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Abstract 

It has been shown that in hand-written transcription tasks 
temporal micro-behavioral chunk signals hold promise as 
measures of competence in various domains (e.g., Cheng, 
2014). But data capture under that an approach requires the 
use of graphics tablets which are relatively uncommon. In this 
paper we propose and explore an alternative method – 
Competence Assessment by Stimulus Matching (CASM). 
This new method uses simple mouse-driven interfaces to 
produce temporal chunk signals as measures of learner’s 
ability. However, it is not obvious what features of CASM 
will produce effective competence measures and the design 
space of CASM tasks is large. Thus, this paper uses GOMS 
modelling in order to explore the design space to find factors 
that will maximize the discrimination of chunk measures of 
competence. Results of a pilot experiment show that CASM 
has potential in using chunk signals to measure competence in 
the domain of English language. 

Keywords: chunking; GOMS; language competence; pause 
analysis; stimulus matching  

Introduction 

This paper concerns the assessment of learners’ competence 

in knowledge rich domains, using the analysis of computer 

logs of micro-behaviors in task activities. Moss, Kotovsky, 

and Cagan (2006), in the domain of engineering, and 

Arslan, Keehner, Gong, Katz, & Yan (2020), in the domain 

of mathematics, used drag and drop tasks to examine the 

underlying cognitive processes in either replicating subject-

related diagrams or solving mathematical problems, 

respectively. Another study analyzed pauses during text 

composition by means of key-stroke logging (Schilperoord, 

2002). These methods were successful in extracting and 

associating behavioral signals with cognitive processes, by 

logging actions at a time scale of ≈10 seconds.  

An alternative approach that holds some promise is to log 

and analyze micro-behaviors at a time scale of 1 second and 

less. Machine learning was used to analyze large amounts of 

data logged during freehand writing (Stahovich & Lin, 

2016) and drawing (Oviatt, Hang, Zhou, Yu, & Chen, 2018) 

during problem-solving tasks. Their findings revealed 

significant correlations between pause durations and 

proficiency levels.  

In contrast, Cheng and colleagues have used cognitive 

chunking theory to develop methods that require less data 

using short transcription tasks. According to Cowan (2001) 

and Miller (1956), “chunking” is a process by which 

perceived information are grouped and stored in working 

memory (WM), and since information is presented as units, 

people tend to group these units into “chunks” of 

meaningful information. The number of “chunks” stored is 

constrained by one’s mental capacity, however Cowan 

(2001) also points out that the capacity is also affected by 

the amount of prior knowledge one holds in long term 

memory in the expert domain. So, in the experiments carried 

out by Cheng and colleagues, they examined differences in 

pause behavior of novices and experts whilst engaging in 

transcription tasks to probe chunk structures in memory. 

Cheng and Rojas-Anaya (2007) observed individuals 

copying mathematical equations freehand and could 

distinguish level of experience. However, their sample size 

was small and participants had large differences in their 

mathematical expertise. Extending the approach Cheng 

(2014) showed strong correlations between competence and 

the third quartile (Q3) pauses. Similarly, Zulkifli (2013) 

asked learners of English as a second language to transcribe 

English sentences freehand and found Q3 to be an effective 

measure of competence. Albehaijan and Cheng (2019) show 

the possibility of measuring programming competency 

using the same method. Overall, it seems that pause based 

measures in transcription tasks have some potential for 

assessing competence in various domains.  

Despite the promise of freehand transcription, one 

limitation is the need for a graphics tablet, an uncommon IT 

equipment. Thus, it would be desirable to combine mouse 

driven tasks (Arslan et al., 2020; Moss et al., 2006) with the 

benefits of capturing micro-behaviors. Cheng (2015) used a 

mouse and a response grid on a screen to measure temporal 

chunk signals related to mathematical competency. 

Participants copied the stimuli by clicking on the matching 

symbols that appeared on the grid. Results showed that 

clicking to select symbols has potential as a means to 

measure mathematical competence.  

In this paper we propose an alternative approach to the 

assessment of competence administered on a standard 

computer by means of mouse clicking: Competence 

Assessment by Stimulus Matching (CASM). A preliminary 

CASM task design has been created (Fig. 1), that takes into 

consideration the different factors that would encourage the 



use of chunking. The task is presented as a split screen with 

the stimulus at the top and the response area at the bottom. 

The response area includes words that either match or differ 

from the stimulus. Participants are expected to verify the 

match or mismatch and use the mouse to mark their 

responses as quickly and as accurately as possible. The time 

course of clicks in the check boxes will reflect certain 

aspects of the test takers language competence, so measures 

of competence may be devised for the task.  

A key problem is how to design CASM tasks to produce 

behaviors that maximally differentiate high and low 

competence. Will the micro-behaviors of experts and 

novices differ substantially on the task in Fig.1, and so 

potentially provide effective temporal chunks measures of 

competence? This paper considers the possibilities, but the 

possible space of design is large. Some of the factors 

influencing this task include: the large spatial distance, the 

deliberate misalignment of words, the use of low frequency 

words and multi-syllabic words. So, how can we effectively 

yet efficiently explore the space? A task analysis approach 

is adopted, in particular a somewhat novel approach to the 

application of GOMS modeling is used to assess chunks in 

memory in order to further determine how the different 

design factors impact the task environment. 

Task Design Space 

The aim is to develop chunk-based Competence Assessment 

by Stimulus Matching (CASM) tasks that rely on mouse 

clicking, in contrast to Cheng and colleagues pen-on-paper 

transcription approach. The key issue is the design space, 

where many variables provide us with a plethora of design 

choices, from which we must choose those that impact the 

distribution of pauses that maximally differentiate experts 

from novices.  

Screen Layout and Stimulus Positioning: The layout may 

encourage the use of chunking to provide experts with an 

advantage over novices. Firstly, the spatial distance between 

the stimulus and the response areas may be made 

deliberately large to impose a task load on individuals, who 

must shift their gaze vertically. In turn this may encourage 

them to chunk as much as possible. Cheng (2014, 2015) 

used distant positioning to improve the Q3 pause measures 

of competence. Secondly, the misalignment of the stimulus 

and the response is assumed to encourage experts to use 

chunks to save the effort of switch gaze, and place some 

difficulty on the novices who, because of their limited 

language knowledge, might take longer to locate the point 

where they last left as they shift their gaze. 

Presentation Mode: In presenting the stimuli, one approach 

is to have it visible throughout the duration of the task; 

“constant display” (Cheng & Rojas-Anaya, 2007; Cheng, 

2014; Zulkifli, 2013). The second is “voluntary view”, 

where the appearance of the stimuli requires an action by 

the individual (Albehaijan and Cheng, 2019). 

Stimulus and Response Composition: The general 

approach here is to play with effects of stimulus and 

response composition or decomposition. This applies at the 

whole stimulus (sentence), word (compound words) and 

part word (syllable) levels. If working at the word level, one 

option is to present stimuli words in a way that, if two were 

combined, they would make up a compound word which 

may differentially benefit the expert by increasing their 

chunk size by treating the two words as one unit rather than 

two for a novice (e.g., “counter measure”). We would 

expect the benefit to be reflected in the pauses in the task 

and hence in measures of competence.  

Stimulus Content:  Content manipulations include word 

frequency (high and low), word length, sentence structure 

(simple, complex, incorrect), semantic meaning, etc. Zulkifli 

(2013) shows that such manipulations can be applied in 

ways that benefit experts to use their knowledge which may 

be revealed in chunking measures.   

Method 

The steps taken to carry out the task analysis are: (1) Design 

a number of task variations. (2) Use GOMS to develop flow 

charts that predict the processes employed by experts and 

novices. (3) Calculate the durations for each process, to 

predict differences in pause distributions and lengths. (4) 

Run a pilot study to evaluate the modeling results.  

GOMS, is a well-established systematic approach to 

cognitive task analysis that is usually applied during system 

design to test for usability aspects, choose between 

candidate designs and understand user behavior (Card, 

Moran & Newell, 1983). However, our motivation is not to 

understand user performance, per se, but rather to find 

designs that constrain their behavior so that micro-

behavioral signals of competence are as robust as possible.  

While the GOMS models are usually applied to 

understand how the external task environment affects the 

individual’s behavior, we on the other hand apply the 

analysis in a way to understand the internal processing of 

chunks, leading to how that impacts the design of the task. 

So, within the framework of GOMS, in our approach, goals 

are related to the size of the chunk an individual can hold in 

memory. Not only this is affected by the layout of the 

interface (externally) but its largely constrained by their 

level of familiarity with the words presented (internally). 

Among the operators of particular interest to us are those 

classified as cognitive operators. Those that deal with the 

 
Figure 1: Preliminary CASM Task Design  

 



decomposition of a chunk are decisional processes 

concerned with whether certain elements makeup a chunk or 

not. Others are related to retrieving chunks from memory, 

comparing and verifying. The methods are the internal loop 

processing by which the sequence of operators to achieve a 

certain sub-goal. Selection rules are choices that test takers 

will make to choose between alternative methods based on 

the chunks they possess, which will be manifest as different 

micro-behaviors and that chunk measures will attempt to 

measure. 

Allocating Time Durations 

All operators are allocated specific time durations that were 

mostly extracted from past GOMS studies. 

1. Word/syllable recognition: The time for recognizing a 

six-letter word, a syllable or a letter is 340ms (John & 

Newell, 1989). 

2. Cognitive operators: Cognitive operators include 

those processes that involve holding a chunk in 

memory, decision making, verifying, and comparing. 

According to the literature, the average duration for 

mental processes is between 50 and 70ms (Gray & 

Boehm-Davis, 2000; Olson & Olson, 1990; John & 

Newell, 1989). The proposed tasks involve low-level 

cognitive processing, so 50ms is chosen.  

3. Chunk retrieval: This process was allocated a duration 

of 50ms, following similar studies involving immediate 

copying (John, 1988, as cited in Olson & Olson, 1990).  

4. Mouse move: A quick pilot experiment was conducted 

on the author and an additional participant. The average 

time for moving between response items was 500ms, 

and 700ms for moving from the top screen to the 

bottom. The second was used as the duration of the 

action to reveal stimuli in voluntary display tasks.  

5. Eye movement: The time for a saccade is 30ms 

(Russo, 1978, cited in Card et al.,1983). 

Analysis 

Task Analysis: Flowcharts 

Since the design space is large it is impossible to examine 

all combinations of variables here, so we focus on the 

design in Fig. 1 as an exemplar. The main features of the 

design are the layout, use of low frequency words, inclusion 

of disyllabic and trisyllabic words, and presenting the 

stimulus in constant display mode. The flowcharts in Fig. 2 

 
                        Figure 2: Expert Flowchart 

 

Figure3: Novice Flowchart 



and Fig. 3 are high-level representations that conceptualize 

how an ideal expert and an ideal novice, in the English 

language, would approach the indicated task. For the 

purpose of this study, our definition of an expert is someone 

who possess a vocabulary that enables them to fluently read 

a piece of text while simultaneously processing its meaning. 

A novice, on the other hand, is someone with a small 

vocabulary size, and therefore their reading is much slower 

as they exert much of their cognitive effort in phonetically 

processing presented words.      

In general, the processing of chunks suggested in both 

flowcharts act in nested loops. This is similar to Crump and 

Logan’s (2010) inner-outer loop theory of typing, where the 

outer loop receives words from reading that are then 

individually passed to an inner loop that translates the word 

into letters for keystrokes. In our case, there are different 

loops that work together in a nested fashion for grouping 

bits of a chunk, decomposing them, transferring them 

individually to be compared, and then back again to process 

the next chunk. 

Expert Flowchart, Fig. 2: For the sake of analysis the 

expert is assumed to chunk three words at a time, so they are 

predicted to have the following pattern of steps: 

1. Begin by viewing stimulus, looping three times around 

ELP1 to create a chunk of three words. By the third 

loop, the WM is assumed to have reached its capacity 

and therefore a decision is made to end WM loading. 

Time elapsed to this point totals 1380ms (3 × (340 +
50 + 50) + (2 × 30)). 

2. The eyes shift to the response area (time duration 

30ms). With this movement, the second loop of 

processes (ELP2) is triggered, which includes reading 

the word displayed, selecting target word from WM, 

comparing the words, deciding and finally moving the 

mouse to click. Accordingly, the step duration is 

990ms. The total time, from the start to the first mouse 

click, the initial pause, is 2400ms. 

3. The clicking action of the first word takes 250ms.  

4. The expert would then continue to loop through ELP2 

to make their second and third response for the words 

“meringue” and “aardvark” respectively (Fig 4). Pauses 

for these two responses are both 1070ms each.  

5. Once the first three-word chunk is complete, they loop 

up to the stimulus to gather the next chunk of three 

words (ELP3). The process of deciding to do this and 

looking up takes 160ms. This duration is the first part 

of the pause that precedes the first click in the next 

group of words. 

This analysis is depicted on the solid blue line in Fig 4, 

which shows pause duration for successive words. The first 

point is the pause before “indict”, comprised of steps 1 and 

2. The second and third points are the result of step 4. The 

fourth point, the pause prior to “ingenue”, is comprised of 

step 5 and 1 again. Hence, experts are expected to exhibit 

long pauses for grouping words into chunks, with short 

pauses between responses from within the chunks.  

Novice Flowchart, Fig. 3: A novice is assumed to process 

unfamiliar words by breaking them into parts and then 

regrouping them to form a chunk. Therefore, for modeling 

purposes a novice would process a word by the number of 

syllables it contains. In Fig. 4, the first half of the words are 

disyllabic while the others are trisyllabic. Hence, a novice’s 

steps for processing are assumed as follows: 

1. Begin by looping through NLP1 twice taking 910ms 

(2 × (340 + 50 + 50) + 30). They then move their 

eyes to the response area (30ms) to process the 

presented word and make a move to click (990ms). So, 

prior to making their first click their total pause would 

be 1930ms. 

2. Next, they click to make a response (250ms).  

3. Finally, they would loop up for the next word, NLP2, 

with the duration for deciding, gazing up and locating 

the next item is 110ms. This will be calculated as part 

of the pause that precedes the next response click. 

These pause durations are represented on the solid 

orange line in Fig 4. While the first point is comprised 

of process 1, the rest are composed of processes 1 and 

3. The small rise in the duration of the final three points 

to 3440ms is the result of processing trisyllabic words, 

where the number of times they loop through NLP1 (in 

step 1) would increase to three. Accordingly, a novice 

is predicted to experience long pauses between all 

clicks, and slightly longer pauses when the number of 

syllables in a word increases. Overall, the predicted 

profiles of the expert and novice are substantially 

different.  

 Effects of Various Factors 

Other factors and their potential effects were analyzed in the 

same manner. By changing the display of the stimuli from 

constant display to voluntary view, the stimulus is now 

concealed and may only be revealed by hovering the mouse 

over it in the top area. As a result, extra processes are added 

to the expert’s and novice’s models for the hover actions. 

This increases the lengths of long pauses, so further 

increases the difference in profiles between experts and 

novices in Fig. 4 for the voluntary view condition, with two 

of the expert’s pauses increasing, whereas all the novice’s 

pauses are higher. The first half of rows in Table 1 

summarizes all of the separate pieces of analysis for the 

 
Figure 4: Predicted pattern of pauses for experts and novices in the constant display and voluntary view conditions 
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Figure 5: Pause pattern in matching 

parts of words with parts of words 

 
Figure 6: Pause pattern in matching 

parts of words with words 

 

 
Figure 7: Pause pattern in matching 

words with parts of words 

 

presentation factor, showing higher discrimination among 

individuals under the voluntary view mode. The median was 

chosen to represent the data, however in calculating the 

mean, a similar pattern of data existed; showing no 

difference in the overall results.  

Models were created to analyze the effect of pairing 

different types of stimuli with responses, the range of data 

between the first row and last row of the first half of Table 1 

summarizes these modelling results. In addition to matching 

words with words, we looked at the possibility of pairing 

parts of word in the stimuli with parts of words in the 

response (i.e., syllables with syllables). Such presentation 

alters the expert’s model to include two additional loops, 

one at the start to group syllables into words, and one at the 

end to decompose the chunked words back to their syllables. 

This in turn affects the shape of their pause pattern (Fig. 5). 

A novice on the other hand, is predicted to treat each 

syllable as a separate chunk, processing each syllable in one 

large loop causing them to shift their gaze frequently 

between syllables. Accordingly, their pause pattern is a 

straight line (Fig. 5).  

The other possibility is to pair parts of words in the 

stimuli with words in the response, for example matching 

the syllables “in” “dict” with the word “indict”. As with the 

previous task, experts are expected to chunk syllables and 

form words in their WM and then matching them directly 

with whole words in the response. The graph, Fig. 6, for this 

model predicts that an expert’s pause pattern would be 

similar to that found in Fig. 4, however with an increase in 

the long pauses, in particular, prior to chunking trisyllabic 

words. If novices were assumed to treat each syllable as a 

separate chunk, the model predicts that they would be 

shifting their gaze many times prior to clicking a response 

causing their overall pause durations to be higher than 

previously seen (Fig. 6). The difference in pause measures is 

the highest for this task design (Table 1). 

Finally matching words in the stimuli with parts of words 

(opposed to the above task) was tested. The expert’s pattern 

of pauses is similar to those found in Fig.5 however, with a 

decrease in the overall duration (Fig.7). On the other hand, a 

novice’s pause pattern differs from those depicted in Figs. 4, 

5 and 6 with long pauses prior to matching the first part of a 

word followed by shorter pauses for each subsequent part of 

that particular word (Fig. 7). The reason behind the change 

in pattern is due to the number of loops experienced by the 

novice. While their processing was always composed of 

either one or two loops, in this task a third loop appears at 

the bottom of the model for decomposing the chunk, and 

comparing parts. This design has the least effect on the 

pause measures (Table 1).  

Evaluating Model Results  

To test the model, a pilot study was conducted with two 

participants. The participants were picked and classified 

after assessing their vocabulary size using a standard 

vocabulary size test (Nation & Beglar, 2007), with the high 

competent (HC) individual scoring at the 16,800-word level 

and the less competent (LC) at the 8,100-word level.  

Based on the predictions in pause measures, the pilot was 

developed to include four blocks of twelve trials under the 

conditions of matching word for word and part to word in 

both constant display and voluntary view. Although, the 

number of participants was limited, the amount of data was 

substantial; 48 pause measures were extracted from 384 

mouse clicks per individual. The mean of median pauses 

was calculated for each block separately (Table 1).  Overall, 

findings reveal that patterns between the model and 

observations are consistent, with the LC experiencing higher 

pause durations than the HC across all types of tasks. 

Specifically, out of the 48 trials, only two of the LC trials 

scored better, i.e., having shorter pauses. It is worth noting 

however that the value of those measures were small 

Table 1: The effects of design variables on pause durations 

Model vs. Pilot Type of Display S-R Composition 
Median 

Novice Expert Differ. 

Modelling Results 

Constant Display 

(CD) 

Word to word 2275 1070 1205 

Part to word 3175 1120 2055 

Part to part 1520 1020 500 

Word to part 1070 1020 50 

Voluntary View 

(VV) 
Word to word 3205 1070 2135 

 Type of Display S-R  composition 
Mean of Medians 

Novice Expert Differ. 

Pilot Experiment 

Results 

Constant Display 

(CD) 

Word to word 2269 1287 982 

Part to word 3856 2502 1354 

Voluntary View 

(VV) 

Word to word 2116 942 1174 

Part to word 4235 1569 2666 

 



(≈150msc), occurring on items that contained low frequency 

words and would not be expected to distinguish participants 

well. Furthermore, confirming our predictions, higher 

discriminations were observed under voluntary view, 

especially when combined with part to word tasks.   

Discussion  

The aim of the present study was twofold. Firstly, to 

introduce the method of Competence Assessment by 

Stimulus Matching. CASM attempts to combine the benefits 

of mouse driven tasks for assessing chunking behavior (c.f., 

Arslan et al., 2020; Moss et al., 2006) with the benefits of 

temporal chunk measures for micro-behavior analysis (c.f., 

Albehaijan & Cheng, 2019; Cheng, 2014; Zulkifli, 2013). In 

other words, CASM aims to obtain measures of competence 

based on rich chunk level data at a time scale of 1s with the 

convenience of standard IT interface devices. From the 

preliminary results it appears that CASM has potential to 

compete with the freehand transcription approach and also 

Cheng’s (2015) method that used a mouse and a selection 

grid. The magnitudes of predicted differences of pauses 

between the expert and novice are comparable to the 

magnitudes observed in our pilot as well as the empirical 

evaluation of those previous approaches.   

The second aim was to explore some of the large design 

space of CASM tasks by using GOMS models to examine 

the effects of different factors on the processes of chunks. A 

reason for using GOMS and not a sophisticated cognitive 

model such as ACT-R (Anderson, 1998), is that we were 

looking at an efficient method for finding effective designs 

without all of the detail and effort required to build a full 

cognitive model.  The aim is not to explain in precise detail 

all of the cognitive steps associated with doing the task, 

therefore what we needed was an engineering tool and not a 

scientific one. The produced models provided us with useful 

guides for designing CASM tasks, as they represent general 

differences in the processes of an ideal expert and an ideal 

novice. In between these two models would exist various 

intermediate levels. Someone who is gradually learning the 

language may behave according to a mixture of the models. 

Their decomposition of words may vary depending on their 

level of familiarity with the words presented, so their 

looping structure would differ. Variations at the level of 

individual loop structures would not affect the overall 

results as these differences would be reflected on the 

expert’s and novice’s models, however the number of each 

type of loop that exist within a model determines the 

difference.   

In using GOMS to analyze the tasks, it was possible to 

assess chunks in memory and predict pause behaviors. The 

modelling results show how different patterns of nested 

loops affect the shape of pause distributions. In the task of 

matching words with words (Fig 4), an expert’s pattern 

included few long pauses separated by successive short 

pauses, while novices were shown to have long pauses 

between clicks. This is explained by how their language 

knowledge affects the process of chunking. Experts are 

expected to recognize words in a fluent manner, providing 

them with the advantage of loading into their memory as 

many words as possible (see ELP1 in Fig. 2), explaining the 

few long pauses. The short pauses however, are due to the 

transfer of words in memory from ELP1 to ELP2. Novices, 

on the other hand, spend time in processing a word, by 

breaking it apart into syllables and then regrouping them 

(see NLP1 in Fig. 3). This lengthy process is expected to 

load their WM, limiting their ability to hold one word in a 

chunk and causing frequent gaze shifting between 

responses. This indicates that behaviors are very much 

determined by the chunking structure of the participants.  

In terms of the design space what task factors are 

predicted to mostly distinguish between different 

competence levels? First, the spatial distance between the 

stimulus and response plays a role in encouraging the use of 

chunks (Cheng, 2014). If they were close, then experts and 

novices might rely on quick gazes rather than chunking, 

causing both to exhibit similar patterns.  

Second, for the presentation mode, the analysis showed 

no effect on the pattern of pauses but a greater difference 

between pause measures was identified under voluntary 

view (Table 1). Confirmed by the pilot study, this mode 

seems potentially more effective than constant display.  

Third, with respect to stimulus and response composition, 

pairing syllables in the stimuli with words in the response 

seems to be the most effective option. According to GOMS, 

constructing the stimulus in this way makes it easier for 

novices to recognize a syllable and move to the response for 

comparison. However, the complexity of having multi-

syllabic words in the response forces novices to shift their 

gaze as many times as required to have all parts of the word 

matched. Predictions were confirmed by the results of the 

pilot study showing longer pauses for novices in these types 

of tasks, making it seem most effective in exploiting the 

difference between experts and novices (Table 1).  

Fourth, the difference between the model and pilot results 

are reasonably close, which drives us to conclude that there 

is potential for such approach. However, one explanation for 

the absolute difference between the model and each 

participant being relatively large may be due to variations in 

strategies within each participant. To control for that, task 

instructions are being tightened.  

GOMS has helped in visualizing the kind of designs most 

suitable for developing CASM tasks that use temporal 

chunk measures to assess competency in natural language. 

We are planning on carrying out further empirical studies.  
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