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Abstract 
Research of mathematical models of learning and retention have 
focused on accounting for an individual’s performance across a 
variety of learning schedules (i.e., spaced and massed). The 
attempted goal of such research is to develop a model which can 
adequately predict human performance across a range of learning 
scenarios. However, little attention of this model development has 
focused on the interpretation of a model’s best fitting parameters 
given the structure of a model’s equations and its predicted 
performance values. The effect of this can lead to the 
development of models where the parameter values are correlated 
hindering a theoretical interpretation of performance. Here we 
examine the structure of the  Predictive Performance Equation 
(PPE) and highlight portions of PPE’s equations that lead to 
correlations across its free parameters. We propose a fix for these 
issues (Modified PPE) and conduct a formal model comparison 
showing the Modified PPE is simpler, has less parameter 
correlation and its best fitting parameters map on to identifiable 
aspects of an individual’s performance.  
Keywords: memory, learning, decay, spacing effect, 

mathematical modeling, model comparison, model 
identifiability  

Introduction 
Mathematical models of learning and retention are 
quantitative formulations of verbal psychological theories 
which attempt to account for and/or predict empirical data. 
One value of these mathematical formulations is the fact that 
all assumptions of a model are made explicit allowing for 
formal statistical evaluation. Furthermore, these 
mathematical models lend themselves to real-world 
applications, such as adaptive learning systems. Although the 
quantitative formulations of models have many benefits, care 
must be taken to ensure how these models are constructed, to 
ensure that a model accurately represents the assumptions of 
a given psychological theory. 
     In the domain of learning and retention, mathematical 
models are developed in order to represent how an individual 
retains knowledge based on the temporal aspects of a training 
schedule. Models often achieve this goal by representing 
three regularities of human memory: power law of learning, 
power law of decay, and the spacing effect. These three 
psychological phenomena have been represented in various 
mathematical models (Pavlik & Anderson, 2005; 
Raaijmakers, 2003; Walsh et al., 2018). The Predictive 
Performance Equation (PPE) is one particular mathematical 
model that has been found to account for a range of learning 
phenomena compared to other spacing effect models (Walsh, 
et al., 2018) and has been used to inform training applications 
. Each of these accomplishments was part of the explicit 

purpose of PPE’s development, being used as a prescriptive 
educational tool.  
     However, despite the PPE’s successful applications, its 
current formulation limits the estimation of psychological 
meaningful parameter estimates due to correlation across 
parameters. These limitations arise not because of the 
underlying psychological theory PPE represents or doubt of 
the empirical validity of the spacing phenomena, but because 
of PPE’s chosen mathematical representation. In this paper, I 
review the current formulation of the PPE, address its 
limitations, and offer an alternative formulation of how they 
might be overcome. 

 
Predictive Performance Equation 
The PPE is composed of six individual equations, containing 
4 free parameters. At the center of the PPE is the Activation 
term Mi (Eq. 1), which is a product of the learning term (Nc) 
and the forgetting term (T-d). The learning term is on the unit 
of trial exposures (N) raised to a constant learning rate (c, 
usually .1). While the decay term is on the scale of model 
time (T), raised to a decay rate (d). From Eq. 1 it can be seen 
that Mi is on the scale of number of exposures and model time 
(T).   

𝑀" = 𝑁"% ∗ 𝑇"()   (Eq .1) 

A novel aspect of PPE is that model time (T) is modeled as a 
weighted average (Eq. 2) of time since all previous 
presentations of an item (Eq. 3). Thus, model time (T) is on 
the scale of the weighted average of wall clock time (often 
seconds).  
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Additionally, PPE’s decay rate (Eq. 5) dynamically changes 
over time, based on two free parameters, b and m, and the 
stability term. The stability term (Eq. 4) is a representation of 
the average natural logarithm of the lagi of an item’s history. 
Due to the fact that the natural log of the lag is taken, PPE’s 
decay parameter is an unitless metric. 
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Finally, to generate a prediction of performance, PPE’s 
activation term (Mi) is nested within a logistic function (Eq. 
6), which is controlled by two additional free parameters, τ 
and s, controlling the slope and intercept of the performance 
value. This formulation of activation value has been used in 
other learning contexts (Anderson, 2007) 

𝑃" =
𝟏

𝟏Q𝒆𝒙𝒑(
𝝉4𝑴𝒊
𝒔 )

     (Eq. 6) 

Sources of correlation  
As discussed in the previous section, PPE is composed of 6 
equations with 4 free parameters. Equations 1 through 5 make 
up the PPE terms and Eq. 6 maps an unbounded  activation 
term (Mi )onto a performance value. The free  parameters are 
split such that they affect the PPE’s decay (Eq. 5) term and 
the properties of the logistic function (Eq. 6). An unintended 
effect of this mathematical formulation is a high correlation 
between PPE’s free parameters and an inability to compare 
best fitting parameters across individuals for psychometric 
evaluation (e.g., high versus low decay rates). The inability 
to compare parameters across participants is due to the fact 
that, since parameters correlate with each other these  
correlations must be taken into account before any parameter 
comparisons can be made across participants. Specifically, 
within the PPE this issue arises from two sources, (1) the PPE 
contains unbalanced units (i.e., Mi) and (2) the Mi term is 
nested within a logistic function. Each of these features have 
been shown in other psychological models to produce 
parameter correlation and issues with identifiability (Krefeld-
Schwalb, Pachur, & Scheibeheen, in press). Here, we address 
the origin of both these sources in the PPE and propose an 
alternative formulation to remedy these correlation issues. 
 
 Unbalanced Units Unbalanced units refers to instances 
when particular terms within an equation are combined 
together without the units of those terms canceling out. For 
example, in PPE this occurs when computing the activation 
term Mi (Eq. 1) when the learning term is multiplied by the 
decay term. PPE’s learning term is on the scale of instances 
of exposure (Ni), while PPE’s forgetting term is on the scale 
of model time (Ti). Combining these two terms together, 
leads to an activation term Mi that is on the scale of number 
of events and model time, which results in highly correlated 
parameters, due to the fact that the free parameter (di) within 
each term are dependent on that term’s scale. It is this 
correlation of parameters that hinders PPE‘s parameters 
being able to meaningfully represent  individual differences 
within a sample due to the fact that any parameter estimate is 
dependent on that term’s scale. The limitations of this  
formulation is not unique to PPE but has been found in other 
psychological models. Readers interested in a more thorough 
explanation should see Vincent and Steward (2020) and 
Stewart, Scheibehenne, and Pachur (2018). 
 
Nested Equations A second source of intercorrelation within 
the PPE is the activation value (Mi) nested within a logistic 
function (Eq. 6), which is manipulated by its own free 

parameters (i.e., 𝜏 and s). The nesting structure creates three 
difficulties with model interpretation. First, nesting the 
activation term within the logistic equation allows for 
different Mi values to have equivalent performance values. 
Consequently, two people with identical learning and decay 
terms could be predicted to exhibit different performance in 
the future, which suggests that PPE’s parameters (especially 
b and m) are difficult to interpret at face value (i.e., without 
also knowing the values of 𝜏 and s).. Second, within the 
logistic function, 𝜏 and s do not have independent effects on 
the activation term, allowing for multiple combinations of 𝜏 
and s to create equivalent performance values. Third, having 
free parameters outside of the learning and forgetting terms 
obscures the interpretation of the PPE. Again, this issue is not 
unique to the PPE but has been noted as an issue with other 
psychological models Krefeld-Schwalb, Pachur, and 
Scheibeheen (in press). 
 

Modified Predictive Performance Equation 
As discussed above, PPE consists of unbalanced units and a 
nested equation, each of which lead to correlation across 
parameters. Both issues can be fixed by making relatively 
minor modifications to PPE’s structure keeping the 
remaining assumptions of human performance intact. In the 
rest of the document We will refer to this new equation as the 
Modified PPE. In this section a proposed set of modifications 
to the PPE to reduce the correlation of parameters and 
improve the parsimony of the PPE are evaluated. 
      One cause of PPE’s intercorrelations across the model’s 
parameters is due to the Mi term being nested within a logistic 
equation (Eq. 5). This nesting step is required due to the fact 
that Mi is not bound between 0-1. However, this formulation 
is not required if both the learning and decay term are bound 
between 0-1, which would allow the learning and decay term 
to be combined together to estimate performance on a 0 - 1 
scale (Eq. 7). To achieve this formulation, slight 
modifications are made to both the learning and decay term 
which are outlined here. 
 
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒" = 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑇𝑒𝑟𝑚" ∗ 𝐷𝑒𝑐𝑎𝑦𝑇𝑒𝑟𝑚" (Eq. 7) 
 
Learning term In the standard PPE the learning term is 
produced as a power law. However, the reformulated learning 
term is exponential. Though there is a debate over the form 
of learning or forgetting term, the exponential formulation 
has been shown to better account for learning at an individual 
level performance over a power law (Heathcote, Brown, & 
Mewhort 2000). In this formulation the Modified PPE 
learning term (Eq. 8) has a learning rate m, which controls the 
rate at which material is acquired. When m is low information 
is acquired quickly, while when m increases the rate that 
individuals acquire information decreases. The benefit of this 
modified learning term is twofold. First, compared to the 
previous learning term (Eq. 1), it is now on a scale of 0-1. 
Second, due to the fact that Ni and m are used as exponents, 
which are unitless, the learning term can now be combined 
with the forgetting term .  
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𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔		𝑇𝑒𝑟𝑚" = 1 − (𝑒(b∗(-(c)) (Eq. 8)      

Decay Parameter One novel component of the PPE is that 
its decay term dynamically changes over time based on the 
temporal spacing of practice. This is a result of the 
assumption that spacing is a result of attention moderating the 
spacing effect (Walsh et al. 2018). The Modified PPE retains 
the same assumption of the use of the stability term 
(Eq.4),which accounts for an item’s previous temporal 
history of presentations. The addition of the lag term -

def	(dgfh)
, 

which represents the most recent lag between exposures was 
added to PPE’s decay parameter due to the fact that Mi is no 
longer nested in the logistics term and augmented by the τ 
and s parameter. The lag term is modified by the same 
learning rate (m) parameter as used in the learning term 
(Eq.8). When learning rate is low, the effect of the most 
recent lag is minimized, while when it is high the effect of the 
most recent lag is maximized. The stability term is 
manipulated according to the b parameter, which controls the 
effects that the previous temporal schedule (i.e, spaced 
practice) has on performance. This subtraction of the 
maximum value  is used to format the decay term serving as 
a decay intercept based on the largest decay within a set of 
practice items (Eq. 9). The benefit of this decay term is that 
it is now composed of two terms (lagi and Sti) that each  
represent separate aspects of the performance and each 
manipulated by their own free parameter. 

𝑑 = ( -
def(dgfh)

∗ 𝑚 + 𝑆𝑡"		 ∗ 𝑏) − 𝑚𝑎𝑥( -
def(dgfh)

∗ 𝑚 + 𝑆𝑡"		 ∗ 𝑏))  (Eq. 9) 

Forgetting Term For the decay term, the standard power 
law formulation was retained from the PPE. However, the 
power law is expressed as a ratio which allows the 
forgetting term to be expressed as a unitless metric between 
0-1 (Eq. 10).  

𝐹𝑜𝑟𝑔𝑒𝑡𝑡𝑖𝑛𝑔	𝑇𝑒𝑟𝑚 =
kh
4lh

-Qkh
4lh

      (Eq.10) 

Summary of Changes to the PPE 
Here we reviewed the PPE, a model of learning and retention 
which has shown great promise in accounting for both 
laboratory and real world findings. However, features within 
the PPE lead to correlation across parameters and hinder it 
from being used to estimate psychological constructs (i.e., 
learning and decay rates). To correct these limitations, we 
have proposed a new formulation of the PPE, decreasing the 
number of free parameters while retaining PPE’s unique 
features: multiplicative performance, model time, and 
variable decay term.  

Method 

     To highlight a comparison between the standard and 
modified PPE, a model comparison was conducted, 

highlighting the correlation across  free parameters and the 
benefits of the PPE’ formulation. 
Participants Sixty-one participants were recruited from a 
midwestern university in this paired-associate learning study. 
All participants completed a total of three experimental 
sessions spanning a three-week period. 
Task Stimuli Over the course of the experiment participants 
memorized a set of 30 Japanese-English words. All of the 
words used in this study were taken from the Medical 
Research Council (MRC) Psycholinguistic Database manual 
and have been used in other previous memory studies (e.g., 
Pavlik & Anderson, 2005). 

 
Experimental Design and Procedure  During the 
experiment, an item’s training schedule was manipulated 
according to inter-session interval (ISI) and inter-trial 
interval (ITI) over the course of experimental sessions. The 
ISI controlled the amount of time between the 1st and 2nd 
experimental session, with a fixed 7 day ISI between the 2nd 
and 3rd session across all conditions.. The ISIs in this study 
were fixed at short (5 min), medium (7 days), and long (14 
days) delay. The ITI manipulated the number of trials 
between presentations of the same item within a session. Two 
ITIs consisting of a short (every 2 trials) and long (every 11 
trials) delay were embedded in each experimental session. 
During the study, participants, with no knowledge of the 
Japanese language, were given instructions for the paired 
associate learning task and had an opportunity to ask any 
questions. Once participants began the experiment, they were 
shown a Japanese word (e.g., “kanboku”) on the screen and 
asked to type the English translation (e.g., “bush”) to the 
Japanese word. Upon first presentation of a word, 
participants were shown the English translation and asked to 
type the correct answer to ensure the item was studied. 
During all subsequent presentations, participants were asked 
to recall and type the English translation from memory. 
Participants were given a maximum of 7 seconds to type their 
answer during each trial. If a participant could not generate a 
response within 7 seconds, then their answer was considered 
incorrect. At the end of each trial participants were given 
feedback (correct or incorrect) and given 2 seconds to study 
the correct answer. 

 
Bayesian Models 

To examine the two implementations of the PPE, Bayesian 
hierarchical models of both the Standard and Modified PPE 
were implemented in JAGS (Plummer, 2012). Each model 
was run with 3 MCMC chains, run for 9000 iterations, with a 
fixed burn in period of 1000 iterations. Each models priors 
were chosen so that the prior predictions from each model 
expressed the standard learning phenomena expected from 
the learning schedule (i.e., slower learning in the long vs short 
ITI condition with more decay between the sessions in the 
short compared to the long ITI). Each model was fit to each 
of the Japanese-English word pairs across the three 
experimental sessions.   

Results 
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To compare the Standard and Modified PPE equation, a 
comparison across three different metrics was performed. 
First, we examined how well each model fit to the 
performance of subjects across each of the learning 
schedules. Second, we compared the correlation between 
each model’s free parameters. Third, the relationship 
between the participants’ parameter estimates and learning 
retention were examined.  

Model Fit 
We first examined the average performance of participants 

and each model’s posterior performance estimates across the 
six different learning schedules. An examination of the 
models’ average fit to the participants performance reveals 
several interesting qualitative findings (Figure 1). First, the 
Modified PPE for the most part has much narrower 95% HDI 
compared to the Standard PPE. This difference in precision 
between the two models is the result of the difference in 
complexity. The Standard PPE has 4 free parameters, with 

the activation term (Mi) being nested within a logistic 
equation, which gives the model additional flexibility.           
An example of this additional flexibility can be seen in the 
relearning between in 2nd and 3rd experimental sessions: the 
Standard PPE shows quick but attenuated relearning across 
sessions, while the Modified PPE shows quick relearning 
between sessions.  

To evaluate the fit of both models to the participants’ 
performance across the three experimental sessions, the 
correlation (r) and root mean squared deviation (RMSD) 
between the average accuracy and each model’s posterior 
performance were calculated (Table 1).  Both models  fit the 
average performance of participants across all of the 
experimental conditions quite well, with the Standard PPE 
having a slightly higher correlation and lower RMSD 
compared to the Modified PPE. However, a Bayes factor 
found the the Modified PPE  to be strongly preferred to the 
Standard PPE (BF > 30)These results suggest strong evidence 
in favor of the  Modified over the Standard PPE, suggesting 
that the Modified PPE is a more parsimonious model 
compared to the Standard PPE in this context.  
 

Parameter Intercorrelation  
Next, we evaluated the intercorrelations between each of the 
models’ free parameters (Figure 2). A correlation between 
two parameters reveals a functional interdependence, which 
hinders theoretical interpretations of the parameters.  
Standard PPE To evaluate the comparison between the 
Standard PPE’s free parameters, the correlation between all 
free parameters (b, m, s, 𝜏) were calculated from the models 

   

Table 1. The correlation ( r ) and root mean 
squared deviation (RMSD) between the standard 
and modified PPE across each of the six learning 
schedules. 

  

 

Figure 1. The average +/- 95% HDI posterior model fit of the Standard (dashed red line and ribbon) and Modified (dashed 
blue line and ribbon) PPE to the participants’ performance (sold black line) six experimental conditions varying the three inter 
session interval ( 0, 7, and 14 days) and the two inter trial intervals (short and long).  
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fit for each of the Japanese – English word pairs studied by 
participants (Figure 2 – left panel). The results of the 
correlation between the Standard PPE’s free parameters are 
apparent and as expected from the analysis of the Standard 
PPE formulation. First, there was a moderate negative 
correlation between the b and m parameter in the standard 
PPE decay equation (Eq. 5). This correlation between the b 
and m parameters occurs due to the fact the decay parameter 
is structured as a linear regression with the  product of the 
stability term  and m being added to the b parameter. From 
this construction the same decay value can be achieved under 
a variety of b and m combinations. Second, the b parameter 
is seen to negatively  correlate with 𝜏		parameter  (Figure 2 – 
left panel).  This correlation is caused by nesting the Standard 
PPE’s activation term (Mi) within the logistic term (Eq. 6). 
Due to the fact that  𝜏 affects the Standard PPE’s performance 
estimation outside of the activation term additional variance 
in the participants performance can be explained by 
manipulating either the 𝜏	 or b parameter. Finally, a smaller 
negative correlation between the 𝜏 and s parameter was 
observed. This  correlation is the result of the structure of the 
logistic term and unbalanced units of the Standard PPE’s 
activation term subtracted by the 𝜏.  
 
Modified PPE  Compared to the standard PPE, the Modified 
PPE has only two parameters: b and m. Overall, the 
correlation between the b and m parameter is minimal 
compared to some of the correlations across parameters that 
were observed in the Standard PPE. This reduced correlation 
is the result of removing the logistic term from the equation, 
thus not having any nested terms within the equation and 
making sure the b and m parameters each affect only one term 
in the decay parameter, the stability term and the lag. The 
effect of each of these manipulations is that the Modified PPE 
is greatly simplified.  
 

Measuring Aspects of Performance 
In our final comparison between the Standard and 

Modified PPE, each model’s subject-level free parameters 
and specific aspects of the participants’ performance were 

examined. The two relevant aspects of the participants’ 
performance chosen for this paper were the participants’ 
overall accuracy and retention between sessions (i.e. 
accuracy on the 1st trial during the 2nd and 3rd session trials 11  
& 21). Ideally, a model’s free parameters should represent a 
latent theoretical construct, such as learning and decay, which 
then map on to particular measures of behavior.  

Standard PPE  As seen in Figure 3, the Standard PPE’s free 
subject-level parameters were seen to have a moderate 
correlation with both the participant’s overall average 
performance and their retention between sessions.  However, 
with both measures 𝜏	was found to have the highest 
correlation with both overall accuracy  and the retention 
between sessions, compared to both the b, m, and s parameter. 
This result highlights that the 𝜏 parameter has a 
disproportionate influence on the Standard PPE’s 
performance estimates. The predominant influence of 𝜏	can 
be seen as problematic due to the fact that 𝜏 modifies the 
activation term (Mi) and does not have any direct influence 
on either model time  (Ti) or the stability term (Sti). One 
potential cause for the limited influence of the b and m 
parameter on accounting for performance, is the correlation 
between each other (i.e., b & m ) and the 𝜏 parameter. 
 

  

 
Figure 2. A histogram of each the free parameters of the Standard (left panel) and the Modified PPE (right panel) 

correlation with each other for each item presented over the course of the experiment.  

Figure 3. Scatter plot between participants’ overall average 
performance (left plot)  and the average performance during 
the 1st trial during the 2nd and 3rd session and the free 
parameters (right plot) from the Standard PPE (left four 
columns). 

-

Standard PPE

r = -.36 r = .37 r = .07 r = -.68 r = -.46 r = .04 r = .32 r = -.52
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Modified PPE: In contrast to the Standard PPE, the free 
parameters in the Modified PPE are both seen to have a strong 
relationship with both the participants’ overall accuracy and 
retention between sessions (Figure 4 - Panel B). Further, the 
degree of each parameter’s relationship can be understood 
from a theoretical perspective. The m parameter is accounting 
for the participants’ ability to learn the Japanese – English 
word pairs during the experiment. This relationship is in line 
with the m parameter’s function within the Modified PPE, 
affecting the rate at which information is learned. The b 
parameter, on the other hand, which affects the model’s 
stability term, is seen to predominantly account for the 
participants’ retention between sessions. These results 
highlight another benefit of the Modified over the Standard 
PPE. The simplified structure of the Modified PPE allows for 
the parameters to better summarize and map on to particular 
aspects of the  participants’ performance.  
 

Discussion 
In this paper, the formulation of the Standard PPE was 

examined. Two aspects of the PPE’s structure were identified 
as contributing to the correlation between PPE’s free 
parameters. Correlation between parameters increases a 
model’s complexity and obscures the meaning that can be 
attributed to  particular parameter estimates. 
     To reduce this intercorrelation across parameters, several 
modifications were made to the Standard PPE’s structure, 
removing the activation term (Mi) from the logistic equation 
and modifying the forgetting and learning terms. Although 
these modifications to the Standard PPE changed the 
structure of the equations, the components unique to the PPE 
relative to other spacing models (i.e., variable decay rate, 
stability term, and model time) remained intact. A formal 
model comparison between the Standard and Modified PPE  
revealed that the Modified PPE was able to (1) account for 
the participants’ performance across the three experimental 
sessions, (2) greatly reduced the correlation across its two 
free parameters, and (3) parameter estimates mapped on to 
specific aspects of the participants’ performance. 

 It is important to note that the results reported in this paper 
do not invalidate any previous findings of the PPE, but simply 
address the meaning that can be attributed to its parameter 
estimates. PPE was initially developed as a predictive tool 
and to meet a set of applied criteria (i.e., assign prescriptive 

scheduling, calibrate quickly to prior performance, account 
for relearning of spaced items after a delay; see Walsh et al., 
2018 for full list). Along these criteria the Standard PPE has 
succeeded and has been used successfully as a predictive tool 
across different applied domains.  
     Attempting to explain data from a theoretical point of 
view and predicting new observations are opposing goals for 
scientific models (Shmueli, 2010) and neither one should be 
considered superior to the other. Instead, a balance between 
these two extremes should be found based on the pragmatic 
goals of the research question. If the goal is to  use the PPE 
as a method to predict future learning and retention behavior 
of an individual, then the Standard PPE’s formulation is 
acceptable. In contrast, if the goal is to summarize an 
individual’s performance in terms of psychologically latent 
values (i.e. decay, learning) or to compare the best-fitting 
parameters across individuals to evaluate individual 
differences, then the Modified PPE proposed here is a more 
appropriate tool.  
     Several limitations need to be addressed within this paper. 
First, additional research needs to be conducted to further 
explore how well the Modified PPE can account for 
performance across longer and more variable learning 
schedules relative to the Standard PPE. Here, the Standard 
and Modified PPE were compared across only six unique 
learning conditions. Future research should compare the two 
models along a variety of both spaced and non-spaced 
learning schedules to better find where these two models 
differ. Second, this paper focused on reducing the parameter 
correlation across the Modified PPE parameters, to simplify 
the model and reduce its dimensionality. Future research 
should explore using Modified PPE for psychometric 
purposes, evaluating if either of its parameters correlate with 
particular psychological constructs such as working memory 
or attention.   

Conclusion Mathematical models of psychological 
theories are useful tools for theory evaluation, development 
and applied technologies. For these goals to be met, care 
should be taken to ensure that a model’s formulation and 
representation are adequate and are in line with their verbal 
descriptions. By attending to how particular implementations 
of theories are represented, a balance between mathematical, 
statistical, and scientific validity can be found.  
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Figure 4. Scatter plot between participants’ overall average 
performance (left plot)  and the average performance during 
the 1st trial during the 2nd and 3rd session and the free 
parameters (right plot) Modified PPE. 
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