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Abstract 

The development of automated vehicles is accompanied by the 

question of how this technology will interact with vulnerable road 

users (VRUs; e.g. pedestrians, cyclists). Especially in shared spaces, 

implicit communication signals, such as vehicle deceleration, 

proved to be crucial. However, previous studies on the 

parameterization of vehicle deceleration indicated that human 

detection of vehicle deceleration may depend on various situational 

and individual factors. This research has two aims: (1) We want to 

investigate how the detection and perceptual decision-making on 

vehicle deceleration can be formally described using a 

computational model. For this, we discuss the applicability of a 

drift-diffusion model (DDM). (2) Further, we will follow up on 

previous research regarding the influence of different situational and 

individual factors on the detection performance and examine how 

these factors could be related to the DDM parameters. With this 

research, we would like to contribute to a better understanding and 

a consistent, formal description of different factors influencing the 

detection of vehicle deceleration. This could be associated with 

improved interaction between automated vehicles and VRUs.  
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Introduction 

The development of automated vehicles is accompanied by 

challenging issues in the field of human factors (Kyriakidis 

et al., 2019). One of these issues concerns the communication 

between automated vehicles (AVs) and vulnerable road users 

(VRUs, e.g. pedestrians, cyclists; Rasouli et al., 2017). There 

is a lot of research effort to design an adequate implicit (e.g., 

vehicle speed adaption) and explicit (e.g., light signals) 

communication (Markkula et al., 2020). Due to findings 

which show that the majority of communication in road 

traffic is realized in an implicit way, especially in the low-

speed area (e.g. parking spaces), we take a closer look on this 

communication approach (Lee et al., 2021). 

Deceleration maneuvers are a common implicit 

communication signal, for example, to indicate the intention 

of car drivers to give priority to a VRU. However, the 

implementation in automated vehicles seems to be non-

trivial. On the one hand, the deceleration rate must be strong 

enough to be perceived by VRUs (Markkula et al., 2018). On 

the other hand, it should not be too strong to avoid a 

discomfort for vehicle passengers or a congestion of the road 

(Markkula et al., 2018). 

In this paper, we aim to further investigate the pedestrians 

detection of vehicle deceleration. First, we summarize 

empirical results on factors influencing the detection 

performance of vehicle deceleration. Then, we describe the 

drift-diffusion model and its previous applications in the 

transportation context. Next, we present assumptions on how 

determinants of detection performance may be related to the 

DDM parameters. Finally, we show preliminary results from 

an analysis of empirical data. 

Background 

Factors influencing the detection performance of 

vehicle deceleration  

Ackermann et al. (2019) investigated the relationship of 

different variables with the detection performance of a 

vehicle deceleration. In video studies, participants saw the 

approaching vehicle from the perspective of a pedestrian at 

the curb. The independent variables included the deceleration 

rate, vehicle size, different daylight conditions, initial vehicle 

speed and the onset of the deceleration (early or late onset). 

The reaction time between the start of the deceleration and 

the response of the participants was measured as dependent 

variable. 

The results showed no significant effect of daylight 

conditions on reaction times, in contrast to another study 

regarding gap acceptance (Beggiato et al., 2017). For the low 

speed conditions (i.e. 20 km/h), the authors found significant 

effects for deceleration rate and onset of deceleration. For 

higher deceleration rate and later onset, participants showed 

faster reaction times. In addition, the authors found a 

significant interaction between these main factors. In 



particular, the onset of deceleration influenced the detection 

of the lowest deceleration rate. For the lower and faster speed 

conditions, the authors found a significant effect of vehicle 

speed and deceleration rate, as well as a significant 

interaction of both factors. This means that the higher the 

vehicle speed and the lower the deceleration rate, the higher 

the reaction time. However, it was found that there were a 

high number of missing reaction times (i.e. deceleration was 

not detected) for conditions with higher speed (40 km/h), low 

deceleration rate and later onset of deceleration. The 

influence of vehicle size remained ambiguous. At early onset 

of deceleration, participants tended to react faster for vehicles 

with medium size. At late onset of deceleration, participants 

tended to respond more faster for vehicles with large size. 

However, the results also varied depending on the 

deceleration rate. 

In their discussion, the authors assume several ways the 

different variables could influence the detection of vehicle 

deceleration. They consider the changes in the retinal image 

size of the approaching, decelerating vehicle as a bottom-up 

process of information processing. Furthermore, top-down 

processes such as expectations are discussed. 

This view is, among others, consistent with research on 

collision perception, which also assumes that different 

sources of information are used for these perceptual decisions 

(DeLucia, 2015). A possible further influencing factor could 

be varying risk behaviour under different conditions (e.g. 

different vehicle sizes). Finally, it might be useful to look at 

the whole process in which a pedestrian observes a vehicle 

and not just the time from the onset of deceleration. 

Drift-diffusion models in transportation and traffic 

research 

An established model for perceptual decision-making in 

signal detection tasks or two-alternative forced-choice tasks 

is represented by the drift-diffusion model (DDM; Ratcliff & 

McKoon, 2008). The most famous of the evidence 

accumulation models decomposes behavioral data (i.e., 

response times and response accuracies) into the underlying 

cognitive processes and their characteristics. The DDM 

assumes that humans accumulate (noisy) evidence 

(information) in the direction of one of two boundaries. This 

process can be described with a few parameters: The most 

relevant parameters for our research are drift rate (v), bound 

height (a), starting point (z) and non-decision time (NDT). 

The drift rate describes the rate of evidence accumulation 

which is influenced by the quality of evidence. Thus, the drift 

rate is associated with the stimulus difficulty. The lower the 

quality, the lower the drift rate and the higher the difficulty. 

Evidence is accumulated until it reaches the upper or lower 

bound representing the two choice alternatives (criteria). The 

bound height influences the required amount of evidence 

which is necessary for a decision. A larger bound height is 

associated with more response caution and more accuracy in 

decision-making. The starting point defines the position 

where the accumulation starts. This point can be influenced 

by expectations or prior knowledge. In this case, the 

accumulation starts closer to one of the two boundaries. The 

non-decision time summarizes the duration for all non-

decisional components of response time (i.e. all components 

except of evidence accumulation), such as stimulus encoding 

or motor execution (Ratcliff & McKoon, 2008). 

While the DDM became increasingly established in the 

cognitive psychology and cognitive neurosciences (Ratcliff 

et al., 2016), it was initially unclear to what extent the model 

could be transferred to the transportation and traffic domain. 

However, recent studies provide very encouraging 

indications that the model is also suitable in this context and 

thus can make valuable contributions to the further 

development of automated driving. For example, the 

willingness of pedestrians to cross the road (Giles et al., 2019; 

Markkula et al., 2018; Tian et al., 2020), car driver reactions 

to a braking lead vehicle (Engstrom et al., 2017; Xue et al., 

2018) or the decision-making of car drivers during 

unprotected left turns (Zgonnikov et al., 2020) have been 

successfully modeled so far using the drift-diffusion model.  

However, there are also some open questions. Among 

others, there is limited knowledge about the influence of 

various situational and individual variables on the DDM 

parameters in the context of traffic and transportation. 

Present work 

It seems obvious that the DDM is applicable to the scenario 

described in Ackermann et al. (2019). A pedestrian at the 

curb has to make the perceptual decision on a signal detection 

task, i.e. whether an approaching vehicle is decelerating or 

not. Furthermore, the DDM seems to be particularly well 

suitable for our use case because it takes into account both 

bottom-up (e.g., visual information) and top-down processes 

(e.g., expectations, cautiousness) of information processing. 

Therefore, we would like to follow up on this research and 

investigate how the detection of a vehicle deceleration can be 

described using a DDM. In particular, we aim investigate the 

influence of different variables investigated in Ackermann et 

al. (2019) on the DDM parameters. As a result, we would like 

to contribute to a better understanding of the cognitive 

processes involved in the detection of a vehicle deceleration. 

Drift-diffusion model for the detection of a vehicle 

deceleration 

In this section, we will discuss our assumptions on the 

relationship between the variables investigated in Ackermann 

et al. (2019) and the DDM parameters. We take a closer look 

on four main parameters of the DDM: Drift rate, bound 

height, starting point and non-decision time. 

 

Drift rate The drift rate describes the rate of evidence 

accumulation and is influenced by the quality of evidence 

(Ratcliff & McKoon, 2008). 

We assume that the drift rate results from the pedestrians’ 

speed (change) perception of the vehicle. However, it is 

questionable which visual information are used. Current 

research suggests that different cues like looming or 

distance/duration cues can be used for this task (Lee et al., 



2020). In previous research (e.g. Xue et al., 2018), the use of 

looming proved to be successful. Therefore, we focus on this 

visual information. 

Looming refers to the change rate of the retinal image size 

and visual angle related to an object (Lee, 1976). The retinal 

image and the visual angle becomes larger as a vehicle 

approaches. The faster the vehicle approaches, the greater the 

looming. The looming becomes smaller while decelerating. 

So far, the general looming theory (Lee, 1976) was defined 

only for frontally approaching objects with constant speed 

and a small visual angle. Therefore, it is questionable to what 

extent the looming can be applied to our use case. In an 

important article by Tian et al. (2020), the looming theory 

was adapted to the perspective of a pedestrian in a crossing 

scenario. This shows that looming is a time dependent 

function depending on speed, distance between vehicle and 

pedestrian, vehicle size and the pedestrian's distance from the 

lane. A deceleration would influence the looming via a 

change in speed. 

In addition, we assume that lightness influences the 

perception of the vehicle. With better daylight, a better vision 

is possible and a vehicle can be observed more easily. 

Therefore, we assume that the daylight conditions influence 

the drift rate with lower drift rates for dusk or in the evening. 

 

Bound height The bound height describes the amount of 

evidence which is necessary for a decision. This parameter is 

influenced by the response caution (Ratcliff & McKoon, 

2008).  

We assume that the bound height is related to the vehicle 

size. Here, we consider the findings that pedestrians tend to 

accept a larger gap for larger vehicles (Yannis, 

Papadimitriou, & Theofilatos, 2013). We assume that 

pedestrians may be more cautious in decision-making when 

facing with a larger vehicle which can be associated with a 

larger bound height. 

The same is assumed for daylight conditions. We assume 

that pedestrians might behave more cautiously in poor light 

conditions, which could be associated with a larger bound 

height. 

In addition, gender and age might be related to the bound 

height. Findings indicated that women behave more 

cautiously and less risky in road traffic than men (Yannis, 

Papadimitriou, & Theofilatos, 2013). Further, studies 

indicated that older people are in general more conservative 

in signal detection tasks than younger people (Ratcliff et al., 

2001). Therefore, we assume a larger bound height among 

women and older people. 

 

Starting point The starting point describes a bias in the 

evidence accumulation toward one of the two boundaries, for 

example, due to expectations or prior knowledge (Ratcliff & 

McKoon, 2008). 

We assume that pedestrians tend to not expect a deceleration 

for faster vehicles. Thus, the starting point would be closer to 

the corresponding boundary. It is possible that the opposite 

effect occurs for slower vehicles, i.e. that pedestrians expect 

a deceleration. 

 

Non-decision time The non-decision time summarizes the 

duration of nondecisional components of the response time, 

such as time for stimulus encoding and motor execution 

pressing a response button (Ratcliff & McKoon, 2008).  

Previous studies showed longer non-decision times for older 

participants (Ratcliff et al., 2001). Consequently, we 

hypothesize that non-decision time is related to the age of 

participants. 

Preliminary results 

To begin examining our assumptions for the first variables, 

we conducted an online study using jsPsych (de Leeuw, 

2015) following the experiments by Ackermann et al. (2019). 

N = 62 participants (n = 19 male, n = 43 female) saw videos 

of approaching vehicles. The initial speed (20 and 40 km/h) 

and deceleration rate (no deceleration; slight deceleration, i.e. 

-1.5 m/s²; strong deceleration, i.e. -3.5 m/s²) were varied as 

independent variables. Participants were instructed to press a 

button when they decided whether the vehicle decelerated or 

not. If there was a deceleration, it started immediately after 

the video's onset. Reaction times and responses were 

recorded. 

Figure 1 and 2 show the mean reaction times and the 

response accuracy depending on the deceleration rate and the 

initial vehicle speed.  

This shows that the reaction times were always higher for 

vehicles with higher than for lower initial speed. 

Furthermore, there are differences in the response accuracy. 

While the detection of no deceleration was more accurate for 

vehicles with higher speed, the accuracy for slight and strong 

decelerations was higher for vehicles with lower speed. The 

poor detection performance of slight deceleration of vehicles 

with higher speed confirms the findings of Ackermann et al. 

(2019) 

We conducted a preliminary parameter estimation for a 

drift-diffusion model using PyDDM (Shinn et al., 2020). 

Table 1 shows the results for the drift rate (depending on time 

and deceleration rate), the bound height (depending on 

gender and age), the non-decision time (depending on age) 

and the starting points for vehicles with lower and higher 

speed. To investigate age effects, we divided the participants 

into two age groups. Participants with an age under 30 years 

were classified to “young participants”. Participants with an 

age of 30 years and older were classified to "middle-aged 

participants". This classification was chosen in order to 

investigate two groups of approximately equal size. 

The results show that the drift rate varied with deceleration 

rate. Here, the values for the slight deceleration were lowest 

for vehicles with lower as well as higher speed. 

The bound height varied slightly depending on gender and 

age. However, no consistent pattern can be observed. For 

vehicles with lower speed, the bound height for men were 

slightly higher than those for women. The opposite direction 

was observed for vehicles with higher speed. Similarly, the 



results for the age groups were contrary. Younger participants 

showed a lower bound height for vehicles with lower speed 

and a higher bound height for vehicles with higher speed 

compared to middle-aged participants. Furthermore, it can be 

seen that the bound height is generally higher for vehicles 

with higher speed. 

 

 
Figure 1: Mean reaction times depending on deceleration 

rate and initial speed. 

 

 
Figure 2: Response accuracy depending on deceleration 

rate and initial speed. 

 

Furthermore, younger participants showed a lower non-

decision time for both vehicles with lower and higher speed 

compared to middle-aged participants. 

Finally, a slightly negative value for the starting point for 

vehicles with higher speed can be observed. 

 

 

Table 1: Results from the parameter estimation for a drift-

diffusion model. 

 

  Vehicle speed 
  

20 km/h 40 km/h 

Drift 

rate 

No Dec. 2.303 3.310 

Slight Dec. 1.708 -1.433 

Strong Dec. 2.775 1.804 

Bound 

height 

Male 1.999 2.029 

Female 1.898 2.101 

Young 

participants 
1.855 2.389 

Middle-aged 

participants 
1.917 2.227 

NDT 

Young 

participants 
0.575 0.611 

Middle-aged 

participants 
0.616 0.711 

Starting 

point 

 

0.026 -0.100 

Discussion and further work 

In this paper, we presented a model for the detection of a 

vehicle deceleration from the perspective of pedestrians. For 

this purpose, we used a drift-diffusion model. Previous 

research showed that several variables can affect the 

detection performance of a vehicle deceleration. We 

proposed assumptions on how these variables might be 

related to the DDM parameters with the aim to formally 

describe and better understand this cognitive process. 

Further, we presented a study to examine first variables and 

their relation with the DDM parameters. The results revealed 

a strong relation between the deceleration rate and the drift 

rate and thus the process of decision-making. No and strong 

decelerations were related to higher drift rates, while slight 

decelerations were related to lower drift rates. This shows 

that the deceleration rate represents an important variable 

regarding the quality of evidence. 

Gender and age only slightly affected the bound height and 

non-decision time. However, it can be emphasized that the 

bound height were slightly larger for vehicles with higher 

speed compared to vehicles with lower speed. Here, 

participants were more cautious in their decision-making. 

Finally, a negative value for the starting point for vehicles 

with higher speed indicates a slight bias, i.e. participants 

rather expected no deceleration in this speed condition. For 

vehicles with lower speed, there was no bias observable. 

This study, with preliminary estimation of DDM 

parameters for different conditions represents a first step. In 

further studies, it seems important to confirm the results 

within standardized laboratory settings and to investigate 

further influencing factors on the DDM parameters. These 

include, among others, the effect of vehicle size, different 
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daylight conditions and the onset of deceleration on the drift 

rate and the bound height. 

Furthermore, it is necessary to investigate the importance 

of individual characteristics (gender, age) in the decision 

making process in more detail using a more balanced sample 

and a broader range of participants’ age. 

In addition, a validity study is crucial to check the fit 

between the model and empirically observed reaction times 

and response accuracies. 

The results extend our understanding of VRUs' perception 

of vehicle deceleration and, in particular, the effects of 

bottom-up (evidence) as well as top-down processes (e.g., 

expectation, cautiousness) in information processing due to 

various situational (e.g., time of day) and individual (e.g., 

age) variables. This has several advantages: First, vehicle 

deceleration can be designed more context-sensitive, which 

could lead to higher acceptance and user-friendliness both for 

VRUs and vehicle passengers. Second, a more detailed 

understanding of human perception and decision-making can 

be used to derive implications on how to use the 

communication signals appropriately, for example, through a 

specific enhancement of implicit communication signals by 

explicit signals (i.e., external HMI) in case of a low drift rate 

(Markkula et al., 2018). And third, the findings can be used 

to improve the feasibility of driving simulations. Currently, 

developers are focusing on a highly realistic physics for 

vehicle simulations. Another important focus could be a more 

realistic behavior of virtual VRUs by modeling their 

perceptions (Markkula et al., 2018). This would allow a more 

precise investigation of interactions between (human) drivers 

and VRUs. 
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