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Abstract

It has been shown that in hand-written transcription tasks
temporal micro-behavioral chunk signals hold promise as
measures of competence in various domains (e.g., Cheng,
2014). But data capture under that an approach requires the
use of graphics tablets which are relatively uncommon. In this
paper we propose and explore an alternative method —
Competence Assessment by Stimulus Matching (CASM).
This new method uses simple mouse-driven interfaces to
produce temporal chunk signals as measures of learner’s
ability. However, it is not obvious what features of CASM
will produce effective competence measures and the design
space of CASM tasks is large. Thus, this paper uses GOMS
modelling in order to explore the design space to find factors
that will maximize the discrimination of chunk measures of
competence. Results of a pilot experiment show that CASM
has potential in using chunk signals to measure competence in
the domain of English language.
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analysis; stimulus matching

Introduction

This paper concerns the assessment of learners’ competence
in knowledge rich domains, using the analysis of computer
logs of micro-behaviors in task activities. Moss, Kotovsky,
and Cagan (2006), in the domain of engineering, and
Avrslan, Keehner, Gong, Katz, & Yan (2020), in the domain
of mathematics, used drag and drop tasks to examine the
underlying cognitive processes in either replicating subject-
related diagrams or solving mathematical problems,
respectively. Another study analyzed pauses during text
composition by means of key-stroke logging (Schilperoord,
2002). These methods were successful in extracting and
associating behavioral signals with cognitive processes, by
logging actions at a time scale of ~10 seconds.

An alternative approach that holds some promise is to log
and analyze micro-behaviors at a time scale of 1 second and
less. Machine learning was used to analyze large amounts of
data logged during freehand writing (Stahovich & Lin,
2016) and drawing (Oviatt, Hang, Zhou, Yu, & Chen, 2018)
during problem-solving tasks. Their findings revealed
significant correlations between pause durations and
proficiency levels.

In contrast, Cheng and colleagues have used cognitive
chunking theory to develop methods that require less data

using short transcription tasks. According to Cowan (2001)
and Miller (1956), “chunking” is a process by which
perceived information are grouped and stored in working
memory (WM), and since information is presented as units,
people tend to group these units into “chunks” of
meaningful information. The number of “chunks” stored is
constrained by one’s mental capacity, however Cowan
(2001) also points out that the capacity is also affected by
the amount of prior knowledge one holds in long term
memory in the expert domain. So, in the experiments carried
out by Cheng and colleagues, they examined differences in
pause behavior of novices and experts whilst engaging in
transcription tasks to probe chunk structures in memory.
Cheng and Rojas-Anaya (2007) observed individuals
copying mathematical equations freehand and could
distinguish level of experience. However, their sample size
was small and participants had large differences in their
mathematical expertise. Extending the approach Cheng
(2014) showed strong correlations between competence and
the third quartile (Q3) pauses. Similarly, Zulkifli (2013)
asked learners of English as a second language to transcribe
English sentences freehand and found Q3 to be an effective
measure of competence. Albehaijan and Cheng (2019) show
the possibility of measuring programming competency
using the same method. Overall, it seems that pause based
measures in transcription tasks have some potential for
assessing competence in various domains.

Despite the promise of freehand transcription, one
limitation is the need for a graphics tablet, an uncommon IT
equipment. Thus, it would be desirable to combine mouse
driven tasks (Arslan et al., 2020; Moss et al., 2006) with the
benefits of capturing micro-behaviors. Cheng (2015) used a
mouse and a response grid on a screen to measure temporal
chunk signals related to mathematical competency.
Participants copied the stimuli by clicking on the matching
symbols that appeared on the grid. Results showed that
clicking to select symbols has potential as a means to
measure mathematical competence.

In this paper we propose an alternative approach to the
assessment of competence administered on a standard
computer by means of mouse clicking: Competence
Assessment by Stimulus Matching (CASM). A preliminary
CASM task design has been created (Fig. 1), that takes into
consideration the different factors that would encourage the
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Figure 1: Preliminary CASM Task Design

use of chunking. The task is presented as a split screen with
the stimulus at the top and the response area at the bottom.
The response area includes words that either match or differ
from the stimulus. Participants are expected to verify the
match or mismatch and use the mouse to mark their
responses as quickly and as accurately as possible. The time
course of clicks in the check boxes will reflect certain
aspects of the test takers language competence, so measures
of competence may be devised for the task.

A key problem is how to design CASM tasks to produce
behaviors that maximally differentiate high and low
competence. Will the micro-behaviors of experts and
novices differ substantially on the task in Fig.1, and so
potentially provide effective temporal chunks measures of
competence? This paper considers the possibilities, but the
possible space of design is large. Some of the factors
influencing this task include: the large spatial distance, the
deliberate misalignment of words, the use of low frequency
words and multi-syllabic words. So, how can we effectively
yet efficiently explore the space? A task analysis approach
is adopted, in particular a somewhat novel approach to the
application of GOMS modeling is used to assess chunks in
memory in order to further determine how the different
design factors impact the task environment.

Task Design Space

The aim is to develop chunk-based Competence Assessment
by Stimulus Matching (CASM) tasks that rely on mouse
clicking, in contrast to Cheng and colleagues pen-on-paper
transcription approach. The key issue is the design space,
where many variables provide us with a plethora of design
choices, from which we must choose those that impact the
distribution of pauses that maximally differentiate experts
from novices.

Screen Layout and Stimulus Positioning: The layout may
encourage the use of chunking to provide experts with an
advantage over novices. Firstly, the spatial distance between
the stimulus and the response areas may be made
deliberately large to impose a task load on individuals, who
must shift their gaze vertically. In turn this may encourage
them to chunk as much as possible. Cheng (2014, 2015)
used distant positioning to improve the Q3 pause measures
of competence. Secondly, the misalignment of the stimulus

and the response is assumed to encourage experts to use
chunks to save the effort of switch gaze, and place some
difficulty on the novices who, because of their limited
language knowledge, might take longer to locate the point
where they last left as they shift their gaze.

Presentation Mode: In presenting the stimuli, one approach
is to have it visible throughout the duration of the task;
“constant display” (Cheng & Rojas-Anaya, 2007; Cheng,
2014; Zulkifli, 2013). The second is “voluntary view”,
where the appearance of the stimuli requires an action by
the individual (Albehaijan and Cheng, 2019).

Stimulus and Response Composition: The general
approach here is to play with effects of stimulus and
response composition or decomposition. This applies at the
whole stimulus (sentence), word (compound words) and
part word (syllable) levels. If working at the word level, one
option is to present stimuli words in a way that, if two were
combined, they would make up a compound word which
may differentially benefit the expert by increasing their
chunk size by treating the two words as one unit rather than
two for a novice (e.g., “counter measure”). We would
expect the benefit to be reflected in the pauses in the task
and hence in measures of competence.

Stimulus Content: Content manipulations include word
frequency (high and low), word length, sentence structure
(simple, complex, incorrect), semantic meaning, etc. Zulkifli
(2013) shows that such manipulations can be applied in
ways that benefit experts to use their knowledge which may
be revealed in chunking measures.

Method

The steps taken to carry out the task analysis are: (1) Design
a number of task variations. (2) Use GOMS to develop flow
charts that predict the processes employed by experts and
novices. (3) Calculate the durations for each process, to
predict differences in pause distributions and lengths. (4)
Run a pilot study to evaluate the modeling results.

GOMS, is a well-established systematic approach to
cognitive task analysis that is usually applied during system
design to test for usability aspects, choose between
candidate designs and understand user behavior (Card,
Moran & Newell, 1983). However, our motivation is not to
understand user performance, per se, but rather to find
designs that constrain their behavior so that micro-
behavioral signals of competence are as robust as possible.

While the GOMS models are usually applied to
understand how the external task environment affects the
individual’s behavior, we on the other hand apply the
analysis in a way to understand the internal processing of
chunks, leading to how that impacts the design of the task.
So, within the framework of GOMS, in our approach, goals
are related to the size of the chunk an individual can hold in
memory. Not only this is affected by the layout of the
interface (externally) but its largely constrained by their
level of familiarity with the words presented (internally).
Among the operators of particular interest to us are those
classified as cognitive operators. Those that deal with the



decomposition of a chunk are decisional processes
concerned with whether certain elements makeup a chunk or
not. Others are related to retrieving chunks from memory,
comparing and verifying. The methods are the internal loop
processing by which the sequence of operators to achieve a
certain sub-goal. Selection rules are choices that test takers
will make to choose between alternative methods based on
the chunks they possess, which will be manifest as different
micro-behaviors and that chunk measures will attempt to
measure.

Allocating Time Durations

All operators are allocated specific time durations that were

mostly extracted from past GOMS studies.

1. Word/syllable recognition: The time for recognizing a
six-letter word, a syllable or a letter is 340ms (John &
Newell, 1989).

2. Cognitive operators: Cognitive operators include
those processes that involve holding a chunk in
memory, decision making, verifying, and comparing.
According to the literature, the average duration for
mental processes is between 50 and 70ms (Gray &
Boehm-Davis, 2000; Olson & Olson, 1990; John &

Newell, 1989). The proposed tasks involve low-level
cognitive processing, so 50ms is chosen.

3. Chunk retrieval: This process was allocated a duration
of 50ms, following similar studies involving immediate
copying (John, 1988, as cited in Olson & Olson, 1990).

4. Mouse move: A quick pilot experiment was conducted
on the author and an additional participant. The average
time for moving between response items was 500ms,
and 700ms for moving from the top screen to the
bottom. The second was used as the duration of the
action to reveal stimuli in voluntary display tasks.

5. Eye movement: The time for a saccade is 30ms
(Russo, 1978, cited in Card et al.,1983).

Analysis

Task Analysis: Flowcharts

Since the design space is large it is impossible to examine
all combinations of variables here, so we focus on the
design in Fig. 1 as an exemplar. The main features of the
design are the layout, use of low frequency words, inclusion
of disyllabic and trisyllabic words, and presenting the
stimulus in constant display mode. The flowcharts in Fig. 2
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Figure3: Novice Flowchart
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and Fig. 3 are high-level representations that conceptualize

how an ideal expert and an ideal novice, in the English

language, would approach the indicated task. For the
purpose of this study, our definition of an expert is someone
who possess a vocabulary that enables them to fluently read

a piece of text while simultaneously processing its meaning.

A novice, on the other hand, is someone with a small

vocabulary size, and therefore their reading is much slower

as they exert much of their cognitive effort in phonetically
processing presented words.

In general, the processing of chunks suggested in both
flowcharts act in nested loops. This is similar to Crump and
Logan’s (2010) inner-outer loop theory of typing, where the
outer loop receives words from reading that are then
individually passed to an inner loop that translates the word
into letters for keystrokes. In our case, there are different
loops that work together in a nested fashion for grouping
bits of a chunk, decomposing them, transferring them
individually to be compared, and then back again to process
the next chunk.

Expert Flowchart, Fig. 2: For the sake of analysis the

expert is assumed to chunk three words at a time, so they are

predicted to have the following pattern of steps:

1. Begin by viewing stimulus, looping three times around
ELP1 to create a chunk of three words. By the third
loop, the WM is assumed to have reached its capacity
and therefore a decision is made to end WM loading.
Time elapsed to this point totals 1380ms (3 x (340 +
50 + 50) + (2 x 30)).

2. The eyes shift to the response area (time duration
30ms). With this movement, the second loop of
processes (ELP2) is triggered, which includes reading
the word displayed, selecting target word from WM,
comparing the words, deciding and finally moving the
mouse to click. Accordingly, the step duration is
990ms. The total time, from the start to the first mouse
click, the initial pause, is 2400ms.

3. The clicking action of the first word takes 250ms.

4. The expert would then continue to loop through ELP2
to make their second and third response for the words
“meringue” and “aardvark” respectively (Fig 4). Pauses
for these two responses are both 1070ms each.

5. Once the first three-word chunk is complete, they loop
up to the stimulus to gather the next chunk of three
words (ELP3). The process of deciding to do this and
looking up takes 160ms. This duration is the first part
of the pause that precedes the first click in the next
group of words.

This analysis is depicted on the solid blue line in Fig 4,
which shows pause duration for successive words. The first

point is the pause before “indict”, comprised of steps 1 and
2. The second and third points are the result of step 4. The
fourth point, the pause prior to “ingenue”, is comprised of
step 5 and 1 again. Hence, experts are expected to exhibit
long pauses for grouping words into chunks, with short
pauses between responses from within the chunks.
Novice Flowchart, Fig. 3: A novice is assumed to process
unfamiliar words by breaking them into parts and then
regrouping them to form a chunk. Therefore, for modeling
purposes a novice would process a word by the number of
syllables it contains. In Fig. 4, the first half of the words are
disyllabic while the others are trisyllabic. Hence, a novice’s
steps for processing are assumed as follows:

1. Begin by looping through NLP1 twice taking 910ms

(2 x (340 + 50 + 50) + 30). They then move their

eyes to the response area (30ms) to process the

presented word and make a move to click (990ms). So,
prior to making their first click their total pause would
be 1930ms.

Next, they click to make a response (250ms).

3. Finally, they would loop up for the next word, NLP2,
with the duration for deciding, gazing up and locating
the next item is 110ms. This will be calculated as part
of the pause that precedes the next response click.
These pause durations are represented on the solid
orange line in Fig 4. While the first point is comprised
of process 1, the rest are composed of processes 1 and
3. The small rise in the duration of the final three points
to 3440ms is the result of processing trisyllabic words,
where the number of times they loop through NLP1 (in
step 1) would increase to three. Accordingly, a novice
is predicted to experience long pauses between all
clicks, and slightly longer pauses when the number of
syllables in a word increases. Overall, the predicted
profiles of the expert and novice are substantially
different.

N

Effects of Various Factors

Other factors and their potential effects were analyzed in the
same manner. By changing the display of the stimuli from
constant display to voluntary view, the stimulus is now
concealed and may only be revealed by hovering the mouse
over it in the top area. As a result, extra processes are added
to the expert’s and novice’s models for the hover actions.
This increases the lengths of long pauses, so further
increases the difference in profiles between experts and
novices in Fig. 4 for the voluntary view condition, with two
of the expert’s pauses increasing, whereas all the novice’s
pauses are higher. The first half of rows in Table 1
summarizes all of the separate pieces of analysis for the
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presentation factor, showing higher discrimination among
individuals under the voluntary view mode. The median was
chosen to represent the data, however in calculating the
mean, a similar pattern of data existed; showing no
difference in the overall results.

Models were created to analyze the effect of pairing
different types of stimuli with responses, the range of data
between the first row and last row of the first half of Table 1
summarizes these modelling results. In addition to matching
words with words, we looked at the possibility of pairing
parts of word in the stimuli with parts of words in the
response (i.e., syllables with syllables). Such presentation
alters the expert’s model to include two additional loops,
one at the start to group syllables into words, and one at the
end to decompose the chunked words back to their syllables.
This in turn affects the shape of their pause pattern (Fig. 5).
A novice on the other hand, is predicted to treat each
syllable as a separate chunk, processing each syllable in one
large loop causing them to shift their gaze frequently
between syllables. Accordingly, their pause pattern is a
straight line (Fig. 5).

The other possibility is to pair parts of words in the
stimuli with words in the response, for example matching
the syllables “in” “dict” with the word “indict”. As with the
previous task, experts are expected to chunk syllables and
form words in their WM and then matching them directly
with whole words in the response. The graph, Fig. 6, for this
model predicts that an expert’s pause pattern would be
similar to that found in Fig. 4, however with an increase in
the long pauses, in particular, prior to chunking trisyllabic
words. If novices were assumed to treat each syllable as a
separate chunk, the model predicts that they would be
shifting their gaze many times prior to clicking a response
causing their overall pause durations to be higher than
previously seen (Fig. 6). The difference in pause measures is
the highest for this task design (Table 1).

Finally matching words in the stimuli with parts of words
(opposed to the above task) was tested. The expert’s pattern
of pauses is similar to those found in Fig.5 however, with a
decrease in the overall duration (Fig.7). On the other hand, a
novice’s pause pattern differs from those depicted in Figs. 4,
5 and 6 with long pauses prior to matching the first part of a
word followed by shorter pauses for each subsequent part of
that particular word (Fig. 7). The reason behind the change
in pattern is due to the number of loops experienced by the
novice. While their processing was always composed of
either one or two loops, in this task a third loop appears at
the bottom of the model for decomposing the chunk, and
comparing parts. This design has the least effect on the
pause measures (Table 1).

Evaluating Model Results

To test the model, a pilot study was conducted with two
participants. The participants were picked and classified
after assessing their vocabulary size using a standard
vocabulary size test (Nation & Beglar, 2007), with the high
competent (HC) individual scoring at the 16,800-word level
and the less competent (LC) at the 8,100-word level.

Based on the predictions in pause measures, the pilot was
developed to include four blocks of twelve trials under the
conditions of matching word for word and part to word in
both constant display and voluntary view. Although, the
number of participants was limited, the amount of data was
substantial; 48 pause measures were extracted from 384
mouse clicks per individual. The mean of median pauses
was calculated for each block separately (Table 1). Overall,
findings reveal that patterns between the model and
observations are consistent, with the LC experiencing higher
pause durations than the HC across all types of tasks.
Specifically, out of the 48 trials, only two of the LC trials
scored better, i.e., having shorter pauses. It is worth noting
however that the value of those measures were small

Table 1: The effects of design variables on pause durations

. . .. Median

Model vs. Pilot Type of Display | S-R Composition Novice | Expert | Differ.
Word to word 2275 1070 1205
Constant Display Part to word 3175 1120 2055

. (CD) Part to part 1520 1020 500

ioEEiTg IREsEs Word to part 1070 1020 50

Voluntary View
(W) Word to word 3205 1070 2135
. . Mean of Medians

Type of Display | S-R composition Novice | Expert | Differ.

Constant Display Word to word 2269 1287 982
Pilot Experiment (CD) Parttoword | 3856 | 2502 | 1354
Bl Voluntary View | Wordtoword | 2116 | 942 | 1174
(VV) Part to word 4235 1569 2666




(=150msc), occurring on items that contained low frequency
words and would not be expected to distinguish participants
well. Furthermore, confirming our predictions, higher
discriminations were observed under voluntary view,
especially when combined with part to word tasks.

Discussion

The aim of the present study was twofold. Firstly, to
introduce the method of Competence Assessment by
Stimulus Matching. CASM attempts to combine the benefits
of mouse driven tasks for assessing chunking behavior (c.f.,
Arslan et al., 2020; Moss et al., 2006) with the benefits of
temporal chunk measures for micro-behavior analysis (c.f.,
Albehaijan & Cheng, 2019; Cheng, 2014; Zulkifli, 2013). In
other words, CASM aims to obtain measures of competence
based on rich chunk level data at a time scale of 1s with the
convenience of standard IT interface devices. From the
preliminary results it appears that CASM has potential to
compete with the freehand transcription approach and also
Cheng’s (2015) method that used a mouse and a selection
grid. The magnitudes of predicted differences of pauses
between the expert and novice are comparable to the
magnitudes observed in our pilot as well as the empirical
evaluation of those previous approaches.

The second aim was to explore some of the large design
space of CASM tasks by using GOMS models to examine
the effects of different factors on the processes of chunks. A
reason for using GOMS and not a sophisticated cognitive
model such as ACT-R (Anderson, 1998), is that we were
looking at an efficient method for finding effective designs
without all of the detail and effort required to build a full
cognitive model. The aim is not to explain in precise detail
all of the cognitive steps associated with doing the task,
therefore what we needed was an engineering tool and not a
scientific one. The produced models provided us with useful
guides for designing CASM tasks, as they represent general
differences in the processes of an ideal expert and an ideal
novice. In between these two models would exist various
intermediate levels. Someone who is gradually learning the
language may behave according to a mixture of the models.
Their decomposition of words may vary depending on their
level of familiarity with the words presented, so their
looping structure would differ. Variations at the level of
individual loop structures would not affect the overall
results as these differences would be reflected on the
expert’s and novice’s models, however the number of each
type of loop that exist within a model determines the
difference.

In using GOMS to analyze the tasks, it was possible to
assess chunks in memory and predict pause behaviors. The
modelling results show how different patterns of nested
loops affect the shape of pause distributions. In the task of
matching words with words (Fig 4), an expert’s pattern
included few long pauses separated by successive short
pauses, while novices were shown to have long pauses
between clicks. This is explained by how their language
knowledge affects the process of chunking. Experts are

expected to recognize words in a fluent manner, providing
them with the advantage of loading into their memory as
many words as possible (see ELP1 in Fig. 2), explaining the
few long pauses. The short pauses however, are due to the
transfer of words in memory from ELP1 to ELP2. Novices,
on the other hand, spend time in processing a word, by
breaking it apart into syllables and then regrouping them
(see NLP1 in Fig. 3). This lengthy process is expected to
load their WM, limiting their ability to hold one word in a
chunk and causing frequent gaze shifting between
responses. This indicates that behaviors are very much
determined by the chunking structure of the participants.

In terms of the design space what task factors are
predicted to mostly distinguish between different
competence levels? First, the spatial distance between the
stimulus and response plays a role in encouraging the use of
chunks (Cheng, 2014). If they were close, then experts and
novices might rely on quick gazes rather than chunking,
causing both to exhibit similar patterns.

Second, for the presentation mode, the analysis showed
no effect on the pattern of pauses but a greater difference
between pause measures was identified under voluntary
view (Table 1). Confirmed by the pilot study, this mode
seems potentially more effective than constant display.

Third, with respect to stimulus and response composition,
pairing syllables in the stimuli with words in the response
seems to be the most effective option. According to GOMS,
constructing the stimulus in this way makes it easier for
novices to recognize a syllable and move to the response for
comparison. However, the complexity of having multi-
syllabic words in the response forces novices to shift their
gaze as many times as required to have all parts of the word
matched. Predictions were confirmed by the results of the
pilot study showing longer pauses for novices in these types
of tasks, making it seem most effective in exploiting the
difference between experts and novices (Table 1).

Fourth, the difference between the model and pilot results
are reasonably close, which drives us to conclude that there
is potential for such approach. However, one explanation for
the absolute difference between the model and each
participant being relatively large may be due to variations in
strategies within each participant. To control for that, task
instructions are being tightened.

GOMS has helped in visualizing the kind of designs most
suitable for developing CASM tasks that use temporal
chunk measures to assess competency in natural language.
We are planning on carrying out further empirical studies.
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