
Towards Benchmarking Cognitive Models: A Python Library for Modular
Environment Specification and Partial Model Generation in ACT-R

Emmanuelle Dietz (emmanuelle.dietz@airbus.com) and Oliver W. Klaproth (oliver.klaproth@airbus.com)
Airbus Central Research & Technology, Hein-Sass-Weg 22

21129 Hamburg, Germany

Abstract

In this paper we present the cognitive modeling library
txt2actr, which facilitates the specification of an ACT-R en-
vironment through simple text files and partially automates the
construction of certain components within a cognitive model.
Our general purpose goes beyond this library and aims at pro-
moting the modular construction and evaluation of cognitive
models. In particular, we suggest to establish benchmarks that
allow (i) the competition among models with respect to classi-
cal tasks in experimental psychology, and (ii) the evaluation of
possibly new or more applied tasks with respect to benchmark
models. Such benchmarking proposals can be found in various
other disciplines and usually serve as an incentive to improve
existing theories and eventually converge towards a common
language. Yet, txt2actr is far from providing a solution to the
associated challenges. It rather serves as a proof of concept
by illustrating how two model components for very specific
cognitive phenomena in situation awareness can be applied in
three different environments.

Introduction
After 50 years, Newell’s critism that the scientific commu-
nity does not seem in the experimental literature to put the
results of all the experiments together (Newell, 1973, p. 298)
still seems to hold. Interestingly, this problem persists in-
dependent of the bands of cognition (Newell, 1990), that is
the proposed models that deal with lower levels such as bi-
ological processes or the ones which address higher levels,
such as human reasoning and decision making. As Khemlani
and Johnson-Laird (2012) observed for the particular case of
modeling human syllogistic reasoning, the existence of 12
theories of any scientific domain is a small disaster. Or, as
Taatgen and Anderson (2010) put it, multiple possible models
is not just a problem for cognitive architectures but for any
scientific theory.
One bottleneck might be that most cognitive theories are not
formalized and therefore ambiguous: There is no commonly
accepted language which allows to compare and thus evaluate
their cognitive plausibility on a set of benchmark tasks. As
noted by Marewski and Mehlhorn (2011), this leads, among
others, to the specification problem (Lewandowsky, 1993),
how to translate an under-specified hypothesis into a detailed
model, and the identification problem (Anderson, 1976), what
to do with many different models which are equally capable
of reproducing and explaining data.
During the past decades, cognitive architectures (CA) have
been proposed (e.g. ACT-R (Anderson 2007), SOAR (Laird,

2012)) to address under-specified process hypotheses and
provide a falsifiable methodology (Thomson, Lebiere, Ander-
son, & Staszewski, 2015). These architectures contributed
largely to the development of the field and the comparability
of cognitive modeling. However, two main issues still per-
sist: Firstly, it requires substantial intellectual commitment
to learn, understand and construct models within these archi-
tectures (Taatgen & Anderson, 2010). Secondly, these archi-
tectures are highly parametrized, which on the one hand pro-
vides a great amount of modeling freedom, but on the other
hand leads to models which rather capture the intuitions of the
designers (Thomson et al., 2015). Laird, Lebiere, and Rosen-
bloom (2017) proposed a common model of cognition as an
abstracted framework depicting the best consensus given the
community’s current understanding of the mind on the archi-
tectural level. Such a standard model could then be used as a
common language for the community and guide researchers
by enabling them to include or extend other components and
evaluate or develop psychological experiments.
According to Taatgen and Anderson (2010), a good model is
characterized as being applicable to various tasks, as simple
as possible and able to predict outcomes of new tasks. That
means that the metric for a good model can then be spec-
ified by its generalizabillty (Thomson et al., 2015) and its
predictability, including predictions of yet untested cognitive
phenomena (Ragni, 2020). These models should be built out
of components (Taatgen & Anderson, 2010) and the applica-
ble strategies and heuristics should be rather selected by the
model than by the designer (Thomson et al., 2015).
According to Ragni (2020), another difficulty is how to iden-
tify the relevant problems (or tasks) that a model should ac-
count for. He suggests to establish generally accepted bench-
marks, similar to the PRECORE Challenge (Ragni, Riesterer,
& Khemlani, 2019) for human reasoning tasks. The eval-
uation of this challenge was done with the benchmarking
tool Cognitive COmputation for Behavioral Reasoning Anal-
ysis (CCOBRA) framework,1 which was thereafter again ap-
plied for new prediction mechanisms in individual human
syllogistic reasoning (Dietz Saldanha & Schambach, 2020).
The success of establishing benchmarks and developing com-
petitions can be observed in other disciplines (e.g. SAT,2

1https://github.com/CognitiveComputationLab/ccobra
2https://satcompetition.github.io/2021/



Figure 1: Currently, a majority of model and environment
specifications in ACT-R are manually implemented.3

ASP (Gebser, Maratea, & Ricca, 2020)), which have the ben-
eficial side effect to improve existing approaches, and more
importantly, motivating the scientific community to agree
on a common language. Furthermore, contrasting cognitive
models with benchmark models (such as statistical baselines
or data-driven neural networks) will determine the current
empirical upper bound of the models’ performance (Riesterer,
Brand, & Ragni, 2020). At the same time these upper bounds
can serve as new incentives for future models to outperform
the benchmark models. However, the previously mentioned
criteria for good models should be the main focus. In par-
ticular even if machine learning techniques might have better
predictive overall performances, the generalization of mod-
els across a range of paradigms and conditions can be more
powerful. As (Lebiere et al., 2013) stated, approaches based
on cognitive modeling require less data and fewer domain-
specific assumptions to be parametrized as they can be guided
by cognitive constraints. Furthermore, they have the advan-
tage to combine symbolic structures and statistical parameters
Taking these proposals as a starting point, we suggest an en-
vironmental setting where cognitive models can be bench-
marked according to their performance with a set of tasks.
In the ideal case, if results are openly shared the ones who
have the experimental data but are missing the best predict-
ing models can benefit from the ones who have the cognitive
models and vice versa. In this paper, we present the software
library txt2actr in which the task, the environment, and the
model can partially be specified through text files. With this
library we aim at developing a modular task design through
an ACT-R interface and the parametrization of ACT-R models
by a modular and guided production and chunk engineering
process. txt2actr serves as a proof of concept to address some
of the challenges discussed above, and is far from providing
a solution or a complete benchmark of tasks or models.

Related Work
The approaches we briefly discuss here are related in the
sense that they emphasize the importance of generalizing or
benchmarking models, which we consider highly relevant for

3The image in the red box is from Anderson and Borst (2017).

the challenges we intend to address. Interestingly they all ad-
dress this issue on a different level of cognition.
Salvucci (2013) proposes a single model of cognitive skill
acquisition in ACT-R by reusing component skills across 7
different task domains. The results are a step towards a more
unified account of skill learning and demonstrate that a model
can reuse knowledge by transferring it to various tasks.
One of the goals suggested by Taatgen (2013) is to reuse cog-
nitive processes and structure them in a way so that they can
be applied in many different combinations, similarly to a con-
struction kit that should be deployable throughout all tasks.
As almost all cognitive models suffer from the problem of
prior knowledge, transfer in cognitive control, that is the pro-
cess by which goals or plans influence behavior, might be a a
promising approach to address this issue, where processes of
cognitive control are based on skills.
Marewski and Mehlhorn (2011) specify 39 different process
models, which should not only predict what decision a per-
son will make, but also how the information used to make
the decision will be processed. In particular, they focus on
a class of models that makes decisions by exploiting the ac-
cessibility of memory contents. For this purpose they choose
to model a task for recognition heuristic. These 39 models
either differ in very small aspects or very fundamental as-
sumptions about processing. The main purpose of Marewski
and Mehlhorn is not to advocate any particular process model
for the task in consideration but rather using the debate as a
case study to provide a methodological primer on how archi-
tectures like ACT-R can be used to lend precision to theorize
decision processes. By implementing models of different lev-
els of description and specificity in one architectural model-
ing framework, they make the models and their predictions
comparable providing a basis for future model tests.
GOMS (Card, Moran, & Newell, 1983) contains hierarchical
methods, visual and memory stores, and control constructs
and aims at explaining expert routine behaviors and reduce
the effort for detailed task analysis and cognitive modeling
techniques. Amant and Ritter (2004) provide an automatic
generation of GOMS models into ACT-R models. However,
it suffers from under-constraints in many areas, for example
visual processing (Amant, McBride, & Ritter, 2006). The ex-
tension SGOMS (West & Nagy, 2007; West & Somers, 2011)
assumes that cognitive modeling at the level of psychological
experiments (micro cognition) can scale up to higher level
task, such as dealing with task interruptions, by an additional
higher-level control structure and multi-tasking.

Cognitive Modeling with txt2actr
The python library text to ACT-R, abbreviated as txt2actr, pro-
vides (i) an interface between text files that describe and dy-
namically change the environment which the cognitive model
interacts with during the ACT-R simulation and (ii) a partial
and modular construction of the cognitive model. txt2actr is
publicly available on github.4

4https://github.com/eadietz/txt2actr



Figure 2: Overview of the two main components in txt2actr.

Figure 2 shows the two main components of txt2actr in the
blue box (labeled txt2actr), where the ACT-R interface (on the
right) and the (partial) model generator (on the left) interact
and depend on each others specifications. The necessary envi-
ronment specifications and cognitive model specifications can
be defined in the respective text files that are in the blue box
below the labeled txt2actr box. The task descriptions or the
log files about the environment and the cognitive model file
replace the specifications of the individual environment and
tasks (on the lower right corner) and the individual human be-
havior (upper left corner). The decision to structure txt2actr
this way is driven by the idea that ideally, a set of cognitive
models could then be systematically evaluated with respect to
a set of various tasks. Whether such a generic parametrization
of tasks or models will eventually be possible needs to be fur-
ther investigated. Additionally, we aim at a lower inhibition
threshold for cognitive modeling, which should be usable by
the ones with simulation needs but with little or no experience
with cognitive modeling.
We chose the cognitive architecture ACT-R as basis our pur-
pose as it provides a wide range of functionality, it is well
established within the community and has a very well doc-
umented manual (Bothell, 2020) including an extensive tu-
torial. ACT-R (Anderson, 2007) is a theory about how hu-
man cognition works. It allows to get a better understanding
human cognition by simulating different cognitive functions.
Each function is represented by a particular (and indepen-
dent) module that communicates with other modules through
buffers. Knowledge in ACT-R is either encoded as declarative
memory or procedural rules. Cognitive architectures are also
used for tasks within the real world, such as aircraft cockpit
or car driving environments (Salvucci, 2006).
We heavily rely on the already existing and publicly avail-
able python module actr.py which allows a direct interaction
within the ACT-R environment in Lisp through python.5

ACT-R Environment Interface
We will briefly introduce the two most important aspects that
affect the dynamics of the (ACT-R) environment and can be

5The tutorial and actr.py can be found here
http://act-r.psy.cmu.edu/software/

Figure 3: The specifications in txt2actr for the positions
of the windows, the images and the buttons in ACT-R for a
driving environment use case. Further specifications such as
which items should appear when and where (depending on
the log files) are also possible.

modified by txt2actr during the simulation:

Visual Scene Everything that can be perceived by the cog-
nitive model through its vision module, such as numbers,
text, geometric figures, buttons or images from external
sources can be specified by their sizes, location and col-
ors (if applicable).

Audio Scene Everything that can be perceived by the cogni-
tive model through its audio module, such as tones, (spo-
ken) words or digits can be specified by their volume, type
of tone or duration.

In order to make sure that the information about the environ-
ment is displayed at the intended time, the ACT-R interface in
txt2actr uses the schedule time function provided by actr.py.
As illustration consider a cockpit environment in an aircraft:
In flight, some of the values shown in the cockpit displays
in the visual scene will permanently change according to the
specifications of a given log file. Additionally, some tone or
sound in the audio scene might occur as well. All of the above
described components can be specified within the respective
text files in txt2actr.
Figure 3 shows a screenshot of the environment specification
files from a very simplified car driving use case. The full
environment specification of this use case can be found in the
use-cases/driving-task folder in txt2actr.
So far we have not discussed how the model perceives its en-
vironment. Thus, possibly even when a tone appears in the
model’s acoustic scene or a value is shown in one of the win-
dows at a certain time, it might well be that the cognitive
model does not perceive it. The model behavior depends on
its specification which we will discuss in the next section.

Partial Model Generator
Before we lay out our understanding of the model generator,
we introduce the concept of cognitive principles, as they form
the foundation for the generation of models.

Cognitive Principles are cognitively plausible explana-
tions for some episodes of human behavior, which can be
anything from biases, heuristics, judgments or even decision
making and reasoning. In particular, cognitive principles are



Figure 4: The environment specifications of Figure 3 reap-
pear as declarative knowledge in the cognitive model.

not necessarily in line with rational or (classical) logical rea-
soning, but rather demonstrate naturalistic thinking in every-
day life. To some extent, the identification of these psycho-
logical phenomena are one of the main motivators in the field
of Cognitive Science. As many decades of research show,
these psychological phenomena are very insightful for the
understanding of the human mind, but at the same time ex-
tremely difficult to specify unambiguously during the devel-
opment of the corresponding model. Cognitive principles are
modular and formalized approximations of these phenomena.
It is likely that a psychological phenomena can be formalized
in various ways, and that there is no agreement on their for-
mal representations. In this case, each of the formalization is
an instance of them. We intend to specify a catalogue of cog-
nitive principles, each of them as a module, such that they ap-
ply independently of each other. We are aware that it various
cognitive phenomena influence each other, or only have an
effect when applied together. However, for the goal of bench-
marking, i.e. construct a benchmark of cognitive models out
of these principles, it is helpful to consider them separately,
similarly has has been done for the case of human syllogistic
reasoning in (Dietz Saldanha & Schambach, 2020).
Different to the approaches from the previous section, we do
not try to identify new cognitive phenomena but rather better
understand, formalize and classify already well-established
ones. In the first step, cognitive principles are formalized as
abstracted and modular entities, and in the second step, dur-
ing the model construction, they are instantiated with respect
to a given task or environment. In the ideal case, a model can
be simply specified through the underlying cognitive princi-
ples that it assumes.

Modular chunk and production engineering takes place
in two steps:

1. Modular specification of the model’s properties through
cognitive principles.

2. Model construction by instantiating the specification with
respect to the environment and the task.

Fortunately, the ACT-R architecture itself consists of a set
of modules, which allow us to naturally specify the differ-
ent components in a modular way. As already mentioned,
knowledge can be either represented declaratively, by means

of chunks that belong to certain chunk types with a set of slot
configurations. For instance,

(chunk-type display-info name screen-x screen-y)

is a display-info that might have the slots name, screen-x, and
screen-y. A chunk can then be understood as an instantiation
thereof, such as

(ALTITUDE-info isa display-info
name ALTITUDE screen-x 389 screen-y 514)

tells us at which coordinates we can find the current altitude.
The automatic construction of the initial chunk types and
chunks is based on our assumption that the model has some
basic knowledge about the environment it interacts with. By
default, there will be four different chunk types: display-info,
button-info, image-info and sound-info. These chunks are de-
rived from the task specification and can be used to model
familiarity with a task environment such as knowledge about
positions and functions of buttons in an aircraft cockpit. Con-
sider again the environment specification files in Figure 3: If
not specified otherwise in the cognitive model specification
file, then txt2actr will automatically include these items and
their coordinates into the declarative knowledge of the cogni-
tive model.
Figure 4 shows a screenshot of the declarative knowledge
from the very simple car driving use case.

Two Cognitive Processes in three Environments

txt2actr also allows to specify initial procedural knowledge,
which in ACT-R is done by means of production rules. These
production rules can be read as conditional statements, where,
in case the condition holds, the consequence will be executed.
The automated construction of an initial set of production
rules is more complex, in particular if aiming at constructing
them independent of the task. Therefore, we will illustrate
the modularity of text2actr by implementing two cognitive
processes from information processing and test them in three
different environments.

Situation Awareness We will consider two essential pro-
cesses for modeling situation awareness (Freiman, Myers,
Caisse, Halverson, & Ball, 2019). Situation awareness de-
scribes to which extent someone has perceived and under-
stood vital elements of a situation for completing the task
at hand (Endsley, 2015). According to Endsley (2015) and
Freiman et al (2019), a good model of situation awareness
needs to account, among others, for the alternation between
data-driven and goal-driven information processing, which
both can be understood as two distinctive cognitive princi-
ples: In the case of data-driven information processing, vi-
sual attention should be guided by changes in the environ-
ment, while for goal-driven information processing the model
actively engages in search of specific information by means
of coordinates. In both cases, the model keeps an updated
representation of the values of the attended items. Figure 5
illustrates this idea by the cockpit environment: Goal driven



Figure 5: A real cockpit (left), and two ways on how visual information could be attended (middle and right), where the red
squares and the arrows denote a possible sequence in which locations are attended.

Figure 6: The goal-driven (left) and the data-driven informa-
tion processing (right) components in ACT-R. Each box with
a black header represents a production rule.

information processing (middle) could be where the visual at-
tention alternates between two locations. An example of data-
driven (or event-driven) information processing (right) would
be where the visual attention is determined by any newly ap-
pearing item on the displays (the arrows denote a possible
sequence of attention).
Both cases of information processing are implemented as ab-
stracted modular components in txt2actr, each represented by
a set of general production rules. Additionally, for the goal-
driven case, the list of the items to be attended (based on the
text files) is automatically generated and added to the declar-
ative memory. An example of such a list for the car driving
environment is shown in the last two lines of Figure 4. In case
one or both components are chosen to be part of the model,
txt2actr will create a model with these component(s) instan-
tiated with respect to the specified environment.
The lisp files of both model components in ACT-R with the
respective names (data-driven.lisp and goal-driven.lisp) are
part of txt2actr.6 Figure 6 shows a description of the pro-
cesses: Initially, for the goal-driven information processing

6https://github.com/eadietz/txt2actr/tree/master/
benchmarks/model-components

(left), an item from the list is set into the retrieval buffer.
When the retrieval of the current item’s location (first pro-
duction rule) was successful, then this location is attended
and the next item on the list is retrieved. Finally, the current
item’s value is updated, and process starts again by retrieving
the location of the next item. In case of data-driven infor-
mation processing (right), the first rule only fires when the
scene changes, for example when new values appear in the
visicon. The new item is attended and based on its location,
its name is retrieved. Finally, similar to the previous case, this
item’s value is updated in the model’s memory. These model
components are not use case specific and thus generally ap-
plicable.
For testing whether both model components would behave
as intended, both individually and together, we have chosen
and specified three very simple but different environments.
These three environments were specified exclusively through
the provided text files in txt2actr (which are contained in the
folder environment-specification of each use case). The first
one is the paired associates task (Anderson, 1981) where the
environment and model specification are adapted from the
ACT-R tutorial.5 Note that we intentionally chose for a task
in which the model has a different purpose in order to observe
how the model behaves. The second and third examples are
about the simulation of real-world scenarios: A driving en-
vironment and a cockpit environment. Different than in the
first example, the values in their environment continuously
change according to the log files. Furthermore, the model
does not have any other task to accomplish except of updating
values in its own memory according to the two cases of the
above described visual information processing. The driving
environment is built on data from an empirical study origi-
nally by Haufe et al (2011) and takes processed extracts of
datasets from BNCI Horizon as log file input.7 The cockpit
environment takes as log files extracts from Dashlink.8,9

7The used dataset (VPae.mat) can be found here:
http://bnci-horizon-2020.eu/database/data-sets (30.4.21)

8https://c3.nasa.gov/dashlink/projects/85/ (30.4.21)
9The dataset can be found here https://c3.nasa.gov/



Figure 7: Simulation of paired-associates task (left), driving environment (middle) and cockpit environment (right) in ACT-R.
The red dot in the middle and right image shows the model’s visual focus.

Observations Figure 7 shows a screenshot of the simula-
tion of each environment. In the driving environment, differ-
ent values change continuously, while in the paired-associates
task, only one value changes, and this happens only occasion-
ally. Therefore, naturally the data-driven information pro-
cessing is fired more often in the driving environment than
in the paired-associates task and even more often in the cock-
pit environment. Interestingly, in the compound model con-
sisting of both visual processing components the production
rules of the data-driven information processing do not apply
anymore. Only by the specification of high utilities for this
component the production rules of both components apply.
This leads us to the more general question of how such a
compound model of visual processing should behave. On the
one hand the model should be able to pursue goal-driven vi-
sual behavior while being sensitive to new stimuli that com-
pete for visual attention. When goal-driven behavior does not
occupy all buffers, these buffers are available to being used
by salient, not goal-related stimuli which can lead to distrac-
tions and mind wandering (Taatgen et al., 2021). While utility
functions can help modeling commitment to goals or suscep-
tibility to distraction, we believe that modeling of attentional
control should recognize the interplay of cognitive resources
and the environmental factors such as the salience of stimuli
(e.g., alert sounds in the cockpit).
It is very likely, that other (ACT-R) modelers would have
implemented the above components differently in ACT-R or
even diverge from the processes shown in Figure 6. The
novelty of our approach is not to demonstrate that the pro-
posed components are the most cognitively plausible ones,
but rather that we can build abstracted modular entities of
these components, which can be instantiated with respect to
different environments.

Conclusions
This paper proposes a possible path for benchmarking cog-
nitive models. Yet, we are far from providing a solution but
rather show how a very specific cognitive phenomenon might
be applicable to different environments. Already modeling
concrete aspects of visual information processing in ACT-R
leads to plenty of choice points on the implementation side
that are not specified in the theories of situation awareness.

dashlink/static/media/dataset/Tail 687 9.zip (30.4.21)

However, we believe that taking the effort to approximate the-
ories by implementing instances thereof as models could be
beneficial to identify under specifications that might not be
immediately obvious.
Our contributions with txt2actr are two-fold: First, the spec-
ification of an ACT-R environment can be done through text
files. Second, we have shown that it is possible to formulate
abstracted entities of cognitive phenomena from which model
components can be automatically generated. However, we
are very aware that this process needs to be built with care
and based on more objective criteria for cognitive plausibility
or consensus. Therefore, we also need to find a more acces-
sible way of individually assembling cognitive models, pos-
sibly guided by a catalog of cognitive principles usable for
modular and guided model construction. Currently, we only
consider the (partial) automation of initial chunk types, ini-
tial chunks and initial productions. The general parameter
settings, additional chunk types, chunks, productions or other
commands can be specified manually via a text file. For the
future, a systematic account on producing general parame-
ter settings might be considered as well. We also argue that
some choices (or strategies) do not need to be taken before
modeling a task, but can be taken at a later stage (e.g. evalu-
ation of different strategies by instantiating different models
for the same task), should be able to include different the-
ories and allow a systematic comparison between modeling
approaches.
Finally, we believe that establishing benchmarks will pro-
mote (i) the competition among models with respect to the
most typical tasks in cognitive psychology, and (ii) the evalu-
ation of (possibly new) tasks with respect to benchmark mod-
els. This might help the community to address the previously
mentioned issues and eventually unify the field.

References
Amant, R. S., McBride, S. P., & Ritter, F. E. (2006). AI sup-

port for building cognitive models. In Proceedings of the
twenty-first national conf. on artificial intelligence and the
eighteenth innovative applications of artificial intelligence
conf. (pp. 1663–1666). AAAI Press.

Amant, R. S., & Ritter, F. E. (2004). Automated goms–to–
act-r model generation. In Proceedings of the sixth inter-
national conf. on cognitive modeling (iccm) (pp. 28–34).



Anderson, J. R. (1976). Language, memory, and thought /
john r. anderson. L. Erlbaum Associates ; distributed by
the Halsted Press Division of Wiley Hillsdale, N.J. : New
York.

Anderson, J. R. (1981). Interference: The relationship be-
tween response latency and response accuracy. Experimen-
tal Psychology: Human Learning and Memory, 7, 326-
343.

Anderson, J. R. (2007). How can the human mind occur in
the physical universe? Oxford University Press.

Borst, J. P., & Anderson, J. R. (2017). A step-by-step tuto-
rial on using the cognitive architecture act-r in combination
with fmri data. Mathematical Psychology, 76, 94–103.

Bothell, D. (2020). ACT-R 7.21+ Reference Manual.
(http://act-r.psy.cmu.edu/actr7.x/reference-manual.pdf, ac-
cessed on 22.4.21)

Card, S., Moran, T., & Newell, A. (1983). The psychology of
human-computer interaction. CRC.

Dietz Saldanha, E., & Schambach, R. (2020). A com-
putational approach for predicting individuals’ response
patterns in human syllogistic reasoning. In S. Denison,
M. Mack, Y. Xu, & B. C. Armstrong (Eds.), Proceedings
of the 42th annual meeting of the cognitive science society.
cognitivesciencesociety.org.

Endsley, M. R. (2015). Situation awareness misconceptions
and misunderstandings. Cognitive Engineering and Deci-
sion Making, 9(1), 4-32.

Freiman, M., Myers, C. W., Caisse, M., Halverson, T., & Ball,
J. T. (2019). Assessing cognitive fidelity in a situation
awareness process model. In G. L. Rogova, N. M. McGe-
orge, O. E. Gundersen, K. Rein, & M. D. Freiman (Eds.),
IEEE conf on cognitive and computational aspects of situ-
ation management, cogsima 2019 (pp. 100–106). IEEE.

Gebser, M., Maratea, M., & Ricca, F. (2020). The seventh
answer set programming competition: Design and results.
Theory and Practice of Logic Programming, 20(2), 176–
204.

Haufe, S., Treder, M. S., Gugler, M. F., Sagebaum, M., Curio,
G., & Blankertz, B. (2011, jul). EEG potentials predict
upcoming emergency brakings during simulated driving.
Neural Engineering, 8(5), 056001.

Khemlani, S., & Johnson-Laird, P. (2012). Theories of the
syllogism: A meta-analysis. Psychological bulletin, 138 3,
427-57.

Laird, J. E. (2012). The soar cognitive architecture. The MIT
Press.

Laird, J. E., Lebiere, C., & Rosenbloom, P. S. (2017, Decem-
ber). A Standard Model of the Mind: Toward a Common
Computational Framework across Artificial Intelligence,
Cognitive Science, Neuroscience, and Robotics. AI Maga-
zine, 38(4), 13.

Lebiere, C., Pirolli, P., Thomson, R., Paik, J., Rutledge-
Taylor, M., Staszewski, J., & Anderson, J. R. (2013). A
functional model of sensemaking in a neurocognitive ar-
chitecture. Computational Intelligence and Neuroscience,

2013, 921695:1–921695:29.
Lewandowsky, S. (1993). The rewards and hazards of com-

puter simulations. Psychological Science, 4(4), 236-243.
Marewski, J. N., & Mehlhorn, K. (2011). Using the act-r

architecture to specify 39 quantitative process models of
decision making. Judgment and Decision Making, 6(6),
439-519.

The nature and transfer of cognitive skills. (2013, 06). Psy-
chological review, 120, 439-471. doi: 10.1037/a0033138

Newell, A. (1973). You can’t play 20 questions with na-
ture and win: Projective comments on the papers of this
symposium. In Visual information. New York: Academic
Press.

Newell, A. (1990). Unified theories of cognition. USA:
Harvard University Press.

Ragni, M. (2020). Artificial intelligence and high-level cog-
nition. In P. Marquis, O. Papini, & H. Prade (Eds.), A
guided tour of artificial intelligence research (Vol. 3, pp.
457–486). Germany: Springer.

Ragni, M., Riesterer, N., & Khemlani, S. (2019). Predicting
individual human reasoning: The precore-challenge. In
A. K. Goel, C. M. Seifert, & C. Freksa (Eds.), Proceedings
of the 41th annual meeting of the cognitive science soci-
ety, cogsci 2019: Creativity + cognition + computation,
montreal, canada, july 24-27, 2019 (pp. 9–10). cognitive-
sciencesociety.org.

Riesterer, N., Brand, D., & Ragni, M. (2020). Predictive
modeling of individual human cognition: Upper bounds
and a new perspective on performance. Topics in Cognitive
Science, 12(3), 960-974.

Salvucci, D. D. (2006). Modeling driver behavior in a cogni-
tive architecture. Human Factors, 48(2), 362-380.

Salvucci, D. D. (2013). Integration and reuse in cognitive
skill acquisition. Cognitive Science, 37(5), 829–860.

Taatgen, N., & Anderson, J. R. (2010). The past, present,
and future of cognitive architectures. Topics in Cognitive
Science, 2(4), 693-704.

Taatgen, N., van Vugt, M. K., Daamen, J., Katidioti, I., Hui-
jser, S., & Borst, J. P. (2021). The resource-availability
model of distraction and mind-wandering. Cognitive Sys-
tems Research, 68, 84-104.

Thomson, R., Lebiere, C., Anderson, J. R., & Staszewski,
J. (2015). A general instance-based learning framework
for studying intuitive decision-making in a cognitive ar-
chitecture. Applied Research in Memory and Cognition,
4(3), 180-190. (Modeling and Aiding Intuition in Organi-
zational Decision Making)

West, R., & Nagy, G. (2007). Using goms for modeling
routine tasks within complex sociotechnical systems: Con-
necting macrocognitive models to microcognition. Cogni-
tive Engineering and Decision Making, 1(2), 186-211.

West, R., & Somers, S. (2011). Scaling up from micro cogni-
tion to macro cognition: Using sgoms to build macro cog-
nitive models of sociotechnical work in act-r. Cognitive
Science, 33.


