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Abstract

Fatigue is a problematic factor in many workplace environments,
resulting in safety and health risks that require monitoring and
management. One means to monitor and manage fatigue is
through the use of tools implementing biomathematical fatigue
models to create assessment and predictions of operator fatigue
based on sleep habits. Unfortunately, these models tend to
provide assessments and predictions for an “average” operator
given work schedules, lacking individualization. One way in
which these models can be individualized is through the use of
at-the-moment performance data that can modulate the model
estimates. In the current effort, we describe an initial attempt at
developing an algorithm to individualize fatigue assessments and
predictions from a widely-used biomathematical fatigue model
with performance data from a common attention task. We discuss
the sleep datasets used for the effort, scaling procedure, and
model fitting using a genetic algorithm. We then discuss future
directions we will take to further increase the effectiveness and
efficiency of the individualization capability and its implications.
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Fatigue is a problematic factor in several workplace
environments such as aviation (Caldwell & Caldwell, 2016),
commercial motor vehicle (National Academies of Sciences,
Engineering, and Medicine, 2016), railroad (Gertler,
DiFiore, & Raslear, 2013), and medical (Kancherla et al.,
2020) operations. Given the resulting safety and health risks
associated with fatigue, it is crucial that organizations
implement fatigue risk management (FRM) programs,
policies, and other mitigation efforts to combat fatigue.
Traditionally, organizations have commonly implemented
policy limits regarding work/duty hour limits and rest
breaks to allay fatigue. Increasingly, organizations have
implemented various types of FRM programs that provide
resources and tools to help mitigate fatigue, document
fatigue, and examine incidents involving fatigue (Gander et
al., 2011). One tool found within some high-risk operational
setting programs is the use of biomathematical fatigue

models to create assessments and predictions of operator
fatigue. Biomathematical fatigue models include
homeostatic regulation and circadian rhythm processes,
among other factors, to create predictions of fatigue for
operators (Mallis et al., 2004).

One particular model that is used by organizations such as
the United States Air Force (USAF) Air Mobility Command
(AMC), the U.S. Federal Railroad Administration, among
others, is the Sleep, Activity, Fatigue, and Task
Effectiveness biomathematical fatigue model (SAFTE;
Hursh, Redmond, et al., 2004). This model is typically used
as the basis of the Fatigue Avoidance Scheduling Tool
(FAST; Hursh, Balkin, et al., 2004), a tool that provides
fatigue predictions based on prescriptive sleep schedules
given work and rest times. One issue with the SAFTE model
and other similar biomathematical models is that the model
provides predictions for an “average” operator, lacking
individualization. Some researchers have had success
individualizing predictions of biomathematical fatigue
models. Recently, Liu et al. (2017) had success in
individualizing the Unified Model of Performance (UPM;
Rajdev et al., 2013) with Psychomotor Vigilance Test (PVT;
Dinges & Powell, 1985) reaction times. Since the SAFTE
model is the basis of several FRM programs and research
has provided support of its effectiveness (Hursh, Redmond,
et al., 2004; Van Dongen, 2004), we believe it is
advantageous to implement a similar technique as Liu et al.
(2017). In the current effort, we develop an algorithm to
modulate the SAFTE model fatigue estimates with PVT
data. This will provide more valid fatigue assessments from
the biomathematical model through individualization gained
from use of PVT data.

SAFTE Model
The SAFTE model is a three process model that includes
homeostatic regulation, circadian rhythm, and sleep inertia
processes to calculate general performance effectiveness



(fatigue) predictions. The model also includes a process to
account for chronic sleep deprivation. The SAFTE model
embedded in FAST is proprietary and includes additional
features to take time zone changes and light into account. In
the current effort we utilize the non-proprietary version of
the SAFTE model (Hursh, Redmond, et al., 2004). The
SAFTE model includes 16 parameters. These are listed in
Table 1, along with their general mechanism within the
model and effects on the output of the model when
modified.

Psychomotor Vigilance Test
The PVT is one of the most widely used tasks to assess
fatigue due to its sensitivity to sleep decrements and
robustness to learning effects (Arsintescu et al., 2017;
Balkin et al., 2000; Basner & Dinges, 2011). In the PVT,
participants wait for a rolling reaction time indicator in
milliseconds to appear on a computer screen in a known
location. When this indicator appears, the participant must
respond as fast as possible. The PVT is traditionally 10
minutes in length and has a random inter-stimulus interval
(ISI) of 2 to 10 seconds. Mean and median reaction time
and number of lapses (reaction times greater than 500 ms)
are the most common metrics examined to assess alertness
or fatigue, but there are several other metrics that are also
sensitive to fatigue (e.g., mean 1/RT, slowest 10% 1/RT,
etc.) (Basner & Dinges, 2011).

Current Effort
In the remainder of the paper, we will describe our process
for individualizing the SAFTE biomathematical fatigue
model using PVT data. First, we will describe the archival
sleep deprivation dataset used to develop and test the
algorithm. We will then describe the process to scale model
outputs to the PVT outcomes and how specific SAFTE
parameters were chosen. We will then demonstrate the
predictive capability of fitting the chosen parameters to
individuals. Lastly, we will discuss implications of this work
and future plans.

Table 1: SAFTE Model Parameters
Par Rep Effects DV RE
p 24h acrophase Shifts

effectiveness
curve left and

right

18 [1,24]

pp 12h acrophase Changes shape of
effectiveness

curve

3 [1,12]

beta Relative
amplitude of
12h rhythm

If both circadian
peaks are at the

same height

0.5 [0,1]

m Sleep
propensity

mesor

Positive values
increase sleep

inertia

0 [-5,10]

as Sleep
propensity
amplitude

Higher values
increase

effectiveness

.55 [-5,5]

a1 Performance
rhythm

amplitude
(fixed %)

Height of peak of
circadian

component

7 [0,20]

a2 Performance
rhythm

amplitude
(variable %)

Height of peak of
circadian

component

5 [0,20]

f Feedback
amplitude

How gradually
sleep increases

reservoir

.00262
43

[0,1]

k Performance
use rate

Depletion rate
while awake

.5 [0,1]

k1 Down-regulati
on time
constant

Only during sleep .22 [0,5]

k2 Reference
level for SI
regulation

Only during sleep 0.5 [.01,5]

k3 Recovery time
constant

Only during sleep .0015 [0,5]

SI
max

Max sleep
accumulation

per minute

Only effect when
sleep <=3 hours

3.4

I Sleep inertia
time constant

Only effect 2
hours following

awakening

.04

I
max

Max inertia
following
awakening

Only effect 2
hours following

awakening

5

RC Reservoir
capacity

Kept constant
across

participants

2880

Note. Par = Parameter; Rep = Represents; DV = Default
Value; RE = Range Explored



Method
Dataset
To test fits from the model we utilized PVT data from two
62-hour sleep deprivation studies run at Washington State
University (Tucker, Whitney, Belenky, Hinson, & Van
Dongen, 2009; Whitney, Hinson, Jackson, & Van Dongen,
2015). The first dataset (Whitney, Hinson, Jackson, & Van
Dongen, 2015) included 26 participants (Mage = 25.92, SDage

= 4.05, Rangeage = 22-37, 16 males and 10 females) from the
surrounding Washington State University community.
Participants were randomly assigned to a sleep deprivation
(n = 13) or control group (n = 13). The second dataset
(Tucker, Whitney, Belenky, Hinson, & Van Dongen, 2009)
included 23 participants (Rangeage = 22-38, 12 males and 11
females) also from the surrounding Washington State
University community. Participants were randomly assigned
to a sleep deprivation (n = 12) or control group (n = 11).

The following description of the protocol was common
to both studies, except where noted. Participants spent 6
consecutive days (7 in the first study) and 6 nights in the
lab. The first two days were a baseline period where
participants had 10 hours time in bed from 22:00 to 08:00
each night. The control group continued this sleep schedule
in the following days, but the sleep deprivation group was
deprived of sleep for 62 continuous hours. The last two days
were a recovery period where both groups had 10 hours
time in bed each night. Participants completed several
different tasks during the studies, but we only focus on the
PVT task in the current effort. The PVT task was 10
minutes in length with a random ISI of 2 to 10 seconds.
PVT bouts were collected about every 2 hours during
scheduled time awake. This resulted in 8 baseline bouts for
both groups, 24 bouts for the sleep deprivation group and 14
bouts for the control group during the sleep deprivation
period, and 10 recovery bouts for both groups. We
specifically focused on the sleep deprivation groups from
both studies for this modeling effort. For fitting the model to
the human data, we aggregated each participant’s median
RT by bout.

Scaling Model Outputs to PVT
Sleep schedule input into SAFTE followed the protocol
described above. Output from the SAFTE model produces
an effectiveness value on a scale of 0 to 1. As is the case in
many biomathematical models, the output requires scaling
and inversion to reflect the dependent measure of interest (in
this case, the median RT per bout) (Van Dongen, 2004). We
linearly transformed this value using the following formula:
Model = scale + scale * (1-EV), where scale is determined
for each participant and is the minimum median RT from all

the bouts that went into fitting the model, EV is the
effectiveness value output from SAFTE.

Finalizing Parameters to Modulate
After reviewing the effects of each SAFTE parameter on
model output, we found that 12 of the parameters were good
potential candidates for the individualization of model
output. The culling of the original 16 parameters to 12 was
done by visually inspecting the effects of each parameter
independently with respect to a 62h sleep deprivation sleep
schedule. We found that SImax, i, and Imax all had minimal
effects on the Effectiveness values output by the model
during periods of wakefulness. We chose to also keep the
Reservoir Capacity (RC) constant across all participants as
its magnitude is directly related to the k parameter which
controls the rate at which the reservoir is depleted during
wakefulness. Rather than vary both parameters, we chose
the k parameter to vary. Table 1 also lists the ranges we
used in exploring parameter effects.

The parameter space we wanted to explore in this work
was fairly large (as seen in Table 1) and rather than try to
run a brute force exhaustive search for each participant, we
turned to genetic algorithms. Genetic algorithms have been
used in many domains in order to find sets of parameters
that minimize some fitness functions fairly efficiently
(Fogel, 2006). We used the GA package in R to run a genetic
algorithm with a population size of 50 and convergence
determined by 50 generations with no change in fitness
(Scrucca, 2013, 2017). The fitness function used in the GA
was the root mean squared error (RMSE) between the
human data and model output after scaling of the median
RT. This initial parameter exploration was done using all of
the bouts of data for each participant.

Although there are likely significant interactions between
the various parameters, as a first pass at determining how
much each parameter contributes to individually fitting the
human data, we ran the genetic algorithm while varying 11
parameters and keeping the 12th constant. As a control, we
used a model with default SAFTE parameters (green dotted
line in all figures). Figure 1 shows the resultant average
error across all participants when each parameter was held
constant at its default value while the rest were explored.
The red line in the figures indicates the error when all 12
parameters were varied. As the figure suggests, maintaining
the k parameter at default had a considerable effect on the
model’s error. Using the results derived here, we compared
the average error to the 12 parameter model and
conservatively culled any parameters whose exclusion
(keeping them at default values) either resulted in better
performance than the 12 parameter model or were within .5



error units. From this point forward we kept the p, pp, m, f,
and k3 parameters at default values.

Figure 1: Average RMSE across all participants when fitting
by keeping each parameter constant while the other 11 are
varied.

Figure 2: Average RMSE across all participants when fitting
by keeping each parameter constant while the other 6 are
varied.

We then repeated the above procedure with the 7
remaining parameters and ran the genetic algorithm while
varying 6 parameters and keeping the 7th at default. The
results are shown in Figure 2. Given these results, we found
that we can further keep as default the parameters a1 and
beta. In an attempt to further reduce the number of
parameters, we ran the GA only varying the a2, as, and k
parameters as those seemed to provide the largest
improvement to fit, as well as only varying the k parameter.
Figure 3 shows the average error based on the number of
parameters compared to the fully default model (green line)
and the 12 parameter model (red line). Based on these
results, the 5 parameter model which varies a2, as, k, k1,
and k2 produces the best individual fits to our dataset. These
parameters correspond to how high the peak of the circadian
component is (a2), the amplitude of sleep propensity with
higher values resulting in higher effectiveness values (as),

how quickly the reservoir is depleted (k), and how quickly
the reservoir is refilled (k1 and k2).

There was a statistically significant difference in error in
the number of parameters in the model as determined by a
linear mixed effects model, (F(5, 836) = 224.68, p < .001).
Post-hoc tests indicated that both the 5-parameter model and
the 7-parameter models have significantly less error than the
12-parameter or default models (p < .05). In the interest of
simplicity, we used the 5-parameter model for predicting
performance for each PVT bout based on all preceding
bouts.

Figure 3: Average RMSE across all participants of the best
fitting models by number of free parameters.

Results
Having settled on the 5 parameters we found to be the most
appropriate for capturing individual differences in our
dataset, we subsequently ran the genetic algorithm to find
the best fitting parameters for each participant up to each
bout time in order to predict the next bout’s performance.
Since the goal of the current work is to be able to adjust
parameters in real-time to predict future performance, this
approach should establish the validity of using the 5
parameters to fit individuals. Figure 4 depicts the average
error across all participants during each bout based on the
parameter set which minimizes the error of all previous
bouts. For comparison, we also used the SAFTE model with
default parameters and scaled each individual’s performance
as before. There was a statistically significant interaction
between model type and hour on the error between the
model’s predicted median RT and the human data as
determined by a linear mixed effects model, (F(33, 1611) =
6.03, p < .001) as well as both the main effect of type (F(1,
1611) = 167.54, p < .001) and hour (F(33, 1611) = 20.28, p
< .001). Post-hoc tests indicated that there were significant
differences between the default model and the 5-parameter
individualized model in all hours between 105 and 141 into



the study (p < .01). These hours corresponded to being
awake for 25 to 61 hours.

It should be noted that there was considerable variability
between participants in terms of how accurately the
individualized model was capable of predicting
performance. In particular, the majority of participants (n =
19) had an average error of 30 ms or less across all bouts.
However, in some participants the later bouts which
occurred during the sleep deprivation period were not as
well fit by the model, as shown in Figure 4 in which bouts
occurring during hours 120-140 have high variability and
higher error. After inspecting the poorer fitting participants,
we found that there was a difference in goodness of fit
between the participants from the first study and those of the
second. It was unclear why this would be the case as both
studies used the same protocol. However, after filtering out
the participants from the second study, we found a reduction
in prediction error which mimicked that of the error we see
when fitting the entire data set, see Figure 5. We again
found a significant interaction between the model type and
hour, (F(33, 795) = 12.27, p < .001) as well as both the main
effect of type (F(1, 795) = 318.88, p < .001) and hour (F(33,
795) = 20.68, p < .001). As in the above analysis, post-hoc
tests revealed significant differences between the two
models for hours 105 to 141.

Taken together, our initial individualized modeling effort
resulted in much better predictions of next bout performance
than the default parameter model despite the large
variability inherent during sleep deprivation bouts.

Figure 4: Predicted bout’s median RT error based on all
previous bout data, includes 25 participants in the sleep
deprivation condition. Green lines are day boundaries.

Figure 5: Predicted bout’s median RT error based on all
previous bout data, includes only the 13 participants from
the first 62-h study who were in the sleep deprivation
condition.

Discussion
In the current effort, we have demonstrated an initial attempt
to develop an algorithm to individualize SAFTE
biomathematical fatigue model estimates with PVT
performance data. Although SAFTE includes 16 parameters
which could theoretically all be manipulated in order to fit
individual performance data, we attempted to cull the
number of parameters down, both to avoid overfitting and to
more efficiently find best fits, while still maintaining the
ability to both fit the data and predict future performance.
Out of the 16 parameters, 3 were negligible in their
contribution to effectiveness values while awake and a 4th
highly correlated with another parameter. Further
exploration of the remaining 12 parameters found that 5
more could be culled without appreciably affecting the
individual fits. Furthermore, a 5-parameter model was
capable of fitting individual data as well as a 7-parameter
model. Further reducing the number of parameters,
however, produced worse fits. This suggests that these five
parameters are associated with important individual
differences regarding fatigue. The a2 parameter is likely
associated with differences in circadian typology, the as
parameter is associated with how quickly individuals fall
asleep and their ability to stay asleep, and k, k1, and k2
parameters are likely associated with differences in sleep
need.

We then used the 5-parameter model to fit individual
performance up to a particular bout and predict performance
on the subsequent bout. The error between the model’s
predicted median RT and that of each individual
participant’s was within a range commensurate with using
the entire data set to fit the parameters, suggesting that this
approach may allow us to update parameter estimates with



limited data and provide a more individualized model of
performance than the default SAFTE model. Although the
individualized predicted fits get somewhat worse during the
sleep deprivation period, they are still much better than
using the default parameters.

The traditional PVT implementation is not practical in
operational contexts due to the length of the task (10
minutes) and the hardware used to collect the reaction times
(e.g., desktop computer or laptop) (Lamond et al., 2005). As
a result, researchers have examined the validity of shorter
PVT implementations (e.g., 5 or 3 minutes) on handheld
devices (e.g., Basner et al., 2011, Grant et al., 2017; Lamond
et al., 2005). Overall, these studies have found these
implementations to be valid assessments of fatigue when the
traditional PVT implementation is not possible. Three
minute smart-phone based PVTs are an especially attractive
alternative for operational environments as they are short in
duration and operators commonly carry these devices on
their person. As a result, real-time performance from a
smartphone PVT can be used to individualize
biomathematical fatigue models within FRM programs. The
current effort is a first step in allowing us to use the output
from these shorter duration PVT implementations to
individualize predictions.

We will continue to improve upon the algorithm by
testing with additional sleep deprivation, restricted sleep,
and shift-work datasets to demonstrate performance in
various sleep impairment-related contexts. Future work will
also explore other scaling mechanisms as well as different
dependent measures such as number of lapses and false
alarms as those have also typically been used to evaluate
PVT performance. We will also work toward being able to
predict performance further than one bout in the future.
Finally, the ultimate goal of this work is to provide efficient
real-time parameter estimation on an individual basis
allowing us to predict future performance.
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