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Abstract

Due to information processing constraints and cognitive lim-
itations, humans necessarily form limited representations of
complex visual stimuli when making utility-based decisions.
However, it remains unclear what mechanisms humans use to
generate representations of visual stimuli that allow them to
make predictions of utility. In this paper, we develop a model
that seeks to account for the formation of representations in
utility-based economic decision making. This model takes the
form of a β-variational autoencoder (β-VAE) trained with a
novel utility-based learning objective. The proposed model
forms representations of visual stimuli that can be used to
make utility predictions, and are also constrained in their infor-
mational complexity. This representation modelling approach
shares common features with related methods, but is unique
in its connection to utility in economic decision making. We
show through simulation that this approach can account for
several phenomena in human economic decision making and
learning tasks, including risk-averse behaviour and distortion
in the calculation of expected utility.
Keywords: Cognitive Modelling, Decision Making, Informa-
tion Theory

Introduction
In the context of decision making, a representation refers to
the internal mental state of an agent, encompassing features
from the external environment that are relevant to the deci-
sion task and the agent’s objectives. The mechanisms of this
representation formation must depend on the task being per-
formed, as decision makers should seek to efficiently repre-
sent task-relevant information while ignoring or abstracting
across irrelevant information. One important class of tasks
which we study in this paper is that of economic decision-
making based on visual stimulus.

Neuroeconomics has sought to further the understanding
of the neurological underpinnings of economic decision mak-
ing, though relatively little work in this area has focused on
the mechanisms behind representation formation from visual
stimuli. One potential mechanism for modelling this cogni-
tive process is the variational autoencoder (VAE), a method
that learns informationally limited representations of input
that can be used to form lossy reconstructions (Pu et al.,
2016). In this paper, we present an extension of the VAE
framework that produces task-relevant representations of eco-
nomic decision tasks, and predicts human-like decision mak-
ing.

Traditional variational autoencoder models incorporate an
information constraint based on the structure of the neural

network that implements them (e.g., limiting the number of
nodes in a hidden layer), but the capacity of the autoencoder
is not easily controlled. β-VAEs are a variant incorporating
an additional parameter that controls this information bottle-
neck, encouraging the model to learn more informationally
compact representations. The novelty of our work lies in the
application of β-VAEs onto economic decision making. Our
model also differs from related methods in machine learning
through the use of a novel loss function that balances stimulus
reconstruction error and loss in expected utility. The model
predicts at a qualitative level the decision making of an indi-
vidual who has limited information processing capacity, but
is otherwise rational in seeking to maximize expected utility.

The main feature of β-VAEs in limiting the amount of in-
formation used to form internal representations shares a con-
nection to other information theoretic methods such as the
information bottleneck approach and rate-distortion theory
(Burgess et al., 2017). The latter has been used to conceptual-
ize human perception as optimizing task performance subject
to a constraint on channel capacity (C. R. Sims, 2016).

Rate-distortion theory has also been used to model gen-
eralization of perception as resulting from the encoding of
perceptual information in a efficient way that can then be
used to generalize over novel experience (C. R. Sims, 2018).
This effect has been shown to produce biases in statistical
and categorical learning from visual features that mimic ef-
fects present in human perception (C. J. Bates, Lerch, Sims,
& Jacobs, 2019). The model described in this paper seeks
to achieve the same goals as these previous methods while
also producing an internal representation of a perceived stim-
ulus and a method of explicitly estimating task-relevant utility
based on these representations.

Related Methods
β-VAEs have previously been used to model the formation
of task-relevant representations in visual categorization and
change detection tasks (C. Bates & Jacobs, 2019). In the work
of Bates et al., the model consisted of a β-VAE which formed
internal representations of stimulus, and a decision module
that completed the task being performed based on these rep-
resentations. Results from this experimentation demonstrated
a categorical bias in reconstruction depending on which task
is being modelled. This supports the use of the β-VAE frame-
work in modelling the formation of task-relevant visual stim-



ulus representations.
The model and experimentation presented in this paper is

an extension of this method onto the domain of economic de-
cision modelling from visual stimulus, which requires adjust-
ments in model structure and training. This is an important
extension, as utility is the basis of economic decision making
in cases where agents have access to utilities and probabili-
ties required to determine optimal actions. Utility can also
serve as the basis for models of human reinforcement learn-
ing used to make predictions of human decisions in learning
tasks (Niv, 2009; Niv et al., 2015; Collins & Frank, 2012).
The ability of extending the proposed model into the domain
of reinforcement learning modelling will be further investi-
gated in the discussion section.

The function and motivation behind β-VAE models shares
a close connection with the information bottleneck approach
(Burgess et al., 2017; Alemi, Fischer, Dillon, & Murphy,
2017). This method has been applied to modelling cogni-
tive mechanisms that share similarities with economic deci-
sion making, such as predictive inference (Still, 2014) and
information-constrained behaviour (Lai & Gershman, 2021;
Malloy & Sims, 2020). One key feature of our proposed
model is that it makes predictions on the formation of task-
relevant representations under information constraints. Pre-
vious methods applying the information bottleneck approach
to decision modelling have either not included representation
formation, or done so in a task that did not involve utility pre-
dictions.

Within the field of economic decision modelling, sub-
optimality in human decision making is understood within the
frameworks of bounded rationality (Simon, 1990; Camerer,
1998) and rational inattention (C. A. Sims, 2003; Mackowiak,
Matejka, Wiederholt, et al., 2020). Models developed under
these frameworks can be used to predict how humans make
decisions relative to their information processing limitations.
As with previously discussed methods, these too do not ex-
plicitly model the formation of task-relevant representations
of stimuli.

In this paper we present experimentation utilizing our pro-
posed model resulting in similar predictions of sub-optimality
in decision making as these related methods, while addition-
ally modelling visual representation formation. As with all
cognitive models based in neural networks, these represen-
tations are a metaphor for the contents of human cognition.
However, through its novel structure and training method our
model makes implications for how constrained representation
formation can lead to sub-optimal performance.

Modeling Representations using β-VAEs
β-Variational Autoencoders
Variational autoencoders consist of a neural network which
compresses an input into a lower dimensional representation
that is then expanded back into a reconstruction of the input.
The first half of this network structure is referred to as the
encoder, while the second half is referred to as the decoder.

Both portions of the network are trained simultaneously as
the network takes in some input and produces an output, and
through training learns to reconstruct the input as faithfully
as possible.

The closeness of this reconstruction is defined by a loss
function which determines how similar the reconstruction is
to the original input. Typically in VAEs the loss function is an
error between the model input and output, such as the mean-
squared-error.

In β-VAEs, an additional parameter (β) is introduced to
control the information capacity of the lower dimensional
representation, which results in an adjustable information
bottleneck (Higgins et al., 2017; Mathieu, Rainforth, Sid-
dharth, & Teh, 2019). The loss function used to train a β-VAE
is as follows:

L(θ,φ;x,z,β) = Eqφ(z|x)[log pθ(x|z)]−βDKL
(
qφ(z|x)||p(z)

)
(1)

In the above, φ represents the parameters of the encoder
qφ(z|x), which defines the probability distribution over la-
tent representations z given the stimulus x. Additionally,
pθ(x|z) can be understood analogously with the decoder, as
it defines the probability that a stimuli x can be produced
from the latent representation z. The desired decoder is one
where p(x|z) ≈ p(x|v,w) where v are the conditionally inde-
pendent generative factors responsible for producing the stim-
ulus, and w are the conditionally dependent factors. When
p(x|z) ≈ p(x|v,w) the latent representation z is an adequate
representation of the generative factors responsible for pro-
ducing the stimuli x, as the probability of observing the orig-
inal data given the latent representation is maximized. For a
more complete description, see (Higgins et al., 2017).

The first term in this loss function represents the recon-
struction error between the model input and output. The
second term DKL

(
qφ(z|x)||p(z)

)
represents the informational

complexity of the internal representations that the model gen-
erates. When β = 0 the model seeks only to minimize recon-
struction error, and as β increases the amount of information
used in internal representations decreases. The loss-function
used in VAEs corresponds to β = 1 and as β increases a more
constrained information bottleneck is applied.

The usefulness of the β-VAE method in modeling human
decision making over the traditional VAE approach is in its
ability to adjust the information constraint on the latent rep-
resentation. For modeling human decision making, it should
be possible to determine an individual participant’s informa-
tion processing constraint and fit the β parameter to match
that. This suggests that the proposed β-VAE model might
better capture the way that individuals form representations
of decision making tasks given their individual capacity for
storing and processing information.

In our proposed model, the β-VAE represents a Working
Memory Module (WMM) of an agent when they are mak-
ing a decision based on visual stimulus. However, because
stimulus representations should be domain specific due to in-
formation processing constraints, we must train this model



Figure 1: The Working Memory Module is a β-VAE structure
that learns to reconstruct the stimulus ground truth and Util-
ity Module prediction accuracy. Colors highlight the stimulus
ground truth presented to a decision maker (blue), the inter-
nal representation that they use as working memory of the
decision making problem (purple), the reconstructed stimu-
lus (red), and the predicted utility of the stimulus (green).

to not only make accurate reconstructions, but also to allow
for accurate utility predictions. This is done through the addi-
tion of a utility prediction module that allows for utility based
training of the WMM.

Utility Based Training
As we are interested in modeling task-relevant representation
formation and decision making, the training method of the
proposed β-VAE model is adjusted to incorporate the utility
of the learned representation. An additional Utility Module
learns to predict the utility associated with a stimulus based
on the internal representation of a stimulus that is learned by
the WMM (Fig 1).

This utility module consists of a neural network that takes
as input a copy of the psychological representation of a stim-
ulus, and outputs a prediction of the utility associated with
that stimulus. The network is fully connected with 2 layers of
64 units, and the output is trained based on a mean squared
error loss between the prediction and the ground truth util-
ity. This utility module is trained alongside the WMM on the
same data, with the additional ground truth utilities. The util-
ity predicted estimate is then fed into the loss function of the
WMM which is trained to balance the accuracy of the stimu-
lus reconstruction and the utility prediction as follows:

L(r,S) = L(θ,φ;x,z,β)+υ
(
r(Z)−E[S]

)2 (2)

Where r(Z) is the utility prediction output of the Utility Mod-
ule, and E[S] is the ground truth expected utility associated
with the stimulus input to the WMM. Using this altered train-

ing method, the WMM learns to reconstruct the stimulus ac-
curately, while reducing the squared error between the utility
prediction and the stimulus ground truth utility. This structure
is similar to the β-VAE based method described in (C. Bates
& Jacobs, 2019), though our model explicitly predicts ex-
pected utility associated with a stimulus and uses that predic-
tion within the WMM learning objective. These alterations
allow for both predictions of utility, as well as working mem-
ory representation formation to take utility into account.

Adjusting the utility-loss weight parameter υ controls the
relevance of the expected utility in calculating the loss of the
model’s reconstruction. For example, when the υ parame-
ter is 0, the model learns to reconstruct stimulus as faithfully
as possible without accounting for the accuracy of the utility
module prediction. As υ increases, the model learns to pre-
fer representations that allow for more accurate utility predic-
tions. Comparing the predicted decisions of the β-VAE model
with human selections in economic decision making tasks can
allow for a better understanding of how humans balance task-
relevance and memory reconstruction accuracy to the original
stimulus when forming representations.

Economic Decision Making
Maximum Expected Utility
Expected utility is defined for a decision alternative x based
on the different outcomes that can occur as a result of se-
lecting that alternative [x1,x2, . . . ,xi], the utility of those out-
comes [u(x1), . . . ,u(xi)] and the probability of those outcomes
occurring [p(x1), . . . , p(xi)] given the option that was selected
by the agent. This results in the following equation for ex-
pected utility:

E[u(x)] =
n

∑
i=1

p(xi)u(xi) (3)

The proposed model takes as input a single option within
in a decision problem X , corresponding to outcomes and out-
come probabilities, and reconstructs that input as faithfully
as possible given the information constraint. However some
features of the stimulus are more relevant for maximizing util-
ity than others, so the utility-loss method is introduced to in-
corporate the difference between the predicted utility and the
ground truth.

The utility value of the original stimulus E[S] in the utility-
based loss function in Eq.2 is equal to the true expected util-
ity of the original stimulus. This differs from the expected
utility of the reconstruction stimulus r(Z) due to the informa-
tion constraint applied to the internal representation of stim-
uli. The calculation of these ground-truth utilities are specific
to the task being performed which will be fully detailed in the
experimentation section.

Sub-optimal Decision Making
A well-studied form of sub-optimality in human economic
decision making is risk-aversion, which is characterized by
the undervaluing of risky prospects and overvaluing of safe



prospects, relative to their true expected utility (Pratt, 1978;
Holt & Laury, 2002). Traditionally, this phenomenon is ac-
counted for by introducing an adjusted utility function that
treats outcomes differently based on their value or probabil-
ity (Rabin & Thaler, 2001). An example of this approach is
Cumulative Prospect Theory (CPT) (Kahneman & Tversky,
1979) which has been used to model risk-aversion like effects
in economic decision making (Schmidt & Zank, 2008). CPT
can account for the effect of risk-aversion by weighting the
utility of an outcome based on its value or probability, such
as reducing the weight for outcomes that are unlikely and in-
creasing it for likely outcomes (Schmidt & Zank, 2008).

In the following section on experimentation, we will
demonstrate that our proposed model makes similar predic-
tions of risk-averse behaviour in an economic decision mak-
ing task. Importantly, the input to this model will be a vi-
sual stimulus representation of a decision making task. This
makes it unique from related methods like CPT which take in
as input the probabilities and outcomes associated with dif-
ferent options in a decision making task. Additionally, the
β-VAE module within our model allows for the formation of
psychological representations and stimuli reconstructions of
these input that are not present in previous models of risk-
aversion in economic decision making.

Experimentation
Previous methods have shown that β-VAEs can be used to
produce task-relevant biases in representation formation sim-
ilar to what can be expected from humans based on their
behaviour (C. Bates & Jacobs, 2019). Through experimen-
tation, we show similarly human-like behaviour when mod-
elling visual stimulus representation formation in a utility-
based economic decision making task. This is done by show-
ing a risk-aversion effect present in the utility predictions of
our model that correspond to expectations of human decision
making in similar tasks. For all β-VAE models described in
this paper, the model structure, hyper-parameters, and train-
ing procedure follow the original implementation described
in (Higgins et al., 2017), apart from the β information con-
straint which is adjusted to compare different information
processing constraints as described in the following sections.

Decision Making Task
We examine the behavior of our model in a “marble jar” se-
lection task. In this task, the agent is presented with a choice
between two jars of 16 marbles, where the contents of each
jar are fully visible. After selecting a jar, one marble is ran-
domly sampled from the chosen jar, and the agent receives a
reward based on the color of the (randomly) selected marble.

To compare the impact of information constraints and
utility-weight parameters on choice behavior, we vary these
parameters and report the utility prediction and reconstruc-
tion accuracy of models at the end of training. All models
are trained on 1K epochs of 1K stimuli and utility values.
Marble jar stimuli are generated using a Dirichlet distribution

Figure 2: An example of the marble jar selection task. The
decision maker chooses one of the marble jars and a single
marble chosen at random will be given to the agent with the
goal of maximizing their observed utility. Each color marble
has a different utility and each marble jar has an expected
utility and utility variance which are the mean and variance of
the marble utilities. Marble ratios are defined by a Dirichlet
distribution Dir([2,4,6,8]) for grey, green, red, blue.

Dir([2,4,6,8]) for grey, green, red and blue colored marbles,
which have utilities 8, 4, 2, 1 respectively.

The task described in Figure 2 will be used to demonstrate
how our model predicts human-like decision making, specif-
ically risk-aversion, through the use of our β-VAE model
trained with the utility-based learning objective.

Modelling Results
Using the example decision task shown in Figure 2 we can
see how risk-aversion could be demonstrated by a decision
maker. The first and second options have total utilities of 46
and 48 and variances of 5.26 and 6.66 respectively. While
the second option has a slightly higher expected utility, it also
has a higher variance which may impact the choice of the
decision maker. In this example, a bias in choosing option
1 over option 2 would reflect an instance of risk-aversion, as
the decision maker is preferring certainty in outcome over a
increase in expected utility.

risk-aversion: We can use this decision making task to in-
vestigate how the utility weight parameter υ and information
constraint parameter β impact the decisions of our model. We
additionally include for comparison MEU and CPT calcula-
tions for these probabilities. Because of the flexibility of CPT,
a wide range of possible values for predicted utility are pos-
sible, and these values are selected to reflect the risk-averse
effect observed in human decision making.

Model Utility Predictions Recon. Error

MEU (normative) (46, 48) N/A
β-VAE + Utility (48.2, 42.1) 1611.4736

β-VAE (45.6, 47.8) 1089.0422
VAE + Utility (46.6, 47.8) 2810.2334

VAE (41.3, 44.8) 1803.3821
CPT (47, 45) N/A

The results shown in the table above indicate that the β-



Figure 3: Utility prediction error based on marble jar utility
variance of an ablation of β-VAE and VAE models with and
without utility based training. Points represent mean utility
predictions of all marble jars with the same utility variance.
Lines represent a linear regression of all predicted utilities,
calculated with the Seaborn Python library (Waskom, 2021).
VAE models have β = 1, β-VAE models have β = 100, utility
models have υ = 1000 and non-utility models have υ = 0.

VAE + Utility model demonstrates a risk-aversion effect for
the example stimulus in Figure 2. Although the second jar
has higher expected utility, the model values the first jar more
highly. This effect can also be observed using a cumulative
prospect theory model, as it has decision weight parameters
that can be adjusted to produce a similar effect. However,
it is important to note that the CPT model would need to fit
an individual parameter for each possible outcome, whereas
our proposed model is parameterized only with the utility-
weight and information constraint. Additionally, CPT func-
tions by altering the utility maximization method, whereas
our approach assumes decision makers maximize utility, but
doing so with limited information processing ability.

Comparing the reconstruction errors for each model
demonstrates the improved generalizability to out of training
stimuli afforded by the β-VAE models, which is one main
justification for their use (Burgess et al., 2017). Additionally,
each model trained with the utility prediction method has a
lowered reconstruction accuracy. This corresponds with the
expectation of a model with limited information processing,
as information used to represent utility can lower the amount
of information available to accurately reconstruct the original
stimulus. An interesting result is that the loss-aversion like
effect is observed as a result of the differences between dif-
ferently colored marble proportions and utilities, as opposed
to an imposed preference as is the case with the CPT model.

Note that the difference in predicted utility is exaggerated
from what a human would likely determine for this task,
as the information constraint (β = 100) and utility weight
(υ = 1000) are larger than values that would better reflect
human behaviour. In practice, it is possible to fit these pa-
rameters based on observations from individuals, as has been

Figure 4: Comparisons of original stimulus and reconstruc-
tion for an example marble jar with the same ablation of dif-
ferent model types as described in Figure 3. Marble jar orig-
inal stimulus is from the constructed set of marble jars with
utility 42 that were not part of the original training data set.

done in related methods (Malloy & Sims, 2020; Niv et al.,
2015; Collins & Frank, 2012). This could result in utility
predictions matching the behaviour of individual participants,
though this is outside of the scope of the present work.

Utility Estimate Bias: In order to understand the basis for
the risk-aversion effect, we examined how the utility training
method and information constraint impact utility predictions
as the risk associated with a stimulus changes. Additionally,
we sought to examine the generalizability of our utility pre-
diction module to stimuli that have not been seen previously.
To allow for this, we constructed a new data set consisting
of every possible marble jar with the same total utility (42)
but with different variances. The following figure compares
the bias in predicted utility for models with and without an
information constraint and utility-based training.

These results show that the β-VAE model alone demon-
strates a risk-aversion like effect, shown by a positive utility
error for low variance marble jars, and a negative utility error
for higher variance jars. This corresponds with our under-
standing of the risk-aversion effect which increases the dis-
tortion of preference as outcomes become more or less prob-
able.

Generalization: These utility prediction error results ad-
ditionally demonstrate the high generalizability of utility pre-
diction in models trained using the utility-based learning ob-
jective (blue). Models trained without utility included in their
learning objective (red) have a wider range of prediction er-
rors above and below the regression trend. This reflects the
similarly high generalizability of human economic decision
making in these types of utility-based tasks.

The final comparison of different model types is in the re-
construction accuracy of a new stimulus not used on training.
Figure 4 shows a stimulus not used during training. The right
hand side compares stimulus reconstructions of the same 4
model ablation described previously, with and without an in-
formation constraint and utility-based training.

These reconstruction examples demonstrate the impact that



information constraints and utility-based training have on
generalized stimulus reconstruction. Models trained with the
utility-based learning objective are better able to reconstruct
the higher utility grey marbles. Interestingly, these grey mar-
bles are not necessarily in the same location, as this is not
relevant to the expected utility of a marble jar. The model
thus demonstrates that its latent representations have acquired
a useful invariance (the exact position of a marble in the jar).
This corresponds to intuition from human perceptual memory
in this type of task, as the location of marbles is irrelevant to
predicting utility.

Discussion
Risk-Averse Representations
Results from utility prediction errors of our proposed model
demonstrated a risk-aversion like effect. These results sug-
gest that one aspect of risk-aversion is the formation of in-
formationally compressed representations of visual stimulus
in economic decision making tasks. However, alone these re-
sults do not fully explain the source of risk-averse representa-
tion formation. This can be better understood by considering
the relative abundance of marbles and their utilities.

Marble piles with more grey marbles have higher variance,
and one possible interpretation of underestimating these util-
ities would be a decision maker determining the utility of a
stimuli with grey marbles by counting only the utility of those
grey marbles and nothing else, leading to an under estimate.
However, this is one possible explanation and additional com-
parisons would need to be made to more fully understand the
precise ways in which these utility estimates are risk-averse.
Generally the risk-averse behaviour should be understood as
resulting from different probabilities and utilities of marbles,
and how the information constraints and utility-weights im-
pact representations of these stimuli.

An important implication of this explanation is that it
would be unlikely to observe the same risk-averse behaviour
in an alternate version of the marble task that is very uniform
in marble probability or utility. While this is a slight weak-
ness to our proposed model, these types of stimuli would also
likely result in only a slight risk-averse behaviour in humans,
since marble piles would on average have utilities much
closer together. Additionally, the proposed model seeks to ac-
count for one source of risk-aversion, though others are likely
to exist. It is possible that the type of risk-averse behaviour
that results from forming informationally-compressed and
utility-based representations only occurs when there is a con-
siderable difference between stimuli utility.

Human Representation Formation
The modeling experiments presented in this paper sought to
examine the properties of stimulus representations learned
when facing constraints on the ability to encode and repre-
sent task features. To do this, we represented visual decision
making in a similar manner as previous approaches, with a
β variational autoencoder trained to learn internal representa-

tions, and a separate module trained to perform a task based
on those representations. The novelty of our method is in its
learning to explicitly predict utility based on task-relevant vi-
sual representations in an economic decision task.

Our results demonstrate that when agents face constraints
on the ability to encode information veridically, systematic
distortions are introduced in the representation of the proba-
bility and utility of decision alternatives. In particular, stim-
uli with a higher utility variance have a lower predicted utility,
with the opposite being true for stimuli with a low utility vari-
ance. This corresponds to observations of human behaviour
in economic decision making tasks. Importantly, our model
makes similar predictions as existing methods while taking
the input to be the visual task stimuli, and producing a psy-
chological representation that can be used to reconstruct the
original stimulus and make utility predictions.

Modelling Human Learning
As mentioned previously, the inclusion of utility predic-
tions and a utility-based training method within our proposed
model can allow for the modelling of reinforcement learn-
ing in humans. This can be done by adjusting the training
method of the utility prediction module. In our experiments,
decision makers were assumed to have knowledge of outcome
probabilities and utilities. In the learning setting, these values
would not be known and instead learned by making decisions
and observing outcomes. Thus our utility prediction model
would make a prediction and observe an outcome after the
decision has been made, and update their prediction based on
this observed outcome. This can be done using the standard
temporal difference equation used in reinforcement learning,
which is motivated by human biological processes implicit in
learning (Niv, 2009; Niv et al., 2015).
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