
The Algebra of Cognitive States: Towards modelling the Serial Position Curve
Stefan Reimann (stefan.reimann@protonmail.com)

Department of Psychology, Cognitive Psychology
University of Zurich, Switzerland

Abstract

A computational framework for modelling storage and re-
trieval of information in human working memory is proposed.
The aim is to analyse the corresponding algebra alone, espe-
cially with regard to its congruence with empirical findings in-
cluding the serial position curve. That algebra builds on the
high-dimensional holographic representation of information
together with two operations for computation: multiplication
for binding and addition for bundling. Unlike other models,
the bundling operation defined is not associative and preserves
serial order information in terms of activation gradients. Con-
sequently, the cognitive states representing a memorised list
exhibit a primacy as well as a recency effect generically. The
typical concave-up and asymmetrically shaped serial position
curve is derived as a linear combination of those gradients. The
serial position curve for cued recall, including similar items, is
derived within this formalism. Quantitative implications of the
algebra are shown to agree well with empirical data from basic
cognitive tasks.
Keywords: human working memory; activation gradi-
ents; serial position curve; holographic representation; high-
dimensional computing

Introduction
Human Working Memory is commonly regarded as a func-
tional subsystem of memory, whose goal is to hold and to
organise information for some short period of time in order
to make it available for higher cognitive processes (Cowan,
2017). Experiments in this field rely on the subtle construc-
tion of input data such as memory lists and produce output
data such as recall probabilities or response times (Murdock,
1974; Kahana, 2012; Oberauer et al., 2018). Among these,
the most prominent finding is the serial-position curve, which
shows the accuracy of item retrieval varying as a function
of serial position in a memory list, averaged over a sample
of participants. As observed across (probably all) immediate
memory tasks, it has a concave-up shape and is asymmetric.
Its particular shape depends on the particular cognitive task.
For example in recognition and in cued (probed) recall the
serial position curve shows a strong recency effect, while the
primacy effect is weak. Strong primacy effects are seen in
forward recall, while recency effects are strong in backward
or in free recall.

To describe particular aspects of the functioning of the
human working memory, models with different characteris-
tics have been used, differing both in terms of the medium
in which the information is stored and the storage opera-
tions used. Models include local code models such as REM

Figure 1: Primacy effect and recency effects: Data are
for immediate forward and backward serial recall (Oberauer
et al., 2018), but are similarly in other immediate tasks
(Murdock, 1974; Kahana, 2012)

(Shiffrin & Steyvers, 1997), distributed models of memory
such as SOB (Farrell & Lewandowsky, 2002) and TCM
(Howard & Kahana, 2002), as well as holographic models
such as TODAM (Murdock, 1982, 1993) which uses high-
dimensional probabilistic encoding for the holographic repre-
sentation of information (Plate, 1991). Holographic models
gain from the properties, which are implied by high dimen-
sionality together with randomness, see (Kanerva, 2009) for
an overview about the framework of high-dimensional com-
puting.

The holographic approach appears as a natural candidate
to model the functioning of cognitive processes. Input items
evoke activity patterns in the respective neural field; The fact
that these representations are sparse and the consequences
thereof are not explicitly considered in this note. Compu-
tation consists in transforming those patterns according to
two elementary operations: The additive-like superposition
realises the bundling of item information, while multiplica-
tion realises binding of items. The high-dimensional space



of binary patterns together with these two operations form a
high-dimensional algebra governing storage and computation
in this system.

Before giving an outline of the paper, a remark seems
worthwhile: The aim is not to provide a full-blown model
rather than to propose an elementary computational structure,
an algebra, on top of which a model could be constructed.
The main question is, how much of experimental findings can
already been described on the basis of that algebra alone.

The outline of this paper is briefly as follows: Firstly, the
state-space is defined as a high-dimensional Hamming space
(eq 1) equipped with some distance on it. A similarity mea-
sure is proposed which is derived from that distance. It al-
lows both, to judge about the familiarity of two states as well
as about their distinctiveness (eq 2). Computing is by ma-
nipulating states according to two operations on that space:
multiplication for binding and a not associative addition for
bundling. This completes the definition of the algebra (eq
4) to be considered. Non-associativity is an essential fea-
ture of that bundling since it implies that the sum of compo-
nents depends on their sequential ordering (eq 5). As a conse-
quence, information about the order of sequentially presented
list items is conserved. The corresponding left-associative
sum and the right- associative sum of list items correspond
to states exhibiting a recency and a primacy gradient, respec-
tively (Fig 4). As applications basic cognitive tasks such as
item recognition and probed recall are considered. The typi-
cal concave-up and asymmetrical shape of the serial-position
curve is derived as a mixture of these two activation gradients
(Fig 9).

The algebra of cognitive states (X,+p,∗)
The state-space In the course of perceiving a physical item,
the corresponding sensory input invokes an activity pattern in
the neuronal field it is projected to. That way, each physical
item can be represented by a binary pattern, in which 1′s in-
dicate active neurons, while 0′s indicate inactive ones. Due
to the size and structural complexity of the neuronal corre-
late, patterns are described by high-dimensional random bi-
nary vectors. These patterns are the states of the cognitive
system. The state-space therefore is

X=
(
XN

q ,d
)
. (1)

N > 100 is its dimension, q is the degree of sparseness, i.e.
the mean activity of a state, and d is some metric on XN

q .
The state-space is a (metric) Hamming space allowing for

some similarity measure derived from the distance d. This
measure should respect both: the closeness of two states
as well as their distinctiveness as points in the state-space.
A cosine-similarity only reveals information about closeness
since it is locally defined. In a probabilistic setting, two points
are the more difficult to distinguish, the less likely it is to find
another state at random which is ’in between’ the two. To
capture this, the definition of similarity must contain global
information about the state space.

Definition (Similarity). The similarity of two states having
distance d from each other is

S(d) := e−κFX(d), κ > 1 (2)

where FX(d) = PX[D≤ d] is the distribution function for dis-
tances on X.

Different items are represented by uncorrelated states,
while similar items will be represented by similar states.
κ > 1 is chosen to have highest sensitivity with respect to
almost identical or near-by states.

The operations The two operations to be defined on the
state space correspond to binding and bundling. Two items
are (associatively) bound to each other, if one can be retrieved
by cueing with the other item. The corresponding formal op-
eration is multiplication ∗, which is defined in eq 3. Binding
of items happens by simultaneously activated components in
the neural pattern. This similarity measure directly relates to
a recall probability or accuracy of retrieval.

Bundling means collecting items by adding their respective
states. Assume that two neurons X and Y converge on a third
neuron Z. If both are inactive, i.e. x = y = 0, neuron Z will
also be, z= 0, while if both are active, Z will be active, i.e. 1+
1 = 1. If only X or Y is active, it depends on some threshold,
whether Z is active. If the activation threshold is low, p ≈ 0,
Z is likely to be active, while if if the activation threshold is
high, p≈ 1, Z will remain inactive. Addition xp is defined in
eq 3.

∗ 0 1
0 1 0
1 0 1

+p 0 1
0 0 ζ

1 ζ 1
(3)

where ζ ∈ {0,+1} is random with P[ζ = 0] = p. This com-
pletes the definition of the algebra used to calculating with
cognitive states. (

X,+p,∗
)

(4)

In the following, its elementary properties are further investi-
gated. What properties are already implied by this elementary
algebra and how much of empirical findings can be already
described by those?

Bundling preserves sequential information in the
memory list
Usually, bundling is realised by vector-addition (Schlegel,
Neubert, & Protzel, 2020), which is commutative and asso-
ciative, so that x+(y+ z) = (x+ y)+ z = z+(y+ z), i.e. the
order of components doesn’t matter. That is: If addition is
associative, sequential order information is lost!

Observation. For 0 < p < 1, addition +p is not associative.

x+p (y+p z) 6= z+p (y+p x) (5)

Note that, if p = 1, addition equals component-wise AND,
while for p = 0, addition is component-wise OR. These op-
erations are associative.



In the following, the state resulting from left-associative
addition is denoted by L, i.e. L = (x +p y) + z, while the
state resulting from right-associative addition is denoted by
R = x+p (y+p z). For the sake for readability, I will write
+=+p in the following, while assuming that p = 1

2 .

Figure 2: In right-associative R addition, early items are kept
prominent, while in left-associative L addition, later items are
superposed on earlier ones.

The states representing a memory list L and R states can
be constructed for a list of any length. Construction starts
from a pre-experimental state η and proceeds by iteratively
adding items to the memory states L and R according to left-
associative addition and right-associative addition to the re-
spective branch as follows: For the L-state

L0 = η

La = η+a)

Lb = η+a)+b)
...

LΛ =
((

((η+a)+b)+ c)+ . . .)+ f
)
+g

)
,

while for the R-state

R0 = η

Ra = η+(a

Rb = η+(a+(b
...

RΛ =
(

η+
(
a+(b+(c+(. . .+( f +g)))

))
After its sequential presentation, the memory list Λ =

(A,B,C, . . .) is thus represented by the two states

L =
((

((η+a)+b)+ c
)
+d)+ f )+g

)
(6)

R =
(

η+
(
a+(b+(c+(d +( f +g)))

))
, (7)

In (Murdock, 1982) η is assumed to be empty, while
in (Franklin & Mewhort, 2015) it comprises a holographic
collection of items and item-item associations. a,b,c, . . .
are the cognitive states representing the physical list items
A,B,C, . . .. These states preserve the serial order of items in

the memory list in that distances change monotonously along
subsequent items, see Fig. 3

d(η,R) < d(η,L) (8)
d(a,L) > d(b,L)> d(c,L)> .. . (9)
d(a,R) < d(b,R)< d(c,R)< .. . (10)

Correspondingly, both states inherit serial order in that item
distances increase along R, while they decrease along L, see
Fig 3. These distance gradients directly translate into activa-
tion gradients.

Figure 3: Distance profiles of the two states L and R as in eq
8 ff. L has smallest distances to the most recent items, while
R is closest to the early list items.

Implied activity gradients
From the concept of similarity, two other concepts can be im-
mediately derived: activation and memory strength. The in-
tuition is closely related to the idea of a projection. Given
that the memory state M represents a memorised list, and
that a cue item is presented. The cue item activates the mem-
ory state more, the more similar it is to that memory state
(Hintzman, 1984). Conversely, the more the corresponding
memory element is engraved in the memory state, the more
the memory state is activated by the cue state.

Definition (Activation). Let M be a memory state con-
structed during representing some memory list. A cue state
x activates the memory state M according to their similarity,
see eq 2

αM(x) := S
(
d(x,M)

)
. (11)

The activation gradient of M is the vector αM with compo-
nents αM(x), where x is a state representing a list item.

In terms of strength theory, αM(x) is the strength by which
x is memorised in M. One might also call αM(x) the famil-
iarity of x given M.

Consequently, the distance gradients in eq 8 ff directly
translate into activity gradients, see Fig. 4. Since activation



Figure 4: Primacy and recency gradients implied by the
two states L and R are αR and αL.

as well as strength are increasing functions of similarity and
hence decreasing functions of distance, L implies a recency
gradient αL , while R implies a primacy gradient αR.

Activation gradients are nowadays widely accepted to play
an important role in working memory. Various mecha-
nisms have been discussed as sources of these gradients, see
(Oberauer, 2003). In many models including TODAM, TCM
and SOB, these gradients are separately modelled and super-
imposed on top of the model. In contrast, these gradients
directly result from the bundling operation defined in eq 4
and its non-associativity: While non-associativity preserves
information about serial order, right-associative addition and
left-associative addition imply the primacy and the recency
gradient, respectively.

The response function for recognition and recall
After presentation of a memory list, the participant has to ful-
fil some task. Most cognitive tasks involve cues such as cued
item recognition or cued recall, associative or serial. The an-
swer the participant gives is the result of a decision process
which depends on both, the memory state as well as the cue.
The response function in recognition only depends on famil-
iarity, while the response function in recall additionally de-
pends on distinctiveness (Murdock, 1982). Thus it is reason-
able to make the response function a function of activation as
defined in eq 11.

Definition (Response function). The response function given
a cue x facing the memory state M is an increasing function
of induced similarity, e.g.

Φ(x |M) = αM(x) (12)

Accordingly an activation gradient directly translates into a
serial position curve. Particularly, the recency effect refers to
the activation gradient of the L-state, while the primacy effect
corresponds to the activation gradient of the R- state.

Experimental data indicate that the recency effect does not
depend on list length and shows a slightly sigmoid curve
shape, see Fig 5 (left). Both empirical observations are well
captured by the modelling algebra proposed, see Fig 5 (right).

Figure 5: The recency effect does not depend on list length.
Left: Experimental data from Murdock (Murdock, 1982),
Right: Simulated data from the model for various list length’.

Application to some basic cognitive tasks
In this section some examples are presented to demonstrate
how the formalism works, i.e. how to describe tasks such as
cued recall in this formalism. Results are direct consequences
of the algebra defined, i.e. no further assumptions are made.
In the following only the R-state is concerned, i.e. states are
bundled according to right-associative addition, while corre-
sponding brackets are skipped for the sake of readability.

Repetition increases strength
It is intuitively expected that a repeated occurrence of an el-
ement in a list will increase its coding strength. This effect
is indeed observed in the model. As a benchmark, consider
the list Λ = (A,B,C,D, . . .), in which all items are different.
In Λ(1) a neighbouring pair is similar, e.g., B ∼ C. In Λ(2),
B∼ D and so forth. k can be regarded as the lag from B until
the similar item. Fig 6 shows the serial position curves for
lists Λ, Λ(1), and Λ(2). Note that the coding strength of B is
increased by any other item which is similar to B, while the
strengthening is greater, the smaller the lag is, i.e. the effect
of C ∼ B on the coding strength of B is larger than the effect
of D∼ B.

Cued recall
Cued associative recall In this task, the participant is pre-
sented a paired memory list

(
A−X ,B−Y,C−Z, . . .

)
. After

memorizing this list, a memory item, i.e. a member of some
pair, is presented as a cue, and the participant is asked to iden-
tify the memory item, which was bound to that cue item. The
memory state corresponding to the paired list is

R = η+a∗ x+b∗ y+ c∗ z+ . . . , (13)

where a∗x is the state representing the binding between items
X and A in the list.



Figure 6: The effect of similar items on activation The solid
black curve is the activation profile of state R for the list Λ in
which all items are different. Doted lines are the profiles if
that list contains one item, e.g. C or D, which is similar to
item B.

When a memory item X is presented as a cue and the task
is to retrieve the item which is bound to X in the list, consider
the activation of

x∗R = x∗η+ a+ a∗b∗ y+a∗ c∗ z+ . . . . (14)

The activation αx∗R attains its maximal value for αx∗R(a), see
Fig. 7. Thus the cue X activates the A component most, so
that the participant will answer ” X is bound to A.” , with
some probability. Analogously, if the cue is Y , the activation
αy∗R attains it maximum in B, so that B is retrieved, and so
forth. These maximal points form a curve, which is identical
to the activation gradient αR.

Retrieval from similar contexts Assume that the paired
list

(
A−X ,B−Y,C− X̃ ,D−Z, . . .

)
is given, in which items

A and C are bound to similar contexts X and X̃ . The corre-
sponding state yields

R = η+a∗ x+b∗ y+ c∗ x̃+ . . . . (15)

Cueing with X will not only retrieve A but also C, just to a
lesser extend. The effect of cueing with x is displayed when
considering the activation gradient αx∗R, see Fig. 8. The gra-
dient has two peaks, one at a and a weaker one at c, saying
that cueing with X reveals two items, A and C. Cueing with
Y uncovers only one, which is B.

In the recall task, the participant has to make a choice be-
tween the two alternative items bound to X . Thus invoking
Luce’s choice axiom, the probability to recall X yields

P(a|x) = αx∗R(a)
αx∗R(a)+αx∗R(c)

(16)

which is less than the probability to recall a without an alter-
native. The existence of an item similar to the cue impairs the
corresponding recall.

Figure 7: Cued Recall: Given cues such as x, y, z, the corre-
sponding activations αx∗R,αy∗R,αz∗R are plotted, see eq 14.
The cue x causes the activation αx∗R to have a peak at the cor-
responding item, which is a. αR is the activation profile of
the R-state.

Figure 8: Recall of items: Activation profiles of αx∗R (∗), and
αy∗R (◦). The activation profile αR of the R state by distinct
list items is shown as a reference.

Putting things together: The serial position curve
During memorizing a list, the two states R and L are con-
structed. Since there is no a priori reason to favour one over
the other, I assume that both cognitive states L and R coexist
and are the components of a memory state M,

M =

(
L
R

)
. (17)

A single cue thus activates both components. The total acti-
vation of the memory state M is a linear combination of the
activation gradients of its two components.

αM = ρ R+ `L (18)

where ρ and ` are non-negative parameters governing the
mixture of respective activations. The response function to a
cue is Φ(x|αM), so that the serial position curve is the graph
Φ(x|αM), where x is a state representing a list item, see Fig.
9.



Figure 9: The Serial Position Curve is simulated for differ-
ent pairs of parameters according to eq. 18. It shows a strong
recency effect and a weak primacy effect for ρ = 0.4,λ = 0.9,
while for ρ = 0.9,λ = 0.4 there is a strong primacy effect and
a weak recency effect.

The serial position curve thus results from the linear com-
bination of the primacy gradient αR and the recency gradient
αL. As seen in Fig 9, a large ρ together with a small ` makes
the recency effect, while a small ρ together with a large `
leads to a prominent primacy effect. The relative strength of
the primacy and the recency effect will generally depend on
the experimental set-up, including the task to be performed.
For example in recognition and in cued (probed) recall the
serial position curve shows a strong recency effect, while the
primacy effect is weak. Strong primacy effects are seen in
forward recall, while recency effects are strong in backward
or in free recall.

Conclusion and out-look
In the previous sections, an elementary algebra ( eq. 4 ) for
storage and retrieval of information in basic cognitive tasks
was proposed. The aim was not to present a full-blown model
but to investigate how far one can get with the algebra alone.

Item information and associative information are repre-
sented by two operations, bundling and binding, respectively.
If bundling is realised by an associative operation such as
ordinary (vector-) addition, information about sequential or-
der is lost. On the other hand, tasks such as serial recall re-
quire that order information. Consequently in corresponding
models order information has be has to be implemented sep-
arately. This can be achieved by postulating serial position
markers, chaining by associative mechanisms between con-
secutive items, or weight functions varying over serial posi-
tion governing the recency and the primacy effect.

This is different in the approach presented: Information
about sequential ordering is preserved. This is due to the
non-associativity of the addition operation by which item in-

formation is bundled into a memory state. Reading from that
state thus reveals order information necessary to related tasks,
which is represented by corresponding gradients. Activation
gradients are implied rather than postulated separately. The
serial position curve comes as a linear combination of both.
Its shape is concave-up and asymmetric as observed as a typ-
ical experimental finding, see Fig 1 for experimental data and
Fig 9 for simulations of our model.

As already mentioned, the aim was not to present a full-
blown model but to investigate how far one can get with the
algebra alone. So it does not come as a surprise that sev-
eral experimental observations were not captured. For exam-
ple, while the recency effect does not depend on list length,
the primacy effect does. This robust finding cannot be ex-
plained by our algebra alone but needs an additional assump-
tion about attention, which then imposes an additional con-
straint on den attention gradient. Furthermore, serial recall
can not be described by our algebra alone but needs an addi-
tional assumption such as output-suppression, as supposed in
many models, or an other feedback mechanism, see (Franklin
& Mewhort, 2015).

The cognitive algebra proposed appears to provide a rea-
sonable basis for modelling since it generically implies sev-
eral features that fit empirical observations quite well, in a
qualitative sense in that no attempt was made to fit data. Mod-
elling then could consist in carefully adding assumptions on
top of the cognitive algebra such as discussed above.
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