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Abstract

In the field of syllogistic reasoning research, a significant num-
ber of models aiming at describing the human inference pro-
cesses were developed. There is profound work fitting the
model’s parameters and analyzing each model’s ability to ac-
count for the data in order to support or disprove the underly-
ing theories. However, the model parameters are rarely used
to extract explanations and hypotheses for phenomena that go
beyond the original scope of the models. In this work, we ap-
ply three state-of-the-art models, PHM, mReasoner, and Trans-
Set, to data from reasoning experiments where participants re-
ceived feedback for their conclusions. We derived hypotheses
based on the models’ explanations for the feedback effect and
putted these to test by conducting an experiment targeting the
hypotheses. The work contributes to the field in three ways:
(a) the feedback effect could be replicated and was shown to
be a robust effect; (b) we demonstrate the use of the model
parameters in order to derive new hypotheses; (c) we present
possible explanations for the feedback effect based on existing
theories.
Keywords: syllogistic reasoning; cognitive modeling; mRea-
soner; PHM; TransSet; feedback

Introduction
Routinely, psychological experiments are conducted to un-
cover robust effects and phenomena related to the latent pro-
cesses of the human mind. Assumptions to shed light on the
internals of the black box that constitutes the human mind are
compiled into theories that are then corroborated or falsified
based on comparison with experimental data.

Models, on the one hand, instantiate theories incorporat-
ing the knowledge about robust effects and phenomena that
were found through observations in experiments. By provid-
ing measures to quantify the capabilities of a model to ac-
count for real world processes, this ultimately allows to test
and verify the assumptions underlying the respective theo-
ries. On the other hand, models that have proven to be good
accounts for their respective processes can also be transferred
to different scenarios. In this way, models can be used to ex-
tract predictions even for hypothetical scenarios, which can
subsequently be used to derive new hypotheses that fuel fur-
ther investigations.

Consider for example the domain of human syllogistic rea-
soning, which will serve as the domain of interest throughout
this article. Traditionally, syllogisms consist of two premises
featuring one out of four quantifiers (“All”, “Some”, “No”,
“Some ... not”) and two out of three categorical terms (“A”,
“B”, and “C”):

All A are B.
Some B are C.

What, if anything, follows?
The goal of syllogistic reasoning is to interrelate the terms

in the premises via the common middle-term (“B”), and de-
rive information about the quantified relationship between the
other two end-terms (“A”, “C”) or conclude “No Valid Con-
clusion” (NVC) to state that no quantified conclusion can be
derived from the premises on logical grounds. For the sake of
space and clarity, syllogisms are often abbreviated based on
their structure. A syllogism is in one of four so-called figures,
which represent the arrangement of terms:

Figure 1 Figure 2 Figure 3 Figure 4

A-B B-A A-B B-A
B-C C-B C-B B-C

Additionally, the quantifiers are encoded with A, E, I, O
for “All”, “No”, “Some”, “Some not”, respectively (nota-
tion adopted from Khemlani & Johnson-Laird, 2012). Put
together, the syllogism introduced before would be abbrevi-
ated with “AI1”.

Due to the structural restrictions (exactly two premises,
three terms, and four quantifiers), syllogistic reasoning is a
well-defined domain with a total of 64 distinct problems and
nine possible conclusion options. Because of this, syllogis-
tic reasoning is one of the prime domains to study human
deductive reasoning and explore hypotheses about the latent
inferential processes of the human mind.

To date there exist at least twelve theories that try to explain
the observable behavior of reasoners by drawing from a cen-
tury worth of empirical investigation (Khemlani & Johnson-
Laird, 2012). Models based on these theories provide sets
of comprehensive and explanatory parameters to fine-tune
the processes they assume to be operating the human mind.
These parameters, in essence, are responsible for the explana-
tory value of theories as they provide the necessary informa-
tion about the selection and strength of the processes that are
responsible for the observable behavior. There is consider-
able work fitting parameters to data (Khemlani & Johnson-
Laird, 2016; Riesterer, Brand, & Ragni, 2020a), which fo-
cuses on the ability of the models to account for the data.
However, very little work focuses on the second use-case for
these models, namely to go beyond the scope that they were



originally created for and extract explanations for new phe-
nomena based on the interpretation of the parameters. This,
however, considerably undervalues the worth of theories and
models. Reflecting embodiments of insight, theories and
models are capable of providing novel insight and should do
so.

In this article, we attempt to use model implementations
of theories to provide insight in the syllogistic reasoning pro-
cess and the changes that feedback induces to these processes.
Relying on a recent dataset that introduced feedback about
the logical correctness of human responses as an experimen-
tal manipulation (Dames et al., 2020), we fit three prominent
models (mReasoner, PHM, and TransSet) to the data. By in-
vestigating the resulting parameter distributions, we extract
explanations for the effects of feedback from the theories. We
then derived hypotheses that allow to experimentally test the
theories explanations. At last, we conducted a study based on
a modified version of the experiment by Dames et al. (2020)
which featured additional questions targeting the derived hy-
potheses. This allowed us to replicate the feedback effect in
order to ensure its robustness and test the hypotheses derived
from the model’s explanations of the feedback effect.

The remainder of this paper is structured into four parts.
First, we present relevant background about the theories and
models for syllogistic reasoning. Second, we introduce our
method of extracting explanations from the models and derive
the hypotheses. Third, we describe the study and the dataset
derived from it. Fourth, we present our results and discuss
them with respect to the implications for the three models
and the feedback effect, as well as the general implications
for the field of syllogistic reasoning research.

Background
To date, syllogistic reasoning research has produced more
than twelve theories attempting to explain the cognitive foun-
dation of this form of reasoning (Khemlani & Johnson-Laird,
2012). Crucially, it was found that comparing these theories
based on their ability to predict the distinctive responses of
human reasoners to select an overall best explanation is dif-
ficult if possible at all (Khemlani & Johnson-Laird, 2012).
Recently, however, it was found that in addition to this dif-
ficulty, predictive performances might have been overesti-
mated due to a prevailing perspective on group analyses in
the field (Riesterer, Brand, & Ragni, 2020c). If subjected to
the task of predicting individual human responses instead of
only the most frequently selected ones, predictive accuracies
drop from above 84% (Khemlani & Johnson-Laird, 2012) to
below 50% (Riesterer, Brand, & Ragni, 2020a). To see if
this performance can notably be improved on—which would
be clear evidence of an improved understanding of reason-
ing processes—or remains stuck due to high levels of noise
in the data remains a crucial goal for future investigations in
reasoning research.

Regardless of the questions surrounding model selection,
recent results suggest that at least three accounts will play a

major role in future investigations for various reasons. First,
the Mental Models Theory (MMT; Johnson-Laird, 1983) with
its model implementation mReasoner (Khemlani & Johnson-
Laird, 2013) is one of the most comprehensive theoretical ac-
counts of reasoning spanning multiple domains (e.g., spatial
relational, conditional, modal) and persisting for almost half a
century. Second, the Probability Heuristics Model (Chater &
Oaksford, 1999) is an instance of the probabilistic paradigm
of cognitive science that adopts a stance discarding logical
validity in favor of probabilistic validity. Finally, TransSet
(Brand et al., 2020) is a recently proposed account that ap-
proaches syllogistic reasoning by focusing on a set-based in-
terpretation of quantifiers and transitivity as its core inference
rule. Currently, TransSet is the most successful model of
syllogistic reasoning when judged based on predictive accu-
racy alone (Brand et al., 2020). In the following, the func-
tional mechanisms of the three accounts will be introduced in
greater detail.

MMT & mReasoner MMT approaches syllogistic reason-
ing via a four-step procedure (e.g., Copeland, 2006). First,
a mental representation, the mental model, is created from
the first premise. This mental model consists of a number of
entities that reflect the information of the premise by being
associated to the categorical terms or not. Second, the sec-
ond premise is integrated into the mental model by extend-
ing the entities with information about the third term. Third,
the resulting mental model is inspected to extract a conclu-
sion candidate. In the final step, this candidate is probed by
constructing alternative mental model representations that are
consistent to the premises but inconsistent to the conclusion
candidate. If no counterexample can be found, the conclusion
is accepted as the conclusion to the syllogistic problem. Oth-
erwise a new conclusion candidate is generated and subjected
to the search for counterexamples or NVC is returned.

mReasoner is a LISP-based implementation of MMT for
syllogistic reasoning that follows the four-step procedure out-
lined above but includes four parameters to further specify de-
tails about the model’s behavior (e.g., Khemlani & Johnson-
Laird, 2016). First, λ specifies the maximum number of enti-
ties that are represented in the mental model. Second, ε speci-
fies the composition of the mental model. For high values, the
mental model is highly likely to exhaustively reflect the infor-
mation available in the premises. For low values, it only re-
flects a limited canonical set of information. Third, σ reflects
the propensity of the model to engage the search for coun-
terexamples. Finally, if a counterexample is found, ω denotes
the likelihood to continue the process with a weaker version
of the conclusion candidate or abort the reasoning process to
generate an NVC response.

PHM PHM approaches reasoning by adopting a perspec-
tive based on probabilistic validity or p-validity (Chater &
Oaksford, 1999). To accomplish this without requiring com-
putationally complex if feasible at all operations, the model is



based on a set of three generation heuristics (G1-G3) and two
test heuristics (T1, T2) to approximate the p-valid behavior.
To generate a conclusion, the min-heuristic (G1) identifies the
premise with minimal informativeness (min-premise) based
on the order A > I > E > O and uses its quantifier as the con-
clusion quantifier. p-entailment (G2) proposes the quantifier
probabilistically following from the min-heuristic result as an
alternative conclusion quantifier candidate. The attachment-
heuristic then defines the direction of the conclusion. If the
min-premise begins with an end-term, it is used as the sub-
ject of the conclusion. Otherwise the end-term of the max-
premise, i.e., the most informative premise in accordance to
the above ranking, is used. After the conclusion is gener-
ated, the max-heuristic (T1) assesses a reasoner’s confidence
in it by evaluating the informativeness of the max-premise.
PHM assumes proportionality between confidence and max-
premise informativeness. If confidence is low, NVC may be
concluded instead (Copeland, 2006). Finally, the O-heuristic
postulates that ”Some ... not” conclusions should generally
be avoided due to their extreme uninformativeness.

In a recent implementation of PHM (Riesterer, Brand, &
Ragni, 2020a), a set of five binary parameters were used to
further specify the model’s behavior. p ent decides whether
to use the min-heuristic or p-entailment to generate the con-
clusion quantifier. In addition, A conf, I conf, E conf, O conf
are used to specify the confidence in the corresponding max
premise quantifier.

TransSet TransSet is based on two phases: direction se-
lection and quantifier selection (Brand et al., 2019, 2020). In
direction selection, TransSet attempts to construct a transitive
path from the premises. If this is not possible, the model re-
turns NVC. Otherwise, it enters the quantifier selection phase
in which the quantifier information is propagated along the
transitive path. This procedure fails and leads to NVC if the
first quantifier on the path is negative and the second quanti-
fier is not all. Otherwise, the conclusion quantifier is obtained
and can be combined with the direction to create the full con-
clusion.

TransSet uses four parameters to further specify its inferen-
tial mechanisms. First, nvc aversion defines its susceptibility
to the NVC aversion bias that might prevent reasoners from
acknowledging the importance of this conclusion (e.g., Brand
et al., 2020). In the direction selection phase, NVC aversion
forces the model to create a transitive path regardless of the
premises. anchor set determines which term to start the tran-
sitive path from in this case. Third and fourth, particularity
and negativity specify the availability of additional rules to di-
rectly derive NVC in the quantifier selection phase (Riesterer,
Brand, Dames, & Ragni, 2020).

Method
Objective
The goal of the analyses presented in the following is to lever-
age the current understanding of human reasoning in form of

available model implementations in order to investigate the
effects of feedback. By providing feedback about the logi-
cal correctness to reasoners, it is expected that the reasoning
behavior changes. These changes should be reflected by dif-
ferent parameterizations resulting from fitting the models to
the data. By interpreting the difference in parameter values,
the effects of feedback on reasoning behavior can be analyzed
and compared to the theoretical assumptions postulated previ-
ously (Dames et al., 2020; Riesterer, Brand, & Ragni, 2020b).

Dataset
To investigate the effects of feedback, we rely on the three
datasets collected by Dames et al. (2020). First, control
(N = 39) contains the control group of reasoners who were
not provided with feedback about the correctness of their re-
sponses. Second, 1s (N = 146) contains the group of rea-
soners who were presented with a feedback screen stating
either “correct” or “incorrect” after each given response. Fi-
nally, 10s (N = 29) contains the group of reasoners who were
presented with feedback for a duration of 10s after each re-
sponse. Regardless of the feedback condition, all participants
were presented with the full set of 64 distinct syllogistic prob-
lems and tasked to select which of the nine possible con-
clusion options (including “No Valid Conclusion”) followed
from the presented premises. There was a time limit for each
task, which forced participants to respond within 1.5 minutes.

Performing traditional statistical (Dames et al., 2020) and
data-driven modeling analyses (Riesterer, Brand, & Ragni,
2020b), feedback was shown to predominantly affect the
propensity of reasoners to conclude NVC, a conclusion op-
tion that has previously been hypothesized to elicit aversion
biases (Dickstein, 1976). Presenting feedback provides rea-
soners with the opportunity to realize the importance of the
NVC response (correct in 37 out of the 64 syllogistic prob-
lems, i.e., 58%). As such, we expect models to reflect this
increase in NVC usage in terms of their parameterizations.
As the overall differences between the 10s condition and
the 1s condition were rather small compared to the control
group, we combined both feedback conditions for the follow-
ing analysis.

Model Fitting
The analyses presented in the following rely on the Cogni-
tive Computation for Behavioral Reasoning Analysis (CCO-
BRA) framework1. CCOBRA facilitates the evaluation of
computational models in a well-defined and structural manner
and provides implementations for the three models consid-
ered in the analyses: mReasoner (Riesterer, Brand, & Ragni,
2020a), PHM (Riesterer, Brand, & Ragni, 2020a), and Trans-
Set (Brand et al., 2020). Each model was fitted to each indi-
vidual in the dataset separately. The resulting fits were then
aggregated and broken down by the feedback condition.

The core results of our analysis are summarized in Fig-
ure 1a. The figure contains separate plots for each of the mod-

1github.com/CognitiveComputationLab/ccobra
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Figure 1: Parameter value distributions resulting from fitting the models to individual reaoners based on data from the original
feedback study (left) and the study conducted in this work (right). Control and feedback are depicted in blue and orange,
respectively.

els’ parameters. Each plot visualizes the distribution of the
resulting values in terms of their proportions of occurrence
(TransSet and PHM due to the parameters being discrete) or
distribution (mReasoner due to being continuous). The differ-
ent feedback conditions are represented by color with control
and feedback in blue and orange, respectively.

On a high level, the plots reveal the obvious: the feedback
manipulation of the experimental setting has an influence on
human reasoning behavior that is reflected by differences in
the fit results. To work out the explanatory meanings from the
fits, the following sections inspect the results of each model
separately and derive a hypothesis from the possible explana-
tion.

TransSet TransSet shows distinct differences between con-
trol and the feedback condition for nvc aversion, particular-
ity, and negativity. The parameter anchor set is ignored in the
following due to its technical purpose and relative uniformity
between the different conditions.

The value of the nvc aversion parameter is substantially
higher for the control condition than for feedback. In the case
of particularity, control exhibits a strong skew in favor of
False with the feedback condition leaning slightly towards
True. For negativity, a similar skew can be observed but to a
minor degree, at least for control. The feedback condition are
skewed stronger towards True.

To summarize, TransSet attributes the effects of feedback
to NVC handling, which is not surprising as it is Trans-
Set’s main method of distinguishing individuals. The reduced
value of nvc aversion suggests that feedback incentivizes rea-
soners to accept NVC more leniently when compared to the
behavior of naive reasoners (control). A similar interpretation
is suggested by particularity and negativity, which control the
availability of rules to abort the reasoning process in favor of

NVC. With control leaning more towards False and the feed-
back conditions to True, TransSet suggests that feedback al-
lows reasoners to find and leverage heuristic rules to easily
derive NVC, the response that naive reasoners (control) try to
avoid.

As it is assumed that participants in the feedback condition
use fast detection methods allowing them to identify NVC re-
sponses early, it is expected that the difference between the
time needed for NVC responses and non-NVC responses is
lower for the feedback group compared to the control group
(H1.1). Although NVC is usually important in more difficult
tasks, the NVC-specific heuristics could outweigh the diffi-
culty and lead to overall lower times for NVC responses in
the feedback condition compared to the control group (H1.2).

mReasoner Interestingly, mReasoner’s parameter distribu-
tions are bimodal between control and the feedback condi-
tions. Perhaps most crucially, the σ parameter is substantially
affected by feedback. As the parameter controls the propen-
sity to engage in a search for counterexamples, which the pre-
requisite to derive NVC responses, this was to be expected.
Less distinctly, λ and ε show similar behavior with control
and feedback being skewed towards lower and higher values,
respectively. For ω, which only plays a role within the search
for counterexamples and therefore dependent on σ, feedback
is mainly skewed towards the lower spectrum, while the con-
trol condition yields higher values.

To summarize, mReasoner seems to attribute the effects
of feedback to a switch from a more intuitive reasoning to
a more thought-out process incorporating a search for coun-
terexamples. The propensity to rigorously evaluate the men-
tal model via the search for counterexamples is increased (σ),
and the likelihood to weaken the conclusion (which in turn
allows to avoid an NVC response) is reduced. Additionally, a



Table 1: Syllogisms selected for the test phase of the study.
The encoding is in line with Khemlani & Johnson-Laird
(2012).

Valid AA4, AE2, AO3, EA1, EI1, IA4, IE4, OA3

Invalid EE2, EO3, II4, IO3, OA2, OE1, OI3, OO1

learning component can be identified: When confronted with
feedback, reasoners realize the importance of correctly inter-
preting the premise information resulting in more comprehen-
sive (λ) and complete (ε) mental models. However, it is im-
portant to note that the effects of λ and ε have shown to have
little impact on the general behavior of mReasoner in com-
parison to σ (Riesterer, Brand, & Ragni, 2020a). Due to the
expensive search for counterexamples, it is expected, that par-
ticipants in the feedback group should be substantially slower
when deriving NVC responses (H2).

PHM PHM’s parameterization is special because of the
dependencies between the confidence parameters A conf,
I conf, E conf, and O conf, which control the behavior of
the max-heuristic. Since this heuristic states that confidence
in the conclusion is proportional to the max-premise quanti-
fier’s informativeness (Chater & Oaksford, 1999), the corre-
sponding parameters are ordered. As soon as one parameter
is set to 0, all proceeding ones must necessarily be 0 as well,
indicating that confidences are so low that the conclusion is
abandoned in favor of NVC.

The order of confidences is reflected by the model parame-
ters with proportions of 1s decreasing from A conf through
O conf. Importantly, across the board, control elicits the
highest proportions of 1s with both feedback conditions elic-
iting similar results. p entailment, the only truly independent
parameter, is dominated by 0s regardless of the condition.

To summarize, PHM suggests that feedback results in
an overall decrease of confidence in conclusions potentially
caused by the importance of the NVC response. Therefore,
the confidence in non-NVC responses should be lower for the
feedback group (H3).

Study design
Based on the hypotheses described above, we conducted
an online-study via Prolific, in which participants were in-
structed to give conclusions to all 64 syllogistic problems.
The study had a single-choice design, where the participants
selected the conclusion by clicking on the respective button.
In order to avoid a bias due to content effects, hobbies and
professions were used as content for the syllogisms. The
order of the response options was randomized. Participants
were randomly assigned to the control condition or to the
feedback condition. The experiment was divided into two
parts: The first 48 syllogism (presented in random order)
were regarded as a training phase, where feedback was shown
for 1 second for the feedback condition. As in the original ex-

periment, the feedback only stated if the selected answer was
correct. After the first 48 syllogisms, both groups received
no feedback as we assumed that the feedback effect would be
apparent after training. In the second phase (test phase), the
participants were asked to not only select an answer, but also
to estimate their confidence in the selected option by choos-
ing values from 0% to 100% on a slider. A predefined set
of syllogism was used, which featured the 8 valid and 8 in-
valid syllogisms that had the most differences with respect to
the response behavior between feedback and non-feedback in
the dataset from Dames et al. (2020), with the constraint that
only unique quantifier-combinations were in the set. This was
done to increase the variability and to minimize the effect
of single strategies and biases (e.g., the Atmosphere effect
Wetherick & Gilhooly, 1995). The selected tasks are shown
in Table 1. We did not include a time limit, which allows us
to disentangle the effect of feedback from the effect that the
short time-frame might have had in the original study.

After excluding participants which did not take the experi-
ment seriously (i.e., needed less than 10 minutes for all tasks,
performed worse than chance, or interrupted the study for
more than 5 minutes; N = 6), there were N = 59 participants,
with N = 28 in the control group and N = 31 in the feedback
condition. The dataset, all materials and scripts are openly
available on GitHub2.

Analysis
First, we compared the dataset from our study with the dataset
by Dames et al. (2020). In particular, we investigated if, and
to which extend, the feedback effect is apparent without a
time limit. Second, we re-fitted the models to the new data
in order to verify that the main predictions still hold. Sub-
sequently, the hypotheses derived from the model’s explana-
tions were tested based on the results of the second phase of
the study. In the following section, the results are presented
and discussed.

Results
The feedback effect in the original study mainly manifested
in the number of NVC responses (Dames et al., 2020). This
effect was also apparent in our data, as the average percentage
of NVC responses (control: mean = 0.21, std = 0.17; feed-
back: mean = 0.41, std = 0.23) showed higher values for
the feedback condition. However, the correctness (control:
mean= 0.46, std = 0.50; feedback: mean= 0.48, std = 0.50)
was not affected, which differs from the results by Dames et
al.. This is likely the effect of the time limit, which caused
the control group to perform worse (0.326 without feedback;
0.434 with feedback), while they achieved a closer result in
our data.

Figure 1b shows the results of the model fits on the data
from our study. Overall, the model parameters still show the
same pattern, clearly showing the feedback effect. However,
the effect is not as dominant as in the original study, which is

2github.com/Shadownox/iccm-feedbackexplanation



Table 2: Results of Mann-Whitney U tests (p-values and U
statistic) for the hypotheses H1.1, H1.2, H2, and H3. pcor
shows the Bonferroni-corrected p-values.

Hypothesis Median U p pcorControl Feedback

H1.1 0.92 -5.1 178.0 .006 .017

H1.2 / H2 21.26 12.06 228.0 .06 .18

H3 71.45 55.5 228.0 .001 .003

especially prominent for PHM the E conf parameter, where
the control condition is almost identical to the feedback con-
dition in our data, while there was still a substantial differ-
ence in the original study. This is likely due to the missing
time limit, which might have strengthened existing biases and
pushed participants more towards intuitive responses. For
mReasoner, this gets also apparent for the more subtle pa-
rameters λ and ε, which are differing substantially between
the datasets with control and feedback showing almost not
difference without a time limit while having distinct patterns
when a time limit is present. Despite these differences, the
parameter distributions between both experiments are com-
parable with respect to the extracted explanations, allowing
a evaluation of the derived hypotheses. In the following, we
compare the two conditions in order to test the hypotheses.
To correct for multiple comparisons, we use the Bonferroni
correction and also the corrected p-values. The results of the
comparisons between control and feedback conditions for the
hypotheses are shown in Table 2.

At first, we discuss the hypothesis of TransSet (H1.1). Ac-
cording to TransSet’s mechanism, NVC responses should be
derived faster compared to non-NVC responses. As the feed-
back effect is explained by participants being less hesitant to
derive NVC and also the utilization of NVC-specific rules, it
is expected that this time difference is higher in the feedback
condition compared to the control group. In fact, there is a
significantly bigger difference in the feedback condition com-
pared to the control group: participants in the feedback con-
dition are substantially faster when deriving NVC, while the
control group even needs more time for NVC responses. Ad-
ditionally, the overall time of participants for NVC responses
was lower in the feedback condition compared to the control
group (H1.2), although significance was not reached. The hy-
pothesis for mReasoner (H2) directly contradicts hypothesis
H1.1 by predicting participants in the feedback condition to
take more time, as they are more likely to engage in the ex-
pensive search for counterexamples. Since the data is even
leaning towards H1.1, it is not supported by the data.

Finally, the prediction of PHM is tested. PHM predicts the
confidence in non-NVC responses to be lower in the feed-
back group. This prediction was indeed supported by the
data, showing a significantly lower confidence in the feed-
back condition compared to the control group. This indicates

that NVC could in fact be an option that is selected if partici-
pants have low confidence in other response options.

Discussion
The present work has three main contributions: First, we
fitted three cognitive models that are state-of-the-art, PHM,
mReasoner and TransSet, to each individual participant and
used the resulting parameter distributions to extract explana-
tions based on the assumed processes of the respective model.
At last, these were used to derive new hypotheses that allowed
us to test the models’ explanatory capabilities. Second, the
feedback effect in syllogistic reasoning which was reported
by Dames et al. (2020), was replicated by our study without
the time limit imposed in the original study. This indicates
that the effect is in fact robust and not only an interaction
effect induced by the time limit. Third, by testing the hy-
potheses derived from the models, we were able to assess the
models’ capabilities to account for the feedback effect.

Regarding the feedback effect for syllogistic reasoning, the
explanations extracted from PHM and TransSet were sup-
ported by our study. Both explanations are also compatible,
as it is possible that feedback at first has the effect of low-
ering the confidence in non-NVC-responses and later helps
to develop fast and frugal detection strategies for NVC once
the importance of NVC responses is realized. In contrast,
the prediction of mReasoner was not supported and the data
seems to even contradict its explanation. Based on our find-
ings, we conclude that the feedback effect is best described
as a heuristic process, where participants learn that NVC is a
viable response option and therefore adapt their general judg-
ment of the other response options. An explanation based on
the assumption that feedback improves the reasoning process
(e.g., by shifting away from intuitive responses) could not be
supported. In summary, our findings indicate that PHM and
TransSet are more probable accounts for the feedback effect
in syllogistic reasoning. While they provide differing expla-
nations, they might describe different parts of the same pro-
cess.

Generally, our work successfully applied cognitive models
for syllogistic reasoning to a new phenomenon in order to
derive new hypotheses by interpreting the parameters, which
is rarely done in this field. Instead, it is often the other way
round: New findings were first integrated in theories and then
into the respective models. While this is a valid approach
to formalize the current knowledge about human reasoning
into models, it does not utilize the predictive capabilities of
the models. We hope that future modeling endeavors will
test models more based on predictions outside their original
scope, which will not only improve model selection, but also
advance the field as a whole by fueling further investigations
with new hypotheses.
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