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Abstract

Self-report as a tool to understand different cognitive process-
ing strategies has been criticised for decades, but to date there
have not been many alternatives. To remedy this hiatus, we
propose to apply a recently developed method for processing
stage analysis (Hidden semi-Markov Model Multivariate Pat-
tern Analysis, HsMM-MVPA) to a cognitive strategy predic-
tion task. HsMM-MVPA uses specific patterns in EEG data
to determine the most likely number of sequential processing
stages. Under the assumption that cognitive processing strate-
gies differ in the number of stages, we constructed a classifier
using fitted HsMM-MVPA to try and differentiate between two
cognitive strategies in unseen data. The method is applied to
data from a multiplication verification task, in which partici-
pants are asked to verify the truth of a solution to a multipli-
cation problem (3× 9). We asked participants to indicate via
self-report whether they knew the answer by heart (Strategy 1,
Retrieval) or needed to compute the answer (Strategy 2, Proce-
dural). The classifier could predict the self report labels above
chance, suggesting that the number of processing stages iden-
tified using EEG can be used to track the cognitive processing
strategy that are in use throughout a task.
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Introduction
When different people apply different cognitive strategies to
solve the same problem, a question arises: if people use dif-
ferent strategies, how do these strategies differ? It seems that
we could differentiate between cognitive strategies by way of
the underlying processing stages. A robust method for de-
composing a trial into processing stages should then be able
to do a differentiation by strategy. To test this hypothesis,
we constructed an EEG classifier based on a novel modelling
method with which we will try to predict what strategy is used
in unseen EEG data.

Processing Stage Decomposition
A recently proposed framework for detecting cognitive pro-
cessing stages by Anderson et al. (2016), called Hidden
semi-Markov Model multivariate pattern analysis (HsMM-
MVPA), has been suggested to give nuanced insight into pro-
cessing stages that might be present in EEG, MEG, or fMRI
data. Within this framework, processing stages are modelled
as a hidden Markov chain using distributed peaks in activity.
By additionally modelling the cognitive processing stages as
a semi-Markov chain, we can get insight into the temporal
on- and offset as well as the durations of processing stages.

Such nuanced insight into the characteristics of processing
stages allows for differentiation between strategies, under the
assumption that these characteristics differ between strate-
gies. The HsMM-MVPA framework has been shown to be
a versatile method for detecting processing stages in a vari-
ety of conditions and tasks (Anderson et al., 2018; Berberyan
et al., 2021; Borst & Anderson, 2015; Portoles et al., 2018;
van Maanen et al., 2021; Walsh et al., 2017; Zhang, van Vugt,
et al., 2018; Zhang, Walsh, & Anderson, 2017, 2018; Zhang,
Borst, et al., 2017).

In many implementations, HsMM-MVPA has fitted mod-
els that explain EEG data from multiple participants very
well. This suggests that there could be some commonality
between participants in how the HsMM-MVPA method rep-
resents these processing stages. Therefore, it stands to rea-
son that there is overlap in cognitive processing stages be-
tween participants employing the same cognitive strategy for
the same task. In the current paper, we aim to understand
whether an HsMM-MVPA model can be used to distinguish
between cognitive strategies in EEG data from unseen partic-
ipants. Concretely, we collected EEG data from people per-
forming a multiplication task, while we also collected self-
reports of the strategies that people use during the task. Then,
we estimated the optimal HsMM-MVPA model for the self-
reported strategies. We hypothesise that a classifier based on
these HsMM-MVPA models predicts which strategy unseen
participants used on a particular multiplication problem. If
this prediction is above chance, this will support the hypothe-
sis that processing stages can be used to differentiate between
strategies.

Hidden semi-Markov Model Multivariate Pattern Anal-
ysis Standard Hidden Markov Models consist of two
stochastic finite-time chains. One is a hidden Markov chain
X and the other is an observable chain Y whose behaviour de-
pends on X . For every pair (x,y) where x ∈ X , y ∈ Y there is
a probability that x happens when y is observed (Visser et al.,
2009). In a HMM, the duration of a state corresponds to the
duration of a single observation. In contrast, in a hidden semi-
Markov model, it is possible to have multiple observations per
hidden state, which allows for variable state durations (Yu,
2010). Since processing stages are not assumed to have the
same duration, HsMMs are best suited for this analysis (An-
derson et al., 2016). In this study, extracted components from



EEG data are the observations Y , with the underlying pro-
cessing stages being modelled by the most likely sequence of
hidden states X .

To discover different processing stages, HsMM-MVPA re-
lies on the assumption that a processing stage onset is signi-
fied by a cognitive event that can be discovered in the EEG
signal by looking for positive or negative peaks, distributed
across different brain regions. This assumption is shared by
two main theories explaining the generation of event-related
potential (ERP); the classical theory (Shah et al., 2004) and
the synchronised oscillations theory (Makeig et al., 2002).
These theories agree that a cognitive event is signified by a
positive or negative peak in the EEG signal, although they
disagree on the exact origin of this peak (see Anderson et al.
(2016) for a more extensive discussion).

HsMM-MVPA searches for positive or negative peaks in
the EEG signal (called bumps), with the subsequent flats
denoting a processing stage. The HsMM-MVPA model
consists of a number of bumps, as well as a set of gamma
distributions of stage durations across trials. The algorithm
first attempts to find bumps that represent the onset of a cog-
nitive stage and the flats that separate these bumps. The goal
of HsMM-MVPA is to identify the topography and temporal
location of each bump on each trial. The method allows
for variability within the duration of cognitive processes for
each trial, so bumps can occur at different time points per
trial. The trials are analysed individually, but all trials of all
participants are taken into account simultaneously. A model
is then fitted to various participants simultaneously.

Classification
A challenge with classifying EEG data is that there is a high
degree of variability from participant to participant (Saha &
Baumert, 2020). Implementations of HsMM-MVPA as de-
scribed above are able to discover good-fitting models across
multiple participants, as long as the participants’ EEG sig-
nal is collected under the same conditions. This suggests
that the number of processing stages is equal across partici-
pants using the same strategy, yielding the hypothesis that the
EEG signal of different participants performing a task under
the same condition can be modelled with the same HsMM-
MVPA model. These models will be used to distinguish be-
tween the same strategies in unseen EEG data, making clas-
sification possible.

We will fit models to EEG data collected from partici-
pants verifying single-digit multiplication problems, differ-
entiating between two self-reported strategies: retrieval for
memory retrieval and procedural for procedural strategies.
Using these models, we will attempt to classify these same
strategies in unseen participants. We determine the sensitiv-
ity and specificity of the models to self-reported trials using
an receiver operating characteristic (ROC) curve based on the
likelihood of the Retrieval strategy. If the area under that
curve is larger than 0.5, the model is correctly identifying
self-reported Retrieval-trials higher than chance.

We chose to focus our analysis on the retrieval strategy,
since previous work suggested that what people interpret as
a simple memory retrieval is much more homogenous (Ar-
chambeau et al., unpublished). In fact, there are many differ-
ent solution strategies that all can be described as a procedural
strategy (LeFevre et al., 1996; Ashcraft, 1992). For example,
to calculate that 6× 4 is equal to 24, one can retrieve from
memory the related fact that 6× 5 = 30, and then subtract
6. An alternative procedural strategy involves consecutively
adding 6 while simultaneously counting the number of addi-
tions. When this number reaches 4, you have arrived at the
answer.

Method
We collected EEG, accuracy, and response times from in-
dividuals verifying single-digit multiplication problems (Ar-
chambeau et al., 2019). Participants were shown a single-
digit multiplication problem with an answer and asked to ver-
ify whether the given answer was correct. Next, they were
asked to self-report whether they knew the answer from mem-
ory (i.e., the retrieval strategy) or computed the answer an-
other way (Procedural).

Design & Procedure
Forty-two undergraduate students from the Université Li-
bre de Bruxelles (ULB) between the ages of 17 and 52
(m = 22.24) took part in the multiplication experiment. The
study was approved by the local Ethical Review Board of the
ULB, Faculty of Psychological and Educational Sciences. All
participants provided informed consent and received course
credit for their participation. Each trial started with the pre-
sentation of a fixation point of 500 ms. A multiplication prob-
lem containing two operands in Arabic format and the multi-
plication operator ”x” (e.g., 6×4) was displayed in the centre
of the screen for 200 ms, followed by a blank screen of 120
ms. Then, an answer was shown (24) until a response was
provided. The participants were asked to indicate via but-
ton press whether the proposed solution of the problem was
correct or not. Participants were asked to be as fast and as
accurate as possible. When a response is given, a 300 ms in-
terval occurred, after which participants were prompted to re-
port what strategy they used to verify the multiplication prob-
lem; ”memory” or ”calculation strategy”. Then, the next trial
was initiated with an inter-trial interval of 1000ms. The task
consisted of 4 blocks of 248 trials, for a total of 992 trials.
There were three trial types. Besides trials where the given
solution was correct (positive or P), there were trials two trial
types where the given solution was incorrect: interfering so-
lutions (I) and non-interfering solutions (NI). With an inter-
fering solution, the answer given is table-related to one of the
operands. The given interfering solution of a problem a× b
could be the correct solution of (a± 1)× b or a× (b± 1).
Multiplication problems with a single digit as the correct so-
lution were removed, as well as 9× 9. Half of both I and
NI were smaller and half were larger than the correct solu-
tion. Although the I and NI split is not relevant for the cur-



rent study, the impact interference has on ERP is accounted
for in this analysis. There were 496 positive trials and 496
negative trials with 248 interfering solution trials and 248 un-
related solution trials. Each multiplication problem was re-
peated 32 times. On 16 of these repetitions the provided so-
lution was correct, on 8 it was an I solution, and on 8 it was an
NI solution. The multiplication problems were presented in a
pseudo-randomised order, ensuring that successive problems
never had the same operands. The multiplication task was
run on a 17-inch laptop computer, using the Psychophysics
Toolbox extension (Brainard, 1997) in MATLAB (version
R2013a, The Mathworks Inc., Natick, Massachusetts, USA).
EEG data was collected using a BioSemi interface with 72
channels, at a sampling rate of 2048 Hz. EMG activity was
also recorded for other purposes, beyond the scope of the cur-
rent study.

Behavioural Analysis
Four data subsets were created. Three of these based on the
three experimental conditions positive (P), related (I), and un-
related (NI). For the fourth subset, we collapsed all data under
the assumption that the two self-report strategies would be
shared across the three experimental conditions, increasing
the sample size. Participants 32-42 were split off as a test set,
making participants 1-31 the training set. For this analysis,
incorrect responses were removed (6.5% of trials). Addition-
ally, we removed response time outliers from all subsets of
the data to remove any trials where the participant may have
been confused or distracted. When matching the behavioural
data to the EEG data for epoching, four participants from the
training set were removed due to incorrect event numberings
in the EEG data. In total, 15% of the data was removed in this
step.

After cleaning our data sets, class imbalance was com-
puted. As seen in Table 1, in all subsets the majority of trials
is labelled as ’retrieval’. These numbers will be considered as
a baseline for classification accuracy. Although the standard
deviation in RT in the test data subsets is much lower (poten-
tially due to some participants having generally slower RTs
in the training set), HsMM-MVPA can account for variations
in the temporal offset and stage durations (Anderson et al.,
2016).

Data Preprocessing
The data was processed in MATLAB (version 2020a, The
Mathworks Inc., Natick, Massachusetts, USA) using the open
source EEGLab plugin (Delorme & Makeig, 2004). First, the
data was re-referenced to all-electrode average and high-pass
filtered at 1 Hz and low-pass filtered at 40 Hz, as oscillations
outside of this range are not commonly associated with brain
activity (Henry, 2006). The data was resampled to 512 Hz
and flatlines and overly noisy sections of data were removed
automatically using built-in EEGlab functions, before apply-
ing Independent Component Analysis (ICA) using the Fas-
tICA algorithm (Hyvarinen, 1999). Next, the ICLabel plugin
was used to automatically flag non-brain related components

Condition % Retrieval Mean RTs (ms) SD RTs (ms)

Training data

All 87.1% 1398 2211
P 88.5% 1312 2051
I 83.4% 1628 2101

NI 87.9% 1339 2581

Test data

All 88.4% 1110 874
P 91.9% 1040 819
I 81.3% 1280 998

NI 84.0% 1099 837

Table 1: Overview of trials labelled ’retrieval’ after error and
outlier removal. Standard deviation is computed within every
subset (Positive (P), Interfering (I), and non-interfering (NI),
across participants.

from the data (Pion-Tonachini et al., 2019). These flagged
components were then removed from the data. In total about
10% of the data was removed in this step.

Fitting HsMM-MVPA
To fit the HsMM-MVPA models, the data were resampled
to 100 Hz and then epoched between stimulus onset and the
participants’ response. Spatial principal component analysis
(PCA) was applied to all datasets to extract the 10 principal
components from the data channels. In all subsets, the 10
principal components account for more than 97% of variance
in the data.

We consider our bumps to have a duration of 50 ms, as this
duration produces robust results even if the actual durations
are slightly longer or shorter (Anderson et al., 2016). The
duration of the subsequent flats was modeled with a gamma
distribution with a shape parameter of 2. The results are not
sensitive to the exact choice of shape parameter, except that
it simplifies the estimation of flat distributions (Anderson et
al., 2016). In a model, n bumps results in n+1 flats (or n+1
processing stages), since the first stage starts with a flat when
the stimulus is applied.

We constructed different HsMM-MVPA models for every
subset of the data and for both self-reported strategies, re-
sulting in eight different models. Model estimation begins
with a 1-bump model and creates models for an increasing
number of bumps until a number of bumps nmax is reached,
with nmax being the maximum number of 50 ms bumps that
fit in the duration of the shortest epoch. During estimation,
two parameters of each hidden state are obtained: (1) the am-
plitudes of the bumps that mark the onsets of the processing
stages and (2) the scale parameter of a gamma distribution
describing the stage durations. Data from all trials and all
participants in a training set were taken into account simulta-
neously. The match between the EEG data and the model was
maximised using a standard expectation-maximisation (EM)



algorithm (Moon, 1996).
The fitting process begins by defining initial amplitudes for

both the bumps and the gamma distributions for stage dura-
tions. Since the convergence of the EM algorithm can be sen-
sitive to the choice of starting point, ending up in a local maxi-
mum (Wu, 1983), we used a process based on work by Zhang,
Walsh, & Anderson (2018). Per subset, we first fit separate
HsMM-MVPA models for each condition on nmax bumps, ob-
taining bump amplitudes and gamma distributions. Next, we
used those parameters for models with nmax − 1 bumps, it-
eratively leaving out each of the bumps in nmax, selecting the
model with best fit. These bumps become the new nmax before
the above process is repeated until only a one-bump model n1
is left. This way, we can find all potential bump topologies
while avoiding local maxima.

We used a leave-one-out cross-validation (LOOCV) pro-
cedure to prevent overfitting. For every training subset, we
estimate an HsMM-MVPA model on all participants minus
one and then test the fit of this model on the omitted partic-
ipant. This process is repeated for all participants. Finally,
we used a sign test to test for how many participants the log-
likelihoods of the models with n+1 bumps increased signif-
icantly compared to an n-bump model. If a model with one
additional bump outperforms the previous model for a suffi-
ciently large number of participants, we can say that the ad-
ditional complexity of that model is warranted. This step is
crucial for fitting models that generalise well across partici-
pants (Anderson & Fincham, 2014). To select the best mod-
els, sign tests were used on every n-bump model to see for
how many participants its fit improved compared to the n−1
bump model. The best model is one that improves signifi-
cantly for more than half of the training participants. For a
more detailed mathematical description and code for HsMM-
MVPA we refer to Anderson et al. (2016) and Berberyan et
al. (2021).

Classification
After estimating the most likely parameters for all models,
we used our preprocessed test data to estimate the likelihood
of every trial per subset under the models. We also estimated
the likelihoods of all test trials per subset under models of dif-
ferent subsets to further test how well the models generalise.
As this is a binary classification task, we compute true pos-
itive rates (TPR) and false positive rates (FPR) to plot ROC
curves. Then, we determine the area under the curve (AUC),
where 0.5 denotes the model classifying according to chance.
We also report classification accuracy (the proportion of trials
classified as their corresponding self-reports) and F1-values
(computed as F1 =

T PR
T PR+(FPR+FNR)/2 ) for all test trials classi-

fied under all models.

Results
Model Selection
As can be seen in Figure 1, Retrieval models are consistent. In
all four subsets, the models fit to the Retrieval strategy show

Figure 1: Model selection curves for both strategies. The
numbers beside the points denote for how many out of 27
participants the log-likelihood of an n-bump model signifi-
cantly increases over n− 1 bumps. The arrows highlight the
optimal models according to a sign-test for each subset of the
data (see the section Fitting HsMM-MVPA for details).

that the 2-bumps model improves significantly over the 1-
bump model in more than half of participants. As this result is
consistent across all four subsets, the assumption seems justi-
fied that the Retrieval-strategy is generally well described by
a 2-bump, 3-stage Hidden semi-Markov model. As there is no
significant improvement going to a 3-bump, 4-stage model, 2-
bump 3-stage models were selected. In the Procedural strat-
egy, results are far less consistent. As a different number of
bumps seems to perform best in all four subsets, we classify
using the Retrieval-model only.

Classification Results
After estimating log-likelihood of every trial in the test set un-
der all four Retrieval-models, we constructed Receiver Oper-
ating Characteristic-curves with an increasing discrimination



Figure 2: ROC curves for all test sets predictions under all
models

threshold (Figure 2. Accuracies and F1 values can be seen in
Table 2. The highest accuracy and F1 score per subset were
selected. We see that all classifiers perform better than ran-
dom (curve above the grey dashed line, AUC > 0.5), with
P-trials in the test set performing best overall, averaging at
0.61. AUC’s were computed per test participant for signifi-
cance testing, showing that under all models All and P-trials
are significantly higher than chance. We also see that F1-
scores tend to be higher than accuracies, denoting that the
classifiers are better at correctly identifying Retrieval-trials
as Retrieval than they are at identifying non-Retrieval trials
as non-Retrieval.

Discussion
The goal of the current study was to discover whether cog-
nitive strategies can be differentiated between based on the
number of processing stages. In general we can say with con-
fidence that HsMM-MVPA when applied to EEG data can do
so in a way that finds processing stages across participants. In
other words, an HsMM-MVPA model fit to a specific cogni-
tive strategy can recognise most unseen trials of that same
strategy, even when that unseen trial is from a participant
whose EEG data the model has not seen at all. This implies
that, when different people report using the same cognitive
strategy under the same experimental condition, their EEG
patterns and consequently the processing stages are similar
as well. There is also consistency between the models fit to
the four experimental conditions with respect to their classi-
fication on the test data subsets, but almost everywhere this
consistency is proportional to the variation in the class im-

Subset AUC Max F1 Max acc

Model trained on All

All 0.584‡ 0.943 89.3%
P 0.612‡ 0.974 94.9%
I 0.597† 0.902 82.4%

NI 0.527 0.916 84.5%

Model trained on P

All 0.603‡ 0.944 89.4%
P 0.653‡ 0.974 95.0%
I 0.618 0.902 82.6%

NI 0.550 0.917 84.7%

Model trained on I

All 0.548‡ 0.942 89.1%
P 0.557‡ 0.974 94.9%
I 0.577† 0.902 82.2%

NI 0.568 0.943 89.3%

Model trained on NI

All 0.586† 0.943 89.3%
P 0.610‡ 0.974 95.0%
I 0.598† 0.902 82.4%

NI 0.529 0.916 84.7%

Table 2: Area Under Curve (AUC) of the ROC curves, as well
as the highest F1 scores and accuracies for every test set.
†: significant below p=0.05
‡: significant below p=0.01

balance of our data. F1 scores everywhere tend to be higher
than classification accuracy, which is closer to random per-
formance. This means that a retrieval-based classifier is ac-
curate at identifying trials that were self-reported as retrieval,
but less accurate with respect to trials that were self-reported
as procedural.

In our data, the retrieval strategy is the more consistent one.
All 2-bumps, 3-stage models were well fitting on all four data
subsets. This means that it is highly likely that participants
used 3 processing stages when using the retrieval strategy. In
contrast, the procedural-strategy seems to be much less co-
hesive. A first possible explanation is that participants can
calculate the answer to a problem in different ways, which
could lead to a different number of processing stages. This
means that ”procedural” encompasses a number of strategies
(LeFevre et al., 1996; Ashcraft, 1992). Some of these strate-
gies might be closer in number of stages to our 3 memory
retrieval stages, which could partially account for the number
of false positives our retrieval-classifier finds. For instance, a
procedural strategy to verify 6×7 could involve memory re-
trieval of 6×6 as part of the strategy, leading this hypothetical
trial to fit well with our retrieval models.

To complicate matters further, there is the potential of noise
or biases to be introduced when using self-reports as a tool for



setting our ground-truth (Kirk & Ashcraft, 2001). This means
that wrongly labeled trials might be present. Alternative ways
of ascertaining cognitive strategies, like a mixture modelling
approach could be considered for this purpose (Archambeau
et al., unpublished; Thevenot et al., 2007; van Maanen et al.,
2014, 2016). There is also a discrepancy in the means and
standard deviations of our response times between our train-
ing and test sets. HsMM-MVPA is able to account for vari-
ance in temporal onset and duration of processing stages (An-
derson et al., 2016), so in theory this is no problem. However,
this is a variable that could be corrected for in future.

Future work might encompass cross-validating this analy-
sis with different train-test data splits. In addition, a compar-
ison between scalp topographies of the best models and both
correctly-labeled and mislabeled test set trials could give in-
sight into trials that might have been incorrectly self-reported.
Another avenue would be to apply this analysis to a different
experimental task, such as a division task instead of multipli-
cation. Finally, further insight into using model-based classi-
fiers instead of more traditional machine learning approaches
could improve the explainability of cognitive data classifiers.
HsMM-MVPA provides a nuanced understanding of process-
ing stages that other machine learning methods often do not.

In conclusion, this first investigation into using HsMM-
MVPA as a tool for classification of cognitive strategies
shows promise. The next step would be to investigate how
far this promise can lead.
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W., & Van Maanen, L. (unpublished). Age-related differences in
the resolution of interference in simple arithmetic depends on the
strategy used.

Ashcraft, M. H. (1992). Cognitive arithmetic: A review of data and
theory. Cognition, 44(1-2), 75–106.

Berberyan, H. S., van Maanen, L., van Rijn, H., & Borst, J.
(2021). Eeg-based identification of evidence accumulation stages
in decision-making. Journal of Cognitive Neuroscience, 33(3),
510–527.

Borst, J. P., & Anderson, J. R. (2015). The discovery of process-
ing stages: Analyzing eeg data with hidden semi-markov models.
NeuroImage, 108, 60–73.

Brainard, D. H. (1997). The psychophysics toolbox. Spatial vision,
10(4), 433–436.

Delorme, A., & Makeig, S. (2004). Eeglab: an open source toolbox
for analysis of single-trial eeg dynamics including independent
component analysis. Journal of neuroscience methods, 134(1),
9–21.

Henry, J. C. (2006). Electroencephalography: basic principles, clin-
ical applications, and related fields. Neurology, 67(11), 2092–
2092.

Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for
independent component analysis. IEEE transactions on Neural
Networks, 10(3), 626–634.

Kirk, E. P., & Ashcraft, M. H. (2001). Telling stories: The perils and
promise of using verbal reports to study math strategies. Journal
of Experimental Psychology: Learning, Memory, and Cognition,
27(1), 157.

LeFevre, J.-A., Bisanz, J., Daley, K. E., Buffone, L., Greenham,
S. L., & Sadesky, G. S. (1996). Multiple routes to solution
of single-digit multiplication problems. Journal of Experimen-
tal Psychology: General, 125(3), 284.

Makeig, S., Westerfield, M., Jung, T.-P., Enghoff, S., Townsend,
J., Courchesne, E., & Sejnowski, T. J. (2002). Dynamic brain
sources of visual evoked responses. Science, 295(5555), 690–
694.

Moon, T. K. (1996). The expectation-maximization algorithm.
IEEE Signal processing magazine, 13(6), 47–60.

Pion-Tonachini, L., Kreutz-Delgado, K., & Makeig, S. (2019). Icla-
bel: An automated electroencephalographic independent compo-
nent classifier, dataset, and website. NeuroImage, 198, 181–197.

Portoles, O., Borst, J. P., & van Vugt, M. K. (2018). Characteriz-
ing synchrony patterns across cognitive task stages of associative
recognition memory. European Journal of Neuroscience, 48(8),
2759–2769.

Saha, S., & Baumert, M. (2020). Intra- and inter-subject vari-
ability in eeg-based sensorimotor brain computer interface: A
review. Frontiers in Computational Neuroscience, 13, 87.
Retrieved from https://www.frontiersin.org/article/10
.3389/fncom.2019.00087 doi: 10.3389/fncom.2019.00087

Shah, A. S., Bressler, S. L., Knuth, K. H., Ding, M., Mehta, A. D.,
Ulbert, I., & Schroeder, C. E. (2004). Neural dynamics and the
fundamental mechanisms of event-related brain potentials. Cere-
bral cortex, 14(5), 476–483.

Thevenot, C., Fanget, M., & Fayol, M. (2007). Retrieval or non-
retrieval strategies in mental arithmetic? an operand recognition
paradigm. Memory & Cognition, 35(6), 1344–1352.

van Maanen, L., Couto, J., & Lebreton, M. (2016). Three bound-
ary conditions for computing the fixed-point property in binary
mixture data. Plos one, 11(11), e0167377.

van Maanen, L., de Jong, R., & van Rijn, H. (2014). How to assess
the existence of competing strategies in cognitive tasks: a primer
on the fixed-point property. PloS one, 9(8), e106113.

van Maanen, L., Portoles, O., & Borst, J. P. (2021). The discovery
and interpretation of evidence accumulation stages. Computa-
tional brain & behavior.

Visser, I., Raijmakers, M. E., & van der Maas, H. L. (2009). Hidden
markov models for individual time series. In Dynamic process
methodology in the social and developmental sciences (pp. 269–
289). Springer.

Walsh, M. M., Gunzelmann, G., & Anderson, J. R. (2017). Relation-
ship of p3b single-trial latencies and response times in one, two,
and three-stimulus oddball tasks. Biological psychology, 123, 47–
61.

Wu, C. J. (1983). On the convergence properties of the em algo-
rithm. The Annals of statistics, 95–103.

Yu, S.-Z. (2010). Hidden semi-markov models. Artificial intelli-
gence, 174(2), 215–243.

Zhang, Q., Borst, J. P., Kass, R. E., & Anderson, J. R. (2017). Inter-
subject alignment of meg datasets in a common representational
space (Tech. Rep.). Wiley Online Library.

Zhang, Q., van Vugt, M., Borst, J. P., & Anderson, J. R. (2018).
Mapping working memory retrieval in space and in time: A
combined electroencephalography and electrocorticography ap-
proach. NeuroImage, 174, 472–484.

Zhang, Q., Walsh, M. M., & Anderson, J. R. (2017). The effects
of probe similarity on retrieval and comparison processes in as-
sociative recognition. Journal of Cognitive Neuroscience, 29(2),
352–367.

https://www.frontiersin.org/article/10.3389/fncom.2019.00087
https://www.frontiersin.org/article/10.3389/fncom.2019.00087


Zhang, Q., Walsh, M. M., & Anderson, J. R. (2018). The impact of
inserting an additional mental process. Computational Brain &
Behavior, 1(1), 22–35.


	Introduction
	Processing Stage Decomposition
	Classification

	Method
	Design & Procedure
	Behavioural Analysis
	Data Preprocessing
	Fitting HsMM-MVPA
	Classification

	Results
	Model Selection
	Classification Results

	Discussion

