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Abstract
Bespoke cognitive models of mental spatial transformation,
like those used in mental rotation tasks, can generate a very
close fit to human data. However these models usually lack
grounding to a common spatial theory. In turn, this makes
it difficult to assess their validity and impedes research in-
sights that go beyond task-specific limitations. We introduce
a spatial module for the cognitive architecture ACT-R, serving
as a framework offering unified mechanisms for mental spa-
tial transformation to try and alleviate those problems. This
module combines symbolic and spatial information processing
for three-dimensional objects, while suggesting constraints on
this processing to ensure high theoretical validity and cognitive
plausibility. A mental rotation model was created to make use
of this module, avoiding custom-made mechanisms in favor
of a generalizable approach. Results of a mental rotation ex-
periment are reproduced well by the model, including effects
of rotation disparity and improvement over time on reaction
times. Based on this, the spatial module might serve as a step-
ping stone towards unified, application-oriented research into
mental spatial transformation.
Keywords: spatial cognition; mental spatial transformation;
mental rotation; ACT-R

Introduction
The ability to imagine physical interaction with arbitrary ob-
jects in a physically existing space and to assess objects and
their attributes based on this mental representation is a funda-
mental aspect of human life. Forming such a mental represen-
tation is possible through the interplay of multiple cognitive
processes. These processes of mental spatial transformation
are governed by common criteria that directly influence the
complexity, perceived difficulty and feasibility of altering the
representation (Harris, Hirsh-Pasek, & Newcombe, 2013).

Mental rotation research, as a subfield of research into
those processes, has established itself as a mainstay paradigm
of experimental psychology. Mental rotation refers to the
mental examination of real or simulated objects so that state-
ments about their attributes can be made beyond their initial
presentation, most often their similarity to other objects. Pro-
cesses of mental rotation are, on one hand, ubiquitous in ev-
eryday life: they contribute greatly to our understanding of
environments by helping us assess objects and possible in-
teractions with them. On the other hand, the phenomenon is
usually studied with the use of stripped-down, abstract ob-
jects; facilitating testing in laboratory conditions but remov-
ing real-world meaning.

Performance in mental rotation tasks is heavily influenced
by task difficulty and experience (Shepard & Feng, 1972).

Individual traits like reference frame proclivity (Gramann,
2013), additional workload or time pressure additionally in-
fluence mental spatial transformation. An understanding of
processes underlying mental rotation has great potential, es-
pecially for economic applications, like improved product er-
gonomics (e.g. improving ease of use and perceptibility of
features), but also for accessibility (e.g. identifying [dis-]ad-
vantages of individual traits). Cognitive modeling bases its
predictions of task performance on postulated process mod-
els, which are in turn embedded into the framework of a
cognitive architecture. This architecture combines multiple
theories of mental processing to a holistic system that al-
lows researchers to make general and plausible statements
on cognitive processes. In the cognitive architecture ACT-
R (Anderson et al., 2004), this is achieved through so-called
cognitive modules which represent abstract processing stages
set between neurophysiological activity and psychological
correlates. Therefore, the action and interaction of these mod-
ules correspond to mental processing of declarative informa-
tion and procedural action knowledge. Process models are
quantified and encoded into production rules, i.e. assump-
tions about mental processes, that are subsequently validated
with experimental data and, if necessary, engineered towards
a closer fit to these data. While cognitive models encode
assumptions about mental processes for specific tasks, more
general mental mechanisms are implemented in the form of
aforementioned modules. Hence, to model mental spatial
transformation validly, the architecture needs to support a
plausible implementation of it. This would then allow cog-
nitive models of similar modalities to make use of a com-
mon, unified processing framework. By mitigating the re-
liance on highly task-specific assumptions and tailor-made
process models in favor of a general framework, models of
spatial cognition could offer higher validity and broader gen-
eralizability of their predictions.

Prior Research
Shepard and Metzler (1971) introduced an experimental
paradigm for mental rotation. Their work examined the influ-
ence of rotation between two same or mirrored objects on the
time needed by participants to decide if the presented objects
match. They found a linear relationship of rotation discrep-
ancy on reaction times. A follow-up study on mental folding
(Shepard & Feng, 1972) showed similar results. Here, a fold-



ing pattern was required to be assembled into a cube shape to
decide if it was a copy of a reference cube that was also pre-
sented. A linear effect of task difficulty on reaction times was
found. Interestingly, the experiment also showed what the
researchers perceived to be an upper limit on mental spatial
transformation ability –above a certain threshold of required
folds, reaction times increased considerably and non-linearly.
Consequently, this result could be a pointer towards a gen-
eral limitation on the amount of transformations that can be
applied on an internal spatial representation.

Just and Carpenter (1976) used eye tracking during a men-
tal rotation study to determine the existence of distinct cogni-
tive stages. Based on their results, they proposed three gen-
eral stages of cognitive processing: initial search, transfor-
mation and comparison, and confirmation. These stages can
serve as an approximation for spatial cognition in general: a
visual encoding phase, a transformation phase and a compar-
ison or matching phase.

Eye tracking was also used during a mental folding exper-
iment to try and find correlates for cognitive stage switching
(Preuss, Hilton, & Russwinkel, 2020). Differences in gaze
position switches and gaze durations were found that corre-
lated with task difficulty. This was interpreted as signifiers of
stage switching and stage duration, respectively.

To further differentiate processes during mental rotation
and investigate possible solving strategies, Yuille and Steiger
(1982) presented a study on objects with different complex-
ities. While showing that object complexity has a direct in-
fluence on solving time, they introduced their theory of two
distinct solving strategies: if an object is “familiar” enough,
it can be transformed holistically, meaning as a whole; if the
object is not recalled, it must be transformed in a piecemeal
fashion, meaning it is separated into several parts or features
which are then processed in sequence. This distinction proved
to be a popular explanation for learning effects in mental ro-
tation and mental spatial transformations in general.

Harris et al. (2013) reviewed differences and similarities
between mental rotation and mental folding as the most com-
mon paradigms in mental spatial transformation research.
While the tasks differentiate in the specific way a stimulus is
processed, Harris et al. identified several attributes that under-
lie both processes, for instance physical analogy, malleability
and predictiveness of success in Science, Technology, Engi-
neering & Mathematics (STEM) fields. This work points to
spatial cognition as a technical, trainable skill. Similar results
were obtained by Wright, Thompson, Ganis, Newcombe, and
Kosslyn (2008), who also compared skill development in a
mental rotation and a mental folding task, in addition to a
verbal analogy task. Learning one spatial task improved pro-
ficiency in the other tasks, but not as pronounced for the non-
spatial task. Notably, the researchers argue that improvement
comes mostly from improved encoding and transformation
preparation processes, less from transformations per se, im-
plying learning to stem largely from non-spatial mechanisms.

A cognitive model for a mental rotation task was previ-

ously introduced by Peebles (2019a). Peebles implemented
both piecemeal and wholesale strategies on a simplified visual
representation. Different to the approach presented here, the
model was mostly self-contained and relied on default ACT-R
mechanisms, with only slight changes to the architecture.

Gunzelmann and Lyon (2007) first proposed the concept of
a cognitive module dedicated to spatial transformations. They
presented a relatively complex mechanism, making use of
several smaller information processing units. Unfortunately
this approach has not yet been implemented into a cognitive
architecture.

Several other approaches for mental transformations not
relying on internal, three-dimensional representations exist:
arguments for reliance on mental imagery (Peebles, 2019b;
Lovett & Forbus, 2013), purely physical reasoning (Forbus,
1984; De Kleer & Brown, 1984) or syllogistic representations
(Barkowsky, Knauff, Ligozat, & Montello, 2007) have been
made for mental spatial transformations. The cognitive archi-
tecture SOAR offers a mechanism (Spatial and Visual System,
SVS) that combines symbolic and spatial information (Laird,
2008).

This paper presents a cognitive task model for a mental
rotation task that incorporates such a spatial framework for
ACT-R, proving the usefulness of an additional module ded-
icated to spatial processing. This module is proposed as an
extension to the cognitive architecture, integrating seamlessly
into its existing structures and allowing multiple modalities of
mental spatial processing to be simulated in a unified manner.
It serves as an interface for the mathematically correct com-
putation of three-dimensional space while processing it in a
cognitively plausible way, without having to rely on overly
task-specific assumptions about spatial processing. The spa-
tial module presented in this paper shows a similar concept
to the one suggested by Gunzelmann and Lyon (2007), but
foregoes many of their proposed mechanisms in favor of a
seamless integration into ACT-R’s existing architecture. De-
fault ACT-R modules are used for memory retrieval and for
comparison purposes. Additionally, by integrating the pro-
posed module into existing methods for simulating module
activity and, by extension, brain activity, model predictions
can be compared by brain-imaging data of participants in the
actual experiment (Prezenski & Russwinkel, 2016).

The module’s validity is pending on further assessment of
its ability to predict mental spatial transformation processes
for several modalities beyond mental rotation. As multiple
design decisions are as of now made intuitively, open ques-
tions on structure, function and cortical localization of the
module are tended to by current and upcoming research.

Methods
Spatial Module
The mental rotation model uses a dedicated spatial module
added to ACT-R’s default architecture, facilitating the pro-
cessing of mental spatial transformations. Based on work by
Gunzelmann and Lyon (2007), the idea is to offer seamless



functionality for three-dimensional data in ACT-R in a cog-
nitively plausible fashion. In contrast to the aforementioned
work, the framework presented herein avoids episodic and al-
locentric buffers and relies instead on standard ACT-R mech-
anisms.

The spatial module aims to offer better explainability, ap-
plicability and validity for cognitive models of spatial cogni-
tion by offering a common theoretical ground for frequently
shown effects such as differences in spatial strategies or in-
fluence of higher task difficulties on task solving. A uni-
fied mechanism for simulating mental spatial transformations
would offer modelers both the ability and the constraints nec-
essary to do so with high reliability and high validity, re-
spectively. Effectively this would create a general framework
spanning multiple paradigms of mental spatial cognition re-
search, such as mental rotation or mental folding. In con-
sequence, to the best of our knowledge it would be the first
cognitive modeling approach to explain both paradigms in a
satisfactory manner.

Spatial objects are encoded in standard chunks, ACT-R’s
basic unit of information, extended by information represent-
ing the object in 3D space in the form of so-called point
clouds. This additional information is predefined for each
spatial object, either implicitly by the model’s environment or
the modeler themselves. Point clouds were chosen for their
versatility, scalability and relative ease of computation. They
are able to represent objects in arbitrary detail, allowing mod-
elers to focus on features relevant to their model. Extending
chunks in this manner allows for full compatibility with all
default ACT-R mechanisms such as vision or memory mod-
ules, while at the same time allowing algebraic manipulation
of objects defined in this manner, i.e. being translated, ro-
tated and rescaled in three-dimensional space. Furthermore,
spatial objects can be compared and angles between objects
can be measured. In practice, this extends the symbolic ca-
pabilities of ACT-R with the ability to perceive and interact
with geometric properties. Analogous to how visual informa-
tion is processed in ACT-R, the transition between geometric
and symbolic information of perceived features is handled by
the models themselves, in contrast to e.g. SOAR’s similar
mechanism (Laird, 2008).

Cognitive operations on spatial objects are handled by two
buffers: a storage buffer for maintaining mental spatial repre-
sentations (the spatial buffer) and an action buffer for apply-
ing transformation intention to said representation (the spa-
tial action buffer). Spatial chunks contain point clouds and
optionally additional spatial information like separable parts,
angles for internal transformation or other features. Transfor-
mations on the representation are requested through the ac-
tion buffer and, if within limits set by architectural and modu-
lar constraints, applied to the spatial object. The core function
of the module is calculating a time delay for operations con-
ducted through it. It does this through a transformation cost
function which draws from currently available information to
calculate an appropriate time frame for a transformation pro-

cess to take place. Currently the following simple formula is
used:

Trans f ormation delay = F ∗M ∗ x

including a delay factor (F) which can be set as a parame-
ter with a default value of 0.005s, an optional modality fac-
tor (M) to assign weights to different transformation modal-
ities, such as mental rotation or mental folding (if required
for model adjustments) and the raw input value of the trans-
formation (x). This formula is an attempt to find a common
denominator underlying mental spatial transformations. By
combining symbolic processing with three-dimensional spa-
tial information, several limitations by aforementioned prior
research could be alleviated or overcome. Contrary to task-
specific approaches, this framework constrains models to ad-
here to established mechanisms of cognitive spatial process-
ing which facilitates explainability, validity and generaliz-
ability in model creation. Additionally, compared to meth-
ods relying on default mechanisms of ACT-R (e.g. using the
imaginal module to store and process simplified spatial infor-
mation as in Peebles, 2019a), the presented module enables
symbolic calculations with true three-dimensional data. Fi-
nally, this module serves as a solid foundation for more com-
plex models orientated away from lab conditions and towards
real-world applications.

Figure 1: An example picture of 3D mental rotation stimuli
as presented to the model. For simplicity, each cube is drawn
around a single 3D coordinate. Multiple coordinates make
up the point clouds of the whole figure and its features (i.e.
straight sections orthogonal to each other), respectively.

Experiment
Participant data was collected during a mental rotation ex-
periment as part of a Bachelor’s thesis (Raddatz, 2014). The
experiment was based on the classic mental rotation paradigm
by Shepard and Metzler (1971). In a trial, one out of 16 fig-
ures is presented to the participant without any rotation. After
1 second, either the original figure or a mirrored version of it
is presented and rotated by either 0, 50, 100 or 150 degrees
on the picture plane. The participant must decide whether the
presented objects are equal or mirrored variants of each other.
To this end, the participants are instructed to mentally rotate
one of the objects clockwise until an informed decision can
be made if the objects match or mismatch. 6 Blocks of each
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Figure 2: Aggregated human (leftmost, solid outline) and
model reaction times (rightmost, dashed outline) for each ex-
periment block.

possible trial combination (16 figures * 4 degrees of rotation
* 2 types of mirroring = 128 combinations) take place, result-
ing in 768 trials overall. The cognitive model was designed
to solve a simulated version of this experiment.

Mental Rotation Model
By making use of the spatial module’s ability for both sym-
bolic and spatial information, the mental rotation task model
implements a cognitively plausible approach for human-like
solving. The cognitive model follows the process model orig-
inally proposed in Just and Carpenter (1976), and follows
their proposal of three rough stages –initial search, transfor-
mation and comparison, and confirmation. The model offers
two strategies, first differentiated by Yuille and Steiger (1982)
as ”holistic” comparison (also referred to as ”wholesale”) and
”piecemeal” comparison: if the presented figure is ”known”,
meaning the object is sufficiently familiar, the object can be
transformed and compared as a whole. On the other hand, if
the presented figure is unknown to the solver, meaning it was
not seen before or forgotten, it has to be sequentially trans-
formed and compared by its individual features or pieces. In
the case of mental rotation stimuli, pieces are the respective
straight sections formed by multiple cubes, of which each fig-
ure has either 3 or 4. Thus, use of a piecemeal strategy ex-
plains longer reaction times for “unknown” figures in human
trials.

At the start of each trial, the current reference stimulus is
presented: both its individual features and the complete ob-
ject are placed in the environment as visual features visible
to the model. First, the model encodes the whole object and
attempts a declarative memory query, testing for object fa-
miliarity –if successful, the wholesale strategy is initiated. If
the presented object can not be remembered, the model waits
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Figure 3: Aggregated human (leftmost, solid outline) and
model reaction times (rightmost, dashed outline) for each ro-
tation angle.

for the appearance of the target stimulus, which happens one
second after the reference stimulus appears. Then, either the
whole target object is visually encoded and prepared for the
wholesale strategy, or its separate features are visually en-
coded and considered for the piecemeal strategy.

While solving the mental rotation task, the model rotates
the object or parts of the object –depending on the strategy –
by a fixed amount of 45 degrees, chosen to be close but avoid
equality to the experiment’s rotation conditions. After each
rotation, a comparison process measures the mean euclidean
distance between paired points of the point clouds of the tar-
get object with its reference counterpart, resulting in a simi-
larity value. If this comparison results in a similarity higher
than a preset threshold, but lower than the last value com-
puted (or is the first comparison for this trial), an additional
rotation is planned and executed. If the comparison yields
a value higher than the threshold but also a value higher than
the last similarity value, the model assumes that a low enough
similarity value cannot be reached and gives a ”mismatch”
answer. If the similarity value is lower than the threshold, a
match of objects is assumed. In the wholesale strategy, the
trial is then directly confirmed as a “match”. In the piecemeal
strategy, the degrees of rotation necessary to reach this simi-
larity are remembered and applied to subsequent pieces. If all
pieces yield similarity values under the threshold, the object
is considered a match and a ”match” answer is given. For this
experiment, a threshold value of 20 and 45 degrees of rotation
per transformation yielded the best results. Additionally, the
following parameters were adjusted as follows:

• Latency factor: 0.3 (default: 1.0)

• Retrieval threshold: -1.0 (default: 0.0)

• Activation noise: 0.5 (default: none)
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Figure 4: Human reaction times (leftmost per color, solid black outline) and model-predicted reaction times (rightmost per
color, dashed red outline), grouped by rotation condition and experiment block.

• Utility noise: 2 (default: none)

• Spatial delay: 0.005 (default: n/a)

The aforementioned strategy choice is integrated in the
form of a memory retrieval to mimic object familiarity –if the
reference stimulus was presented often and recently enough,
the model can proceed with the wholesale strategy, otherwise
the piecemeal strategy is chosen. Reinforcement learning is
implemented in the form of utility learning: model decisions
that consistently result in fast and correct task solving will be
reinforced and chosen more frequently in subsequent trials.

Results
Both datasets were prepared by Median Absolute Deviation
outlier correction. Figure 4 shows reaction times from partic-
ipant data and model predictions.

Model Data
The model predictions correlate nicely with behavioral data.
A strong overall correlation with little deviation to human
data was achieved (r(22) = .92, p < .001; RMSE = .23).
More specifically, the influence of rotation disparity on model
and human reaction times aggregated over all blocks reached
a very strong correlation (r(2) = .97, p < .05, RMSE = .139)
(see also Figure 3), while comparing the influence of experi-
ment block aggregated over all rotations shows a strong cor-
relation (r(4) = .84, p < .05, RMSE = .22) (see also Fig-
ure 2). Overall standard deviation of model-predicted re-
action times is close to the original data, but slightly lower
(SDH = 1.953,SDM = 1.421).

Regression Analysis
A linear model was created, gauging the influence of exper-
iment block, rotation disparity and data source (human or
model) on reaction times. The three predictors explained
53.9% of the variance (R2 = 0.539, F47,840 = 23.04, p <

.001). Rotation angle significantly predicted reaction times
(β = 0.66, p < 0.001), as did the interaction between experi-
ment block and angle (β =−0.29, p < 0.05). Data source has
no influence on reaction times (β = 0.02, p = 0.43), implying
no significant differences between human and model results.
As shown in Figure 4, a linear effect is visible, with increased
rotations leading to increased reaction times. Over blocks, re-
action times are generally lowered, with a more pronounced
effect for higher rotations.

Discussion
Interpretation of Results
The behavioral data collected shows a linear effect of diffi-
culty typically reported in mental rotation studies (Shepard
& Metzler, 1971). A decrease of reaction time over the ex-
periment blocks suggests a learning effect that is more pro-
nounced for higher task difficulty, which mirrors results pre-
viously reported for a mental folding task (Preuss, Raddatz,
& Russwinkel, 2019). The model results show a promising
fit to the behavioral experiment data. Aside from a strong
general correlation, it accurately models learning over experi-
ment blocks, which validates the implemented strategy choice
mechanism based on object familiarity.

Correlation between the two datasets is comparable to re-
sults from similar modeling approaches to mental rotation
(e.g. Peebles, 2019a). Of note is that our results stem from
the reliance on generalized spatial processes instead of mech-
anisms tailored to the task at hand, giving strong support for
the validity of a unified approach.

Open Questions and Known Issues
The spatial module for ACT-R enqueues itself into a line of
similar theoretical approaches and implementations. Mental
imagery (Peebles, 2019b; Lovett & Forbus, 2013), qualita-
tive reasoning (Forbus, 1984; De Kleer & Brown, 1984), syl-
logistic representations (Barkowsky et al., 2007), or spatial-



visual integration (Laird, 2008) offer alternatives to tackle
open questions in spatial research. As of now, our common
spatial framework does not challenge these theories, as in-
sight into the nature of the cognitive mechanisms underlying
spatial processes is still vague. Further research could in-
crease support for our approach, or dismiss it altogether.

Most design decisions for the spatial module are made un-
der consideration of prior research as outlined above. Still,
many of its mechanisms are currently in need of verifica-
tion. For now, the mental rotation model is the only cogni-
tive model fully realized using this framework. While this
model proved successful, additional work on cognitive mod-
els for other spatial paradigms is necessary to validate the
framework further.

The underlying experimental data was originally collected
for an EEG study –therefore, the experimental design was
kept simple to reduce unwanted artifacts (i.e. stimuli were
only rotated on the picture plane, low overall task difficulty).
This restricts the use of these data for several interesting ques-
tions in the modeling domain: does mental spatial transfor-
mation happen statically and stepwise, or is it dynamic? Is
there a number of maximal transformations applicable on a
mental spatial object? These issues will be addressed in fu-
ture study designs.

Outlook
Since ACT-R simulates cognitive functions in a modular fash-
ion, it lends itself to modeling effects beyond behavioral
data: a method proposed by Prezenski and Russwinkel (2016)
would allow a comparison of ACT-R module activity to EEG
data of experiment participants. To this end, components are
calculated from EEG data, i.e. clusters of neurons that are
frequently active in parallel. In the case of independent com-
ponent analysis (ICA), components with the highest degree of
independence from one another are generated, meaning that
in theory, cortex areas fulfilling distinct functions are mapped
for each participant during task solving. These independent
components can then each be associated to ACT-R’s modules
by correlating brain activity with predicted module activity.
This could help verify or falsify the existence and/or location
of one or several dedicated spatial area(s). Another promis-
ing approach lies in computing principal components of EEG
signals for comparison with module activity produced by the
cognitive models. A principal component analysis (PCA)
ranks components by variance explained which then can be
associated with activity of specific modules during specific
times during task solving (Borst & Anderson, 2015; Tenison,
Fincham, & Anderson, 2016). While ICA matching helps lo-
calizing specific brain activity, PCA matching allows for tem-
poral correlation. Both methods are currently being tested on
data sets created by the mental rotation model.

[Mention of related project omitted for anonymity] In ad-
dition to a study on mental rotation, an experiment on a men-
tal folding paradigm (Shepard & Feng, 1972) was conducted
and simulated in a cognitive model using the spatial module
(Preuss et al., 2019). Applying the spatial module to a re-

lated mental spatial paradigm allows for further verification
or falsification of its validity and should lead to adjustments
necessary for its further generalization. To arrive at a module
representing universal spatial cognition, it will be important
to follow the constraints dictated by both cognitive architec-
ture and neurobiological plausibility to avoid parameter over-
fitting.

As the effects of several factors on spatial processing time
are yet to be gauged and additional spatial paradigms yet to
be implemented on the basis of the spatial module, it cur-
rently computes the time necessary for mental spatial trans-
formations on the basis of an admittedly simple multiplica-
tion. Other variables influencing the outcome are in consid-
eration to be included in later versions of the spatial module,
for instance added noise to reduce the formula’s deterministic
behavior, increased processing time depending on the number
of transformations already applied to the object in the spatial
buffer or an upper limit to the transformations applicable in a
row.

A follow-up experiment will combine both mental rotation
and mental folding into one experimental paradigm. By forc-
ing the use of cognitive folding and rotation processes at the
same time, this study and further upcoming work will rely
less on lab conditions and move towards real-world applica-
tions. Requiring both spatial modalities for problem solving
will allow further evaluation of the proposed module’s valid-
ity.
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