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Abstract

Reasoning about conditional statements is relevant in science,
culture, and our everyday life. It has been shown that humans
do deviate from a classical logical interpretation of condition-
als. Consequently, in the past years a number of cognitive
models based on Bayesian or mental model approaches have
been developed, whose performance is normally judged based
on their ability to fit aggregate data of participants. Here, we
diverge by focusing on the individual instead. Moreover, we
propose a different model testing paradigm by analyzing on an
existing large data set, how good current models are in predict-
ing an endorsement of an individual reasoner on a scale from
0 to 100%. Towards this goal we reanalyze the data by rig-
orously distinguishing between test and training data set, by
making existing models for conditional reasoning predictable
such as the Dual Source Model (Singmann, Klauer, & Beller,
2016) and a model by Oaksford, Chater, and Larkin (2000).
We also implement a modeling idea of Pearl based on possi-
ble worlds. We can show that all three models perform equally
good in predicting an individual reasoner’s endorsement and
that they meet an empirical baseline (the median of the most
frequent answer). A discussion on the gained insights in un-
derstanding conditional reasoning concludes the paper.
Keywords: Predictive modeling; cognitive modeling; condi-
tional reasoning

Introduction
In order to understand how human cognition works, a va-
riety of cognitive models have been developed throughout
the years and fitted to various experimental data. For exam-
ple, consider the following reasoning task about a conditional
statement (c.f., Singmann et al., 2016):

If a balloon is pricked with a needle, then it will pop.
A balloon is pricked with a needle.

How likely is it that it will pop?

Your task would be to provide an answer between 0 and
100%. Now, imagine that a cognitive model is provided with
the same task and makes a prediction of your response. Given
experimental data, we propose that cognitive models are ap-
plied in such a predictive setting to each individual, as illus-
trated in Fig. 1. Comparing the true response and the predic-
tion for all participants leads to a novel approach of cognitive
model performance evaluation.

Motivated by the idea of Feynman that in order to fully
understand something, one needs to be able to re-create it,
Riesterer, Brand, and Ragni (2020) introduce a predictive
modeling task in the syllogistic reasoning domain. They eval-
uated the predictive performance of syllogistic theories using

Figure 1: Predictive modeling task for endorsement rates

a modeling framework1 called CCOBRA. Riesterer et al.’s
(2020) focus is on the syllogistic domain, where a reasoner
has only 9 answer options, meaning that a model either pre-
dicts the correct answer out of the possible 9 or not. This is
where the scenario differs in our case. Here, we are dealing
with a more complicated predictive task – one for endorse-
ments that can be any value in the range 0-100. To understand
the complexity of this task, consider the previously given rea-
soning task example once again. Since you are provided with
the rule that if a balloon is pricked, it will pop, you would
most likely gravitate towards answering with a 100%. But
what happens, if:

The balloon is without air, i.e., empty.

Then the balloon would not pop and you might give an an-
swer that is less than 100%. Such aspects are called disablers.
If an individual is aware of many disablers, their conclusion
endorsement might be lower. On the other hand, there can be
additional cases, called alternatives:

A balloon can also pop, when it is pricked with
something else than a needle.

Hence, depending on the cases different reasoners have in
their minds, the given responses might differ. This introduces
challenges when trying to predict how much a specific rea-
soner endorses a possible conclusion.

Existing models and their comparison
In this paper we focus on the conditional reasoning domain.
Conditionals are statements of the form “If X then Y” (also
written as X→Y, where X is called the antecedent and Y the

1https://orca.informatik.uni-freiburg.de/ccobra/



consequent), often used to describe a causal relationship be-
tween two propositions X and Y. Given a conditional (called
major premise) and a current state of a proposition (called mi-
nor premise), a conclusion can be inferred about the state of
the other proposition. There are four inference forms: modus
ponens (MP), modus tollens (MT), affirming the consequent
(AC) and denying the antecedent (DA), as shown in Table 1.

Table 1: Inference Forms

Name MP AC DA MT

Premise 1 X→Y X→Y X→Y X→Y
Premise 2 X Y ¬X ¬Y
Conclusion Y X ¬Y ¬X

Singmann et al. (2016) studied the endorsements of the
respective conclusions for the four inference forms in four
experiments. Three of them focus on contents with varying
amounts of disablers and alternatives. The fourth experiment
introduces speaker expertise. We want uniform data, so we
do not consider it. The authors also present a performance
comparison of Bayesian modeling approaches for conditional
reasoning. They are built upon the idea that a conditional “If
X then Y” is understood by a conditional probability P(Y|X).

Oaksford et al. (2000) proposed that reasoning about a con-
ditional rule can be modeled by the three parameters P(X),
P(Y) and P(¬Y|X), the last one allowing for exceptions. Two
extended versions using one and two additional exception pa-
rameters (Oaksford & Chater, 2007) and a model based on
the Kullback-Leibler-Distance, have been statistically com-
pared to a newly developed model – the Dual-Source-Model
(DSM) – that assumes that individuals integrate two differ-
ent kinds of processes: A knowledge-based component where
they take Oaksford et al.’s (2000) approach and extend it with
an additional form-based component, integrating both with a
weight λ. We will present and explain the technicalities of
these models in a following section.

While explicitly stating that model comparison should take
model fit and model flexibility into account, due to the lack
of Maximum Likelihood Estimation abilities for AIC/BIC,
only a model fit using R2 has been computed (Singmann et
al., 2016). The R2 goodness-of-fit values for the four mod-
els were used in a Linear Mixed Model (LMM) with random
effects. Overall the DSM had the highest R2, meaning that
it was able to account for the highest percentage of variance,
i.e., it had the best performance. So far the models have been
evaluated on a statistical level given the analysis approach
based on the R2 and the LMM. In the following, however,
we will focus on process aspects and – we will analyze if a
model queried for a yet untested person is even able to predict
an endorsement of a conclusion from 0 to a 100%.

Our goal: Evaluating the predictive power of models
The current state of analysis does not convey yet, if the de-
scribed models are predictive. When provided with observa-

tions on other participants’ endorsement answers to a set of
reasoning problems (= training data set), a cognitive model
is called predictive for a (untested) reasoner, if it can correctly
predict the inference endorsements (between 0 and 100%) for
those problems (= test data set). This is rather easy for a
yes/no question, as we only have two answer options for the
model’s prediction. However, it is much more challenging to
develop a predictive setting for endorsement rates that range
in the interval 0 - 100. Hence, this paper’s first research ques-
tion is: How can we develop a predictive task setting and
evaluate the predictions and how can we adapt and evaluate
the existing models to provide this prediction?

Our second research question – as current models are prob-
abilistic – is it possible to have a cognitive model based on
mental models? This is often questioned, as endorsement
problems are usually considered new paradigm. Pearl has
suggested approaches that combine a model structure with
probabilities, which we will implement and compare too.

The paper is structured as follows: First, we present ex-
isting experimental data and Bayesian cognitive models for
conditional reasoning. Second, we present an idea of Pearl,
which we adapt to represent inference form endorsements.
Third, we elaborate on how the benchmark was implemented.
To conclude the paper, we present its predictive results, fol-
lowed by a discussion.

Data and Cognitive Models for Conditionals
We consider the experimental data provided in Singmann et
al. (2016)2, specifically the Experiments 1, 3a and 3b with
199 participants. In Exp. 3a and 3b, participants are divided
in three groups. In two groups, participants are provided ad-
ditional information in the form of alternatives and disablers,
whereas the participants in the last group are provided only
with the conditional task. All three experiments use the same
four contents that have a varying amount of disablers and al-
ternatives, both quantified with ‘Few’ and ‘Many’, shown in
Table 2. The participants’ task was to provide endorsement
rates for the four inference forms as a probability in the range
0 - 100%. Each content is presented as a full conditional in-
ference and as a reduced inference, i.e., no major premise,
e.g., MP:

A balloon is pricked with a needle.

How likely is it that it will pop?

Bayesian Cognitive Models
In the 60s a deductive path of cognitive modeling was fol-
lowed, based on the assumption that logic is the basis for rea-
soning (Evans & Over, 2004). However, with time it has been
shown that humans deviate from logic when given deductive
reasoning tasks, and therefore, their responses are deemed
false. That motivated the development of a new, Bayesian
paradigm, where the models are based on probabilities and
allow for background knowledge to be integrated when rea-
soning (Oaksford & Chater, 2020).

2The data can be found at https://osf.io/zcdfq.



Table 2: Contents used in Singmann et al. (2016) experiments.

Keyword Content Disablers Alternatives

Predator If a predator is hungry, then it will search for prey. Few Few
Balloon If a balloon is pricked with a needle, then it will pop. Few Many
Girl If a girl has sexual intercourse, then she will be pregnant. Many Few
Coke If a person drinks a lot of coke, then the person will gain weight. Many Many

Oaksford et al.’s (2000) model (OC) Oaksford et al.
(2000); Oaksford and Chater (2020) propose a probabilistic
model for conditional reasoning. By using a 2 × 2 contin-
gency table, as in Table 3, they represent conditional rules,
where a = P(X) and b = P(Y), probabilities of the antecedent
and consequent, respectively and ε = P(¬Y|X) is the excep-
tion parameter.

Table 3: Contingency table for a conditional rule “If X then
Y” Oaksford et al. (2000). There are three parameters: the
probability of the antecedent P(X) denoted by a; the proba-
bility of the consequent P(Y) denoted by b; and a third pa-
rameter ε for the probability of the exception P(¬Y|X).

Y ¬Y

X a(1− ε) aε

¬X b−a(1− ε) (1−b)−aε

Derived from Table 3, this model uses the following equa-
tions for inference endorsement:

MP: P(Y|X) = 1 - ε DA: P(¬Y|¬X) =
1−b−a · ε

1−a

AC: P(X|Y) =
a(1− ε)

b
MT: P(¬X|¬Y) =

1−b−a · ε
1−b

As already mentioned, Oaksford and Chater (2007) present
a more sophisticated version of this model. We decide to still
take the original 2000 variant into consideration as the DSM
builds up on it, as explained in the following.

Dual-Source Model (DSM) The DSM (Singmann et al.,
2016) is an extension of Oaksford et al.’s (2000) model. It
assumes that individuals integrate two different kinds of in-
formation: background knowledge about the content and in-
formation related to the logical form of the inference. It uses
three types of parameters:

ξ(C,x) – knowledge-based component, depending on the
content C and inference x, i.e. how much does an individ-
ual endorse an inference solely based on their background
knowledge about the content

τ(x) – form-based component, reflecting the subjective
probability of the inference form x, i.e. how much does an
individual believe in the validity of an inference regardless
of the content

λ – a weight given to the form-based component (integrat-
ing ξ(C,x) and τ(x) using Bayesian model averaging)

Applying the DSM to experimental data requires that partici-
pants have given endorsements to both a reduced inference

and a full conditional inference. The model expresses the
reduced inference endorsement through its knowledge-based
component for content C and inference x:

Er(C,x) = ξ(C,x)

The ξ(C,x) parameters are obtained by using Oaksford et
al.’s (2000) equations, as shown above. Then, the endorse-
ment of the full inference x with content C is given by:

E f (C,x) = λ · {τ(x)+(1− τ(x)) ·ξ(C,x)}+(1−λ) ·ξ(C,x)

The λ parameter determines how much do individuals rely
on form validity versus their background knowledge. τ(x) is
the degree of belief in the full inference form. In case of un-
certainties concerning the inference, the individual falls back
to their background knowledge, through the weight (1 - τ(x))
given to the knowledge-based component.

Models and Probabilities: Applying an Idea of Pearl
ε-semantics Pearl (1991) introduced ε-semantics, a ‘formal
framework for belief revision’, where belief statements are
interpreted as statements of high probability and belief revi-
sion shapes current beliefs on newly available evidence. This
approach seems to be most fruitful in our case, because dis-
ablers or alternatives can be such ‘updates’. The idea of Pearl
is based on the idea of possible worlds (or models) that can
be assigned a probabilistic assignment (Pearl, 1991, p. 5):

“Let L be the language of propositional formulas, and let
a truth-valuation for L be a function t, that maps the sen-
tences in L to the set {1, 0}, (1 for ‘true’, 0 for ‘false’).
To define a probability assignment over the sentences
in L, we regard each truth valuation t as a world w and
define P(w) such that ∑w P(w) = 1. This assigns a prob-
ability measure to each sentence l of L.”

Before diving into our application of Pearl’s idea, we will
briefly touch upon mental models. A mental model consists
of the truth states of the premise’s propositions. Given a con-
ditional premise “If X then Y”, the initial mental model that
an individual would construct is the one where both proposi-
tions are true, i.e. XY.

The Mental Model Theory (MMT) (Johnson-Laird &
Byrne, 1991, 2002; Johnson-Laird, Khemlani, & Goodwin,
2015) assumes that once the initial model is created it trig-
gers the recollection of relevant facts and knowledge. Those
facts can either serve as evidence that the initial model is cor-
rect or will stimulate a search for alternatives leading to a
second process where an extended mental model representa-
tion is obtained, also called a fleshed-out representation. It



Figure 2: Boxplot depicting individual performance through the absolute difference between the predicted value and the true
response. Overall mean absolute difference beneath the model’s name. The comparable performance between OC, DSM and
ε-MMT points to (a partial) functional equivalence.

contains models where X is false (¬X), as shown in Table
4a. This representation consists of all possible combinations
of truth-values for X and Y for which the conditional “If X
then Y” is true, which Johnson-Laird and Byrne (2002) call
the principle of truth. This coincides with the material impli-
cation definition which is the leading interpretation of condi-
tionals in the deductive paradigm.

The ε-MMT
ε-MMT takes the mental model representation of all the con-
ditional’s propositions’ truth state combinations, which we
will refer to as possible worlds. In contrast to MMT, it also
allows for the world X¬Y to exist, thus abandoning the ma-
terial implication interpretation. Given a premise containing
two propositions, X and Y, all possible worlds described by
the premise along with the corresponding probability values
are shown in Table 4b. Given a conditional “If a balloon is
pricked with a needle then it pops”, the probability of the
world ω2, where the balloon is not pricked with a needle (X
= 0) and it pops (Y = 1) is p2.

Table 4: Representations of a conditional premise “If X then
Y” with mental models and as possible worlds.

Mental M. Fleshed-out M.
X Y X Y

... ¬X ¬Y
¬X Y

(a) Johnson-Laird and Byrne
(2002)

World X Y P
ω1 0 0 p1
ω2 0 1 p2
ω3 1 0 p3
ω4 1 1 p4

(b) Possible worlds, probabil-
ity distribution P and values
pi, i ∈ (1,2,3,4)

ε-MMT follows the same approach of previous accounts in
the Bayesian paradigm, e.g. Oaksford et al. (2000), assuming
that an individual’s inference form endorsement can be ex-
pressed as a conditional probability of the conclusion given
the minor premise.

P(β|α) = P(α∧β)

P(α)
(1)

Following the definition of conditional probability, as
shown in Eq.1 the four expressions shown below are ob-

tained. They describe the endorsement of the four inference
forms through the probability distribution P of the condi-
tional’s worlds (Table 4b):

MP: P(Y|X) =
p4

p3 + p4
DA: P(¬Y|¬X) =

p1

p1 + p2

AC: P(X|Y) =
p4

p2 + p4
MT: P(¬X|¬Y) =

p1

p1 + p3

The parameters are bound by their sum, ∑i pi = 1, meaning
that the number of free parameters for modeling one task is
three. Total number of parameters to model an individual
hence depends on the number of tasks they have to complete.

Benchmark
In order to evaluate the three presented cognitive models, we
implemented a benchmark within the framework CCOBRA,
following Riesterer et al.’s (2020) approach. As already men-
tioned, their focus is on the syllogistic domain, where a model
either predicts the correct answer out of the possible 9 or not,
whereas our goal is to predict a value in the range 0-100.
This poses a difficulty in adopting the same idea of judg-
ing a model based on whether it predicted the exactly cor-
rect answer or not. Instead, we are interested in how close
the model’s prediction is to the true reasoner’s answer. The
framework was extended to calculate the absolute difference
between answers and predictions, rather than check for ac-
curacy. In their benchmark, a theory is considered to have a
good performance if it has a high accuracy rate. In our case,
a cognitive model aims for a low absolute difference.

Generally, in order for the cognitive model to be able to
predict a response as accurately as possible, it needs to be ex-
posed to already existing data, i.e. a training set, from which
it can learn. Here, we used Singmann et al.’s (2016) exper-
imental data which we presented earlier. Since all three ex-
periments have the same contents, we combined their data
into one set, as the authors did in their original study. When
provided with the same data for both training and testing, as
in our case, the CCOBRA framework uses a leave-one-out
cross-validation method – models are fitted on every partici-
pant, except the one whose answers are to be predicted. The
same process is repeated for each participant.

In the training phase, we fit the models to the participants’



Table 5: Medians of the models’ parameters per task and conditional presentation form. Values discussed below are in bold.

Form Task ε-MMT1 Oaksford-Chater2 Dual-Source Model3
p1 p2 p3 p4 a b ε ξ(C,MP) ξ(C,AC) ξ(C,DA) ξ(C,MT)

Reduced Inference
Predator .44 .06 .03 .59 .56 .60 .10 .90 .85 .80 .86
Balloon .48 .12 .05 .38 .38 .48 .12 .88 .70 .77 .91
Girl .23 .06 .42 .13 .63 .23 .68 .33 .87 .92 .45
Coke .27 .20 .14 .29 .47 .53 .37 .63 .56 .55 .63

Conditional Inference
Predator .46 .05 .02 .62 .56 .59 .08
Balloon .49 .07 .02 .53 .46 .53 .08

As aboveGirl .32 .06 .22 .35 .60 .41 .39
Coke .33 .15 .06 .40 .47 .55 .23

1 Probabilities of possible worlds ωi, see Table 4b, we have p1 = P(ω1), p2 = P(ω2), p3 = P(ω3), p4 = P(ω4), note that only 3 parameters
are necessary because of ∑i pi = 1; 2 The three parameter values are: a = P(X), b = P(Y), ε = P(¬Y|X); 3 Knowledge-based parameters
ξ(C,x) for content C and inference x. The same values are used in the conditional case.

answers by optimizing the models’ parameter values such that
the absolute difference between the predicted answer and the
reasoner’s response is minimized. In order to do that we used
Python’s scipy.optimize.minimize3 with the method Se-
quential Least Squares Programming (SLSQP). This method
was chosen because it allows for constrained minimization.

Following Riesterer et al. (2020), we included a Random
model as a lower bound, which in our case gives a random
value in the range 0-100 as a prediction. Our models do not
adapt to the individual, so we also included a Most Frequent
Answer (MFA) model as an upper bound. In old paradigm
experiments such a model would count the number of times
an inference has been accepted or rejected and would predict
the outcome that was most frequent. However, now we have
a far more complex situation, dealing with a big range of val-
ues, to which we had to adapt this idea by having the MFA
model give the median of the responses as a prediction.

Predictive Modeling Results
We judge a model’s performance by the mean of the absolute
differences between the model’s predictions and the individ-
uals’ answers. A lower absolute difference indicates more
accurate predictions and therefore, better performance.

Figure 2 illustrates the model performance for each indi-
vidual. The probabilistic models have similar results, all three
greatly outperforming the Random model, while being com-
parable to the MFA model, but not better. OC and the DSM,
both established models in the current Bayesian paradigm
give an impressive performance. But, now we can also see
that ε-MMT, a model-based approach is a valuable competi-
tor in this probabilistic paradigm.

Having a predictive performance that is as good as an em-
pirical model is an accomplishment for the probabilistic cog-
nitive models. However, if we compare only the three of
them – their performance is not very different. So, we pro-
ceed with the analysis by investigating the models’ parameter
values and how they aid in explaining the individuals’ con-
ditional interpretations. The median values of the models’

3https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.minimize.html

parameters are shown in Table 5. In the reduced inference
case participants are not provided with a rule, so their back-
ground knowledge is more prominent and that is reflected in
the parameter values. We use now X for the antecedent of a
conditional, and Y for its consequent (“If X then Y”). In the
case of ε-MMT, the parameter p2 describes the probability
of the world ω2 where Y happens even if X does not and its
values are higher for tasks with ‘Many’ alternatives, in con-
trast to ‘Few’. The parameter p3, on the other hand, is the
probability of the world ω3 where X is true, however Y is
not and through higher values shows the presence of ‘Many’
disablers. It can be seen how when a conditional has been
provided, the belief in these two worlds diminishes. For OC,
the most noticeable impact is on the ε parameter which is
the probability of the exception P(¬Y|X). Its values are ex-
ceptionally higher for tasks with ‘Many’ disablers. A lower
value for a = P(X) is present in the case of ‘Many’ alterna-
tives, showing that X does not need to be true for Y to happen.
Likewise, b = P(Y) reflects the presence of ‘Many’ disablers
which would prevent Y from occurring. The influence of al-
ternatives and disablers is reflected in the conditional case as
well, though at a smaller scale due to the conditional rule re-
stricting the integration of background knowledge, similarly
to ε-MMT. For the DSM, we have the four knowledge-based
parameters ξ(C,x) for each content C and inference form x.
Their values correspond to the inference form endorsements
in the reduced inference case. Alternatives suppress the logi-
cally invalid forms, AC and DA, which is shown through ξ’s
values for the tasks with ‘Many’ alternatives. Similarly, as
disablers suppress the logically valid MP and MT, the corre-
sponding ξ values for tasks with ‘Many’ disablers are notice-
ably lower. The other parameters have the following median
values: τ(MP) = 1.00, τ(AC) = 0.40, τ(DA) = 0.49, τ(MT) =
0.88 and λ = 0.78. Larger values of τ for MP and MT show
higher beliefs in the logically valid forms MP, MT.

Considering each individual from 199 participants, 81
were best predicted by OC, another 81 by the DSM and 37
by ε-MMT. That lead us to the conclusion that among these
three models, there is not a single one that “dominates” the
others. Therefore, in order to support the idea that one sin-
gle model can not capture every individual, we combined all



three models into what we call an ensemble model, using for
each individual the model that made the best prediction. This
model consists of the best that these cognitive models can of-
fer and it outperformed the MFA Model by reaching a mean
deviation of ca. 16%. The purpose of this ensemble approach
is to show that integrating strategies captures individuals best.

Discussion and Conclusion

Our first research question was if it is possible to predict a
conclusion endorsement varying in the range between 0 and
100, and not a dichotomous “yes” or “no” response. Yes – our
results show that two Bayesian models exposed to a training
data set can generate predictions on unseen data with a mean
deviation of 17%. With this, we are establishing a new test-
ing paradigm by not asking how good are the models in ex-
plaining existing data, but rather how good can they predict a
reasoner’s answers? By doing that we can elicit new insights.
E.g., Singmann et al. (2016) showed that the DSM outper-
forms other probabilistic models when comparing their fits.
However, evaluating the predictive power, the DSM does not
perform better than the model it is built upon, the Oaksford et
al.’s (2000) original probabilistic model, meaning that in this
task only that one source is enough. We posed the question
whether it would be possible that a model-based approach
could compete with Bayesian models. Elqayam and Over
(2013) discuss how old paradigm theories, like the MMT, fo-
cus on truth preservation from assumptions and cannot ac-
count for irrationality in human decision making. Here we
took MMT’s conditional representation and adapted it such
that it does not follow the old paradigm’s material implica-
tion interpretation and extended it with probabilities based on
Pearl’s (1991) ε-semantics. With that, we showed that – yes,
a model-based approach can indeed compete with established
Bayesian models. The comparable performance of the 3 cog-
nitive models indicate a functional equivalence and similar
processes, but, they do differ in their representation. None of
the single models predictive performance was better than the
MFA. This has been regarded in other domains such as syllo-
gistic reasoning as an empirical upper bound for static models
(Riesterer et al., 2020). By combining them into a ensem-
ble model and introducing a better representation flexibility
we showed that this performance upper bound can be sur-
passed while still having the tools to give insight into individ-
uals’ conditional reasoning, capturing individual differences.
By looking into the models’ parameter values we learn how
disablers and alternatives influence the reasoners’ representa-
tion of the conditional from different perspectives. Consider
a task with ‘Many’ disablers, through ε-MMT’s p3 param-
eter we understand that the individual’s belief in the world
ω3, where the antecedent has happened but the consequent
has not, is stronger. OC shows us that individuals assign a
high probability to the conditional’s exception, P(¬Y|X). The
DSM shows through its ξ parameters how disablers suppress
the logically valid MP and MT, which is a reasoning effect
that has been long recognized in this field (Byrne, 1989). We

took into consideration experiments that deal with meaning-
ful contents. Data is (still) quite scarce, as the focus in exper-
iments has largely been on reasoning about abstract material.
Our interest is in how humans reason in their everyday life,
where most of our reasoning takes place. Hence we use such
material. Nonetheless, the methods can be applied to abstract
problems too.

This work opens future research lines in comparing how
parts of models can be translated into each other. It not only
allows to ground some of the functional equivalence we have
already identified, but it would additionally help recognize
where models deviate and what reasoning strategies might
be missing when modeling an individual. With that, pre-
dictions of the reasoner’s conclusion endorsement would im-
prove, which would lead to a better understanding of the rea-
soning processes, making this path of not only fitting models,
but also challenging their predictive capabilities an exciting
one, opening many doors to a new way of adaptive modeling.
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