

Feedback Processing 
We then investigated participants’ response to feedback at the 
time of the period switch. To reiterate, the tapping interval 
switched to a consecutive speed bracket after the completion 
of 3, 4, or 5 beakers (this number was generated 
pseudorandomly), and players then learned to execute taps at 
the new speed for the remainder of the trial beakers until they 
completed the final (8th) beaker. 

To explore the process of period error correction, we first 
computed the proportion of each tap category (“OK”, “too 
fast” and “too slow”) for the 8 first IPIs directly following the 
speed switch. Tap category proportions were computed 
across all trials from all subjects (see Figure 4). Figure 4’s top 
row illustrates cases in which the speed slowed down, thus 
resulting in “too fast” feedback, and Figure 4’s bottom row 
illustrates cases in which the speed sped up, thus resulting in 
“too slow” feedback. Overall, one can see that the majority 
of participants tended to persevere their taps at the old speed 
for 1 to 3 taps before adjusting their tap period, though most 
players needed at least 2 taps before initiating the correction. 

 
Figure 4: Evolution of tap category proportion as a function 
of post-switch IPI position following a period switch across 

the 6 ChemLab conditions. 
 

   Although Figure 4 suggests that participants may 
progressively correct their taps’ period, we found that this 
result was due to variation in when the period was corrected 
and was not indicative of continuous error correction with 
progressively smaller correcting steps. Instead, we found that 
period correction happened as a first-order process. Figure 5 
shows the difference in IPI as a percentage of the previous 
IPI at the time of error correction (Pos 0) and at the tap 
position directly before (Pos -1) and directly after (Pos +1), 
regardless of the tap serial order in the post-switch beaker. 

 
Figure 5: 1st order feedback processing in fast feedback 

conditions (a) and slow feedback conditions (b). Error bars 
correspond to the standard error of the means (SEM). 

 
   As can be seen on Figure 5, the IPI difference at Pos 0 was 
greater than at Pos -1 and Pos +1 in conditions in which the 
tapping interval got slower, but no significant difference 
relative to no difference (0 %) was found at Pos -1 and Pos 
+1 (standard deviations at these positions all included 0%). 
Conversely, the IPI difference at Pos 0 was smaller than at 
Pos -1 and Pos + 1 in conditions in which the tapping interval 
got faster, but no significant difference relative to no 
difference (0 %) was found at Pos -1 and Pos +1.  



ACT-R Model of Periodic Tapping 
The next step was to integrate into ACT-R a model of tapping 
and period correction that was consistent with these results. 
To reiterate, a goal of the project was to use human 
experimental results in a simple tapping paradigm to calibrate 
the parameterization of motor parameters in ACT-R. 
 
Periodic Tapping in ACT-R 
A motor extension was added to ACT-R, which includes a 
few basic actions. First, taps can be initiated by making a 
request to the manual module with information pertaining to 
the hand, finger, and specific tapping period. Once periodic 
tapping has been initiated, the manual buffer corresponding 
to the tapping hand (“manual-right” or “manual-left”) 
continues the tapping action repeatedly. Note that periodic 
tapping does not require ACT-R to issue specific motor 
commands for each individual tap, which would not be 
feasible at the fastest tapping rates. This process is assumed 
to carry on automatically due to basal ganglia neural activity 
(Wu, Hallett & Chan, 2015). To stop the period, another 
request to the manual module can be made in a subsequent 
production, and ACT-R will then stop periodic tapping once 
ready. During periodic tapping, upcoming taps are 
automatically scheduled relative to the previous ones at the 
time of key release, unless a stop request has been initiated. 
   The periodic tapping motor extension also includes an 
additional “tap” buffer which can be accessed to determine 
the current tap period (in seconds), and a count of the number 
of taps made at that period. ACT-R can request that the motor 
module adjust the period at which it is tapping. The “periodic-
tap” motor extension code has been created in the Lisp 
programming language and will be made available to users in 
an upcoming ACT-R release. We next review 
parameterization of the periodic tapping motor extension. 
 
ACT-R Periodic Tapping Parameterization 
In this paper, we are using the results from the ChemLab 
experiment to calibrate the ACT-R model of periodic tapping. 
This section is specifically focusing on the choice of noise 
parameter that governs the variability of taps across speeds. 
To address the variability in timing between individual taps, 
we investigated consecutive IPI % differences in an iterative 
fashion in the last 2 beakers of the pre-switch and post-switch 
phases. For each beaker, we recorded each tap’s IPI % 
difference relative to the IPI from the previous tap and sorted 
the IPI % tap differences according to speed. We thus 
obtained 4 IPI % tap difference frequency distributions which 
are displayed on Figure 6. As can be seen, the motor noise 
distribution is centered around 0 % and is normally 
distributed. One crucial finding was that variability in taps’ 
period across speeds can best be specified in terms of % IPI 
difference instead of a fixed IPI difference duration, which 
fits with past sensorimotor synchronization findings (Repp, 
2005; Wing, 1980) and may partially be due to fingers’ 
biomechanical constraints (Loehr & Palmer, 2009). 
   The noise on the tap timing was generated using the same  

Figure 6: Overlap between human and ACT-R model 
percent change in tap IPIs. Bins have a width of 7%. 

 
logistic distribution that is used for generating the noise in the 
ACT-R procedural and declarative systems1. The s value of 
the distribution that best fit the human data was found to be 
0.04 (see Figure 6). This corresponds to a standard deviation 
approximating 7% of the current tap period. The correlation 
between humans and ACT-R ranged between r = 0.96 and r 
= 0.98 across the four speeds. 
 
ACT-R Model of ChemLab 
Modeling performance in the ChemLab experiment not only 
required us to refine the parameterization of the periodic 
tapping motor extension in ACT-R, but it also necessitated 
identifying the key task-specific components of the 
experimental paradigm that were critical for learning. In this 
experiment, feedback was the most important experimental 
feature. Specifically, we needed to create a model that could 
simulate humans’ response to feedback, and error correction. 
 
Responding to Feedback Humans’ response to feedback in 
ChemLab was not uniform within subjects as suggested the 
results displayed in Figure 4. While most period corrections 
happened shortly after feedback detection and processing, 
some other corrections happened after a few more taps. In 
ACT-R, we decomposed this process into three steps 
represented as separate ACT-R productions: 1) feedback 
detection, 2) feedback processing, 3) response to feedback. 
   The first step was to simulate perceptual feedback 
detection. Our data suggest that there may be perceptual 
delay and feedback processing differences, which have been 
hypothesized to be a function of skill level and past exposure 
to video games (Bediou et al., 2018; Bejjanki et al., 2014).    
We used ACT-R’s visual-search buffer to model humans’ 
visual detection of color changes that indicated an error, 
although   auditory   “too fast”   and   “too slow”   feedbacks 
 

 
1 Note that ACT-R uses logistic instead of an actual normal for  
computational efficiency (Anderson & Lebiere, 1998) 



may have played a facilitatory role in feedback detection 
(Repp & Penel, 2002, 2004). Upon detecting a color change, 
ACT-R put the interpretation (“too fast” or “too slow”) into 
the imaginal module. To fit human performance, we set the 
mean time for this action to 50 ms, and the imaginal module 
adds noise to that from a uniform distribution of +/- 16ms 
(1/3 of the action duration). 
   Finally, the last step was to respond to feedback, which was 
implemented as a first-order process in accordance with the 
results from Figure 5. Based on our experimental 
investigation of feedback response, we found that the 
participants’ response to feedback was a probabilistic event 
which could be simulated with competing productions 
(“correct” vs. “do-not-correct”) and fixed utilities in ACT-R. 
Utilities were tuned using probabilistic estimates of error 
correction for fast and slow feedback respectively. 
 
Error Correction Based on the subject data the model 
responded differently to “too-fast” and “too-slow” feedback. 
When exposed to “too-fast” feedback, the ACT-R model 
requested a period error correction from the manual module 
while maintaining the original tapping rate. When exposed to 
“too-slow” feedback, however, the model briefly stopped 
tapping to process the progressively decreasing beaker level 
caused by the slow taps (see ChemLab video game 
description), and it then made a request for a new tapping 
period.  
    The model attempted to correct errors and change the 
tapping period by adding or subtracting a correction from the 
period. This correction was expressed as a percentage of the 
original tapping period and was selected from a gamma 
distribution2 generated with a shape parameter k and a scale 
parameter θ.  To fit the subject data, we selected different 
gamma distributions for each speed.  
   One striking result was that the gamma distribution 
underlying “too fast” period corrections was closer to an 
exponential distribution than the gamma distribution 
underlying “too slow” corrections. Indeed, k estimates 
approximated 1 for “too fast” period corrections, regardless 
of speed (+/- 0.2). For “too slow” corrections, however, k 
estimates exceeded 2 across all speeds and increased as the 
tapping rate slowed down. These findings suggest that the 
shape of the period correction distribution may depend on 
task-specific feedback features, speed, and potentially 
feedback saliency. 
 
ACT-R Model Results 
We ran two hundred ACT-R model simulations of trials in 
each of the 6 conditions (1,200 model runs in total). All 
models were initialized with the same parameters. We then 
tested whether we could replicate human results from Figure 
3a and Table 2. Figure 3b illustrates the model transition from 

 
 

2 We utilized the “random-gamma-mt” function from the “cl-
randist” Lisp package:  
http://github.com/lvaruzza/cl-randist/tree/master 

speed to speed in each of the 6 ChemLab conditions. To 
reiterate, IPIs were measured in the last 2 beakers of the pre-
switch and post-switch phase, which reflect stable periodic 
tapping behavior. 
   We then computed the proportion of tap categories across 
speeds in either phase and reported these proportions in Table 
2 (see ACT-R results). As can be seen, similar tap category 
proportions were found in ACT-R. A Chi-squared 
contingency test summarizing within-speeds tap proportion   
comparisons between ACT-R and humans (df = 4*2 = 8) 
revealed that both proportions were of a similar magnitude 
(𝜒ଶ(𝑑𝑓 = 8,𝑁 = 24) = 5.59, p = 0.69). 

Conclusions 
The goal of this project was to simulate human motor 
behavior in a simple self-paced periodic tapping task in which 
period error correction was driven by visual and auditory 
feedback. By calibrating our novel periodic tapping motor 
extension in ACT-R, we showed that it is possible to replicate 
the general patterns of human behavior and periodic tapping. 
Some implications are worth noting. 
   In terms of motor behavior, we found two general 
mechanisms pertaining to human skill learning. First, we saw 
that the noise around periodic taps was proportional to the 
taps’ mean and could be simulated as a percentage of the 
period instead of a fixed time duration, which replicates 
results from the sensorimotor synchronization literature 
(Repp, 2005). Second, in the context of the ChemLab 
experiment, we also saw that feedback processing happened 
as a first-order process akin to reaction time processes.  
   Because the core periodic tapping code was built as a motor 
extension in the ACT-R architecture, it is possible for other 
modelers to use our code as a template of periodic tapping 
and build upon our work to model human behavior in fast-
paced video games involving repetitive motor actions. We 
look forward to expanding our understanding of skilled motor 
behavior in complex perceptual-motor environments. 
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