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Abstract

In recent years, several models of human reinforcement learn-
ing have been proposed that balance rationality (maximizing
expected utility) against cognitive costs. Lai and Gershman
(2021) proposed a model in which the cognitive cost was as-
sumed to be the policy complexity, defined in terms of infor-
mation theory as the mutual information between the sensory
input and behavioral response. Here, using evidence from a
published data set (Collins & Frank, 2012), we show that this
model fails to account for the “set size effect” in learning: hu-
mans’ learning efficiency decreases when the number of the
presented stimuli increases. We therefore propose an alter-
native computational model, in which cognitive cost consti-
tutes not only the policy complexity, but also the representa-
tion complexity—the amount of information conveyed from
sensory inputs to internal representations. We quantify infor-
mation processing cost as the combination of representation
complexity and policy complexity. The resulting model cap-
tures the set size effect in an instrumental learning paradigm.
Keywords: Computationally rational; Reinforcement Learn-
ing; Information theory; Set size effect

Introduction
Human working memory is known to be capacity limited.
A well-established consequence of this is the set size ef-
fect–namely, humans’ memory performance systematically
decreases as the number of items to be stored in memory in-
creases (Ma, Husain, and Bays (2014)). Much existing work
has sought to quantify what is meant by working memory
capacity and explain the set size effect. One example is the
work by Sims (2016), who formalized working memory ca-
pacity as a limited pool of information quantity that enables
a cognitive function (e.g., store a stimulus) or process (e.g.
making decisions). The information resource can be subdi-
vided into portions, and more items to be stored implies less
resource allocated to encode each item, resulting in lower re-
call precision per item. Up until now, however, most research
on working memory has not examined how these limits might
impact other cognitive systems.

Collins and Frank (2012) and Collins, Brown, Gold, Waltz,
and Frank (2014) studied how working memory limits impact
humans’ reinforcement learning (RL). They reported an ana-
log of the set size effect in an instrumental learning paradigm,
and showed that a standard RL model (MRL model in this ar-
ticle) cannot capture this phenomenon.

Gershman and Lai (2020) reexamined Collins et al. (2014),
and proposed a computationally rational (Gershman, Horvitz,
& Tenenbaum, 2015) account of humans’ suboptimal learn-
ing performance. The mathematical framework they used is

known as rate distortion theory (Berger, 1971). This frame-
work provides the tools for predicting the highest achievable
performance under a given information capacity constraint,
and hence is directly applicable to explaining human learning
performance under a limited pool of (information-theoretic)
resource. They considered the capacity constraint as policy
complexity (Tishby & Polani, 2011; Still & Precup, 2012;
Lerch & Sims, 2018), which measures the rate of informa-
tion extracted from states and transmitted to actions. They
concluded that in general human participants optimized this
reward-policy complexity trade-off, and humans’ suboptimal
performance can be understood as a compromise to limited
policy complexity.

While interpreting humans’ suboptimal performance,
Gershman and Lai (2020) did not explicitly address how the
set size effect emerges in human learning. This article seeks
to fill this gap. Intuitively, one expects that when learn-
ing in larger set size conditions, the overall cognitive cost is
higher, and hence humans will rationally trade task perfor-
mance against rising cognitive costs. By analyzing the data
set in Collins and Frank (2012), we show that policy com-
plexity does not suffice as an explanation for human behav-
ior: the policy complexity to reach optimal performance does
not necessarily increase with the set size. This observation
also violates humans’ experience that the larger set size task
is more difficult. This implies that the policy complexity is
not sufficient for cognitive cost, other complementary consti-
tutions are needed. We then considered another information
notion, representation complexity (Tishby & Polani, 2011;
Genewein, Leibfried, Grau-Moya, & Braun, 2015; Zenon,
Solopchuk, & Pezzulo, 2019), measuring information trans-
mitted about environmental state to an agent’s internal repre-
sentation.

Directly measuring internal representations is a notoriously
difficult problem because they are latent constructs. In this
article, we resort to a model-based analysis to understand
how the set size impacts human learning performance. We
compare three classes of models: a standard RL model as a
benchmark, two RL models with policy complexity adopted
from Lai and Gershman (2021) to show the failure of policy
complexity, and another two that explains cognitive cost as
the summation of both representation complexity and policy
complexity to interpret the set size effect.



Figure 1: Schematic of experimental task studied by Collins
and Frank (2012). On each trial, subjects were shown one
single stimulus and were instructed to choose one of three
actions. Each stimulus corresponded to one correct action
and the number of stimuli varied across blocks. Note that the
stimuli shown here are for illustrative purposes and are not
the actual stimuli used in the experiment.

Methods

Data set

We tested a series of models on the data set reported in Collins
and Frank (2012). This data set consists of 78 subjects’ learn-
ing performance in a multi-armed bandit task. On each trial,
subjects were shown one single visual stimulus (drawn from
categories such as sports, fruits, etc.) and were instructed to
quickly choose a key among three alternatives. Each response
was followed with a binary outcome, either 1 (reward) or 0
(no reward). For each stimulus, the reward was determinis-
tically associated with only one of the three responses. All
stimuli were repeated 9-15 times within a block, and did not
appear across blocks. The set size ns (the number of different
stimuli within a block) systematically varied across blocks,
ranging from 2 to 6 (Figure 1). Each subject completed 19
blocks, six in which with ns = 2, four with ns = 3, three
blocks each with ns= 4, 5, or 6. See Collins and Frank (2012)
for complete details.

Computational rationale of policy complexity

In the standard RL scenario, decision-making involves two
variables: environmental state S and the action A. In the lan-
guage of information theory, we can think of this cognitive
process as an information channel: a policy π(a|s) that maps
the environmental states S onto a probability distribution over
actions A. According to information theory, the average com-
putational demands necessary to convey information over this
‘policy channel’ is equal to the mutual information between

Figure 2: Schematic of cognition process. The biological
sensory signal of the input stimuli S are encoded to internal
mental representation X , and based on which human make
decisions A.

state and action, the general equation of which is:

I(Y ;Z) = ∑
i

py(yi)∑
j

pz|y(z j|yi) log
pz|y(z j|yi)

pz(z j)
(1)

where Y means the sender and Z, the receiver. The calculation
of mutual information requires us to know the marginal dis-
tribution of both variables, py and pz, as well as the channel
statistics, pz|y.

Gershman and Lai (2020) and Lai and Gershman (2021)
considered the mutual information Iπ(S;A) as policy com-
plexity. This is correct with the implicit assumptions that
humans have full access to the environmental state (Tishby
& Polani, 2011) and that they do not rely on internal rep-
resentations of stimuli. Under these two assumptions, hu-
man decision-making is much like the stimulus-response (S-
R) mapping in classic behaviorism.

Computational rationale of representation
complexity
Instead of considering humans’ decision-making as an S-R
process, we introduce a third construct: the encoded internal
representation of the state, X . Humans may now respond A to
the given representation X . We may now consider the whole
decision process as a cascade information channel (Figure 2):
a state encoder ψ(x|s) that maps the environmental states S
onto a probability distribution over internal representations
X , followed by a policy π(a|x) that maps the mental states
X to a distribution over actions A. The mutual information
Iψ(S;X) is considered as representation complexity and the
policy complexity is now Iπ(X ;A).

The advantage of introducing the representation is to allow
the emergence of abstractions, which is thought of as a hall-
mark of intelligence (Kemp, Perfors, & Tenenbaum, 2007;



Gershman & Niv, 2010). When the environment is very com-
plicated with an unaffordable information cost, an adaptive
agent can cluster environmental states with a similar policy
to lower the information cost during the state encoding stage
(Genewein et al., 2015). However, the goal of this article is
to identify what constitutes the cognitive cost, and the forma-
tion of adaptive representations is beyond our focus. In the
present paper, we implemented a simple fixed state encoder
ψ (see Models section for details).

Models
RL baseline: MRL We use the RL baseline from Collins
and Frank (2012). The computational goal of the RL baseline
model is to find a policy that maximizes the expected total
reward over all trials within a block,

max
π

E[rt |ps,π] (2)

where ps represents the prior knowledge about the state dis-
tribution and it is a uniform distribution in this experiment,
in keeping with the experiment design where stimuli are uni-
formly sampled. rt is the reward subjects received at trial t.

To achieve this, the model learns a state-action value
Q(s,a) and a policy π(a|s) to guide action selection. Both
the Q function and the policy are updated after each trial t.
The update of the Q function follows:

Qt(st ,at) = Qt−1(st ,at)+αq[rt −Qt−1(st ,at)] (3)

where αq is the learning rate. The st and at are the observed
current state and action. We use the superscript t to note tem-
porally changing variables.

To balance exploration and exploitation in the RL baseline
model, the policy is formalized as the output of the softmax
function of the most recent Q value,

π
t(s,a) =

exp[βQt(s,a)]
∑ j exp[βQt(s,a j)]

(4)

where β ≥ 0 is the inverse temperature parameter that con-
trols the degree of stochasticity in the policy (Sutton & Barto,
2018).

The only parameters for the RL baseline are the learning
rate αq and the inverse temperature β for the policy. To ap-
ply the model to behavioral data, we fit both parameters via
maximum likelihood estimation.

Policy complexity: Mπ

(1) For the model that considers pol-
icy complexity, the computational goal is to maximize ex-
pected utility while ensuring that the policy complexity does
not exceed a fixed capacity limit:

max
π

E[rt |ps, pa,π] s.t. Iπ(S;A)≤C (5)

where pa is the marginal action distribution and C denotes the
channel capacity–the maximum available cognitive resource.
Equation 12 can be rewritten in a Lagrangian form:

max
π

βE[rt |ps, pa,π]− Iπ(S;A) (6)

where β ≥ 0 regulates the tradeoff between external reward
and policy complexity. When β→ ∞, the agent can be con-
sider fully rational; when β→ 0, the agent sticks with its prior
policy pa.

To solve equation 6, we use the gradient-based process
model developed in Lai and Gershman (2021). For more
details, see (Lai & Gershman, 2021, appendix). This is an
“actor-critic” model using the “policy gradient” algorithm
(Sutton & Barto, 2018) to incrementally update the param-
eterized policy πθ (the parameters of which are θ) and value
function Vw (the parameters of which are w). In the original
paper, all parameters are initialized as 0. while in this arti-
cle we initialized the value parameters w as 1 as it provided a
better fit to the data.

In each timestep t, the model first estimates the value of the
current state st and the current policy of the state:

V̂w(st) = wt−1 · I(st) (7)

and
π̂θ(a|st) = exp(βθ

t−1 · I(st)+ log pa(a)) (8)

where I(·) is the indicator function that returns an one-hot
encoding of the input. Note that π̂θ(a|st) is a distribution over
action a.

The model the update the critic using :

wt = wt−1 +αwI(st)δ (9)

where αw means the learning rate of the parameters of the

value function, and δ = βrt − log
π̂θ(at |st )

pt−1
a (at )

− V̂w(st) is the pre-
diction error.

The update of the critic is divided into two sub-steps. The
first step is to update the policy:

θ
t
at = θ

t−1
at +αθI(st)β[1− π̂θ(at |st)] (10)

where αθ is the learning rate of the policy parameter and θt
at

means the parameters for action at . The update of the policy
is followed by the update of the marginal action distribution:

pt
a(a) = pt−1

a (a)+αa[π̂θ(a|st)− pt−1
a (a)] (11)

To use this model, we need to fit four hyperparameters
{αw,αθ,αa,β}. Note this model is a general case of the RL
baseline. When αa = 0 and pa is an uniform distribution, this
model collapses to a policy gradient variant of RL baseline.

Policy complexity: Mπ

(2) As shown in the results section
below, the basic policy complexity model (Mπ

(1)) does not pre-
dict a set size effect in human learning. The limitation stems
from assuming a single tradeoff parameter (β) for all set sizes.
To avoid this limitation we can fit a specific β to set size ns.

Thus, Mπ

(2) is exactly the same as Mπ

(1) except it has
eight hyperparameters {αw,αθ,αa,β2,β3,β4,β5,β6}. The
subscript of the β represents the set size the β is fit to.



Representation + policy complexity: Mψ+π

(1) This model
considers the cognitive cost as summation of both representa-
tion complexity and policy complexity, as illustrated in Fig-
ure 2. The resulting objective is

max
π

E[rt |ps, px, pa,ψ,π] s.t. Iψ(S;X)+ Iπ(X ;A)≤C (12)

and the corresponding Lagrangian form is,

max
π

βnsE[rt |ps, px, pa,ψ,π]− Iψ(S;X)− Iπ(X ;A) (13)

where px means the prior belief about the internal represen-
tations and is assumed as a uniform distribution. Representa-
tions X are generated probabilistically according to the state
encoder ψ(x|s). For example, ”apple” and ”orange” may
evoke very distinct sensory representations, but are mapped
to one latent representation because they both have the same
optimal response (and hence are functionally, if not percep-
tually, equivalent). In this paper, we implemented a simple
(non-adaptive) model for the state encoder ψ inspired by the
ε-greedy policy in RL (Sutton & Barto, 2018). An environ-
mental state s has 1− ε probability to be recognized as s and
has ε

|S|−1 probability be recognized as any of stimuli other
than s. Increasing ε increases the “noise” in the state encoder,
and hence reduces its information-theoretic channel capac-
ity. The motivation behind this design is that we need a noisy
categorical distribution (environmental state s is recorded as a
categorical variable in the data) that may collapse to a one-hot
encoding (the indicator function I(·) in equation 8, assum-
ing humans participants had full access to the environmental
state) if humans are really optimal state encoders. If the fit-
ted ε is 0, we may conclude humans develop perfect repre-
sentations for the external stimuli in this simple experiment
paradigm.

To implement a gradient-based RL model with a state en-
coder ψ, we only need to change the indicator function of
the state indicator function I(st) to ψ(x|st). The nine hyper-
parameters of this model are {αw,αθ,αa,ε,β2,β3,β4,β5,β6}.
When ε = 0, Mψ+π

(1) collapses to Mπ

(1).

Representation + policy complexity: Mψ+π

(2) The previ-
ous model utilized a gradient-based optimization procedure
to achieve the learning objective. We also tested a gradient-
free normative model based on Tishby and Polani (2011) and
Genewein et al. (2015). The model is built upon RL baseline
MRL with a same critic formulation and update rule.

The actor component of the model is conditional on the
internal representation x and action a. Since we have no ac-
cess to the latent representation in the observed data, we can
only infer the representation-action value function Qbel(x,a)
following (Genewein et al., 2015),

Qt
bel(x,a) = ∑

x
p(s|x)Qt(s,a) (14)

where p(s|x) = ps(s)ψ(x|s)/px(x) is the Bayesian posterior
over s given x and ψ follows the same design with Mψ+π

(1) .

With the representation-action function Qbel(x,a), we can
formulate the optimal update of the actor as,

π
t(a|x) =

exp[βnsQt
bel(x,a)+ log pt−1

a (a)]

∑ j exp[βnsQt
bel(x,a j)+ log pt−1

a (a j)]
(15)

This is the optimal policy update for a given value function
(Tishby & Polani, 2011). In contrast to the gradient-based
update of the previous model, this model would be expected
to learn more quickly.

The update of marginal policy pa follows equation 11. The
hyperparameters of Mψ+π

(2) are {αq,αa,ε,β2,β3,β4,β5,β6}.

Optimal policy As a benchmark for evaluating our models,
we also determined the optimal policy for a learning agent.
To achieve the optimal solution, we can simply use the RL
baseline model with αq = 1 (high learning rate) and 1

β
= 0

(no exploration). This is a consequence of the particular task
environment, as there is exactly one action that is determinis-
tically rewarded for each stimulus.

Results
Model fits and the set size effect
Figure 3 compares human and model learning curves. As ex-
pected, the RL baseline (MRL) does not reproduce the set
size effect. More surprisingly, a model incorporating policy
complexity (Mπ

(1)) also fails to account for this effect. This
model utilizes a fixed utility–complexity tradeoff parameter
(β) for all set sizes. Model Mπ

(2) fits separate parameters for
each set size, but offers no explanation as to why this parame-
ter should differ according to set size. The models that incor-
porate both policy complexity and representation complexity
were able to demonstrate the set size effect.

Table 1: Models’ goodness-of-fit.

- NLL SSE
MRL 28135.358 0.463
Mπ

(1) 26299.911 0.256
Mπ

(2) 25889.932 0.083
Mψ+π

(1) 25784.780 0.078
Mψ+π

(2) 26347.952 0.089

Table 1 summarizes the negative log-likelihood (NLL) and
sum-of-squared-error (SSE) for all models. NLL evaluates
how well the model accounts for the experimental data, and
SSE measures the degree of similarity between the model’s
predictive learning curves and that of humans. In terms of
these two criteria, Mψ+π

(1) accounts best for subjects’ behav-

iors. However, Mψ+π

(1) fails to capture one observation in hu-
man data: human follows a nearly optimal learning curve in
set size 2 and 3. This phenomenon is only captured by Mψ+π

(2) .



Figure 3: Model results. Learning curves generated using the
fit parameters for each set size. Accuracy indicates proportion
of responses that were rewarded.

Policy complexity does not account for the set size
effect
The key assumption of our information-theoretic approach
is that humans behave rationally subject to a fixed cogni-
tive resource (the information constraint), and consequently
their suboptimal task performance is explainable via this con-
straint. In this sense, if we estimate the cognitive cost of the
optimal policy, the amount of information (measured in nats)
to encode this policy may increase monotonically with the set
size, whereas the cognitive cost for the empirical human pol-
icy should saturate to a certain value. We may consider this
asymptotic value as the effective constraint on cognitive cost
for human participants.

Figure 4 shows the model-based cognitive cost estimation.
Details for estimating policy complexity and representation
complexity are given in the Methods section above. The left
column shows the estimation of policy complexity reveal-

Figure 4: Cognitive cost estimation. The left column shows
the complexity of both models’ policy (blue shaded region)
and the optimal policy complexity (purple dashed line). The
right shows the total cognitive cost (red solid line), consti-
tuted of policy complexity (blue shaded region) and repre-
sentation complexity (red shaded region) for both models.
The working memory capacity (black dashed line) equals the
maximum of models’ cognitive cost. The blue dashed line
indicates the total cognitive cost for the optimal policy. All
quantities are measured in nats

ing two salient features: 1) the optimal policy complexity
Iopt(X ;A), calculated using equation 1, is almost constant
over set sizes instead of monotonically increasing (purple
dashed line), hence larger set sizes do not appear to be more
cognitively demanding according to this model; 2) the em-
pirical policy complexity monotonically decreases instead of
saturating at a fixed channel capacity (blue shaded region). A
problematic question therefore arises: if the tasks in all set
sizes are equally complex from an information-theoretic per-
spective, why do human participants adopt simpler policies
in a larger set size conditions?

Neither of these properties is readily explainable from the
perspective of computational rationality. We, therefore, con-
clude that policy complexity alone does not adequately ex-
plain human cognitive costs in this experiment.

Representation complexity plus policy complexity
captures the set size effect
The right column of figure 4 displays the estimation for both
policy complexity and representation complexity (cognitive



cost). The number of nats required to encode the combined
representation and optimal policy (Iψ(S;X)+ Iopt(X ;A)) in-
creases monotonically with set size (blue dashed line). How-
ever, whereas the task demands for optimal performance
grow monotonically with set size, the empirically estimated
cognitive costs (red solid line) appear to grow much slower
in Mψ+π

(1) and reach an asymptote at ∼ 1.998 nats in Mψ+π

(2) .
Consistent with our expectation, both properties imply the
existence of an upper limit on the cognitive capacity that is
the sum of both representational complexity and policy com-
plexity.

This formulation of cognitive cost captures and quantifies
the subjective experience that increasing the set size increases
the cognitive difficulty of the task. In addition, while the esti-
mated policy complexity saturates (or tends to saturate), Fig-
ure 4 also shows that rising representation complexity (red
shaded region) imposes extra constraints on policy complex-
ity Iπ(X ;A) as the set size increases, answering the question
we asked in the last paragraph. According to this model, for
set size ns = 2,3 conditions, human decision-makers are able
to perform near-optimally because the total cognitive cost is
below the available capacity. However, when ns = 4,5,6, as
the state representation complexity grows, human decision
makers must resort to an increasingly suboptimal policy to
prevent total cognitive cost from exceeding a maximum limit.

Conclusions
In this article, we proposed a new model the optimizes the
resource-rational computational goal. Comparing with a sim-
ilar model published (Griffiths, Lieder, & Goodman, 2015), a
large improvement has been made in predicting a determin-
istic reinforcement learning task. The empirical results indi-
cated that the progress was made because of refining three
modeling assumptions: (i) constructing the cost as the sum of
representation and policy complexity, (ii) estimating the com-
plexities using a wrong prior, and (iii) updating the model in
terms of distribution.

Many suboptimal decisions can be explained as a trade-
off between maximizing utility and minimizing costs or con-
straints imposed by limited cognitive resources (Sims, 2016;
Lerch & Sims, 2018; Gershman, 2020). We contribute to this
line of thought by arguing that there are two separate sources
of cognitive demand in a reinforcement learning setting: rep-
resentation complexity, and policy complexity. Through a
model-based analysis, we showed that the total cognitive cost
incorporating both of these constructs appears to saturate to
an upper limit in human reinforcement learning. This tenta-
tively suggests the existence of a fixed cognitive resource that
can be allocated to a learning task.

Based on this conclusion, we made one further step to in-
terpret how the set size leads to humans’ suboptimal perfor-
mance in the (Collins & Frank, 2012) experiment. Although a
larger set size is not necessarily more complicated in terms of
policy complexity, it does requires the human subjects to hold
more representations of the world stimuli. Humans, thus,

have to seek a simpler policy to balance the rising cognitive
cost.

In future work, we seek to increase the quality of our
model-based analysis by developing more accurate models
that better describe humans’ learning and decision-making
under limited cognitive resources. We expect the following
properties from a better model: First, instead of fitting the
tradeoff parameters βns for each set size to describe humans’
policy, we can model the principle humans may follow in bal-
ancing the reward and the resource. Also, our models assume
that human sensory processing is fixed. However, substan-
tial evidence supports that human sensory channel might be
adaptive (see review Orhan, Sims, Jacobs, and Knill (2014)).
Perhaps, human subjects start with a less resource-efficient
sensory code but end up with more efficient coding, allowing
humans to learn a more rewarding but complicated policy.
This change might be observed only after extensive training
because the update of the sensory channel should follow an
extremely small learning rate due to it is hardwired in the hu-
man neural system.

References
Berger, T. (1971). The source coding game. IEEE Transac-

tions on Information Theory, 17(1), 71–76.
Collins, A. G., Brown, J. K., Gold, J. M., Waltz, J. A., &

Frank, M. J. (2014). Working memory contributions to re-
inforcement learning impairments in schizophrenia. Jour-
nal of Neuroscience, 34(41), 13747–13756.

Collins, A. G., & Frank, M. J. (2012). How much of rein-
forcement learning is working memory, not reinforcement
learning? a behavioral, computational, and neurogenetic
analysis. European Journal of Neuroscience, 35(7), 1024–
1035.

Genewein, T., Leibfried, F., Grau-Moya, J., & Braun, D. A.
(2015). Bounded rationality, abstraction, and hierarchi-
cal decision-making: An information-theoretic optimality
principle. Frontiers in Robotics and AI, 2, 27.

Gershman, S. J. (2020). Origin of perseveration in the
trade-off between reward and complexity. Cognition, 204,
104394.

Gershman, S. J., Horvitz, E. J., & Tenenbaum, J. B. (2015).
Computational rationality: A converging paradigm for
intelligence in brains, minds, and machines. Science,
349(6245), 273–278.

Gershman, S. J., & Lai, L. (2020). The reward-complexity
trade-off in schizophrenia. bioRxiv.

Gershman, S. J., & Niv, Y. (2010). Learning latent structure:
carving nature at its joints. Current opinion in neurobiol-
ogy, 20(2), 251–256.

Griffiths, T. L., Lieder, F., & Goodman, N. D. (2015). Ratio-
nal use of cognitive resources: Levels of analysis between
the computational and the algorithmic. Topics in cognitive
science, 7(2), 217–229.

Kemp, C., Perfors, A., & Tenenbaum, J. B. (2007). Learning
overhypotheses with hierarchical bayesian models. Devel-



opmental science, 10(3), 307–321.
Lai, L., & Gershman, S. J. (2021). Policy compression: An

information bottleneck in action selection. Psychology of
Learning and Motivation S.

Lerch, R. A., & Sims, C. R. (2018). Policy generalization in
capacity-limited reinforcement learning.

Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing
concepts of working memory. Nature neuroscience, 17(3),
347.

Orhan, A. E., Sims, C. R., Jacobs, R. A., & Knill, D. C.
(2014). The adaptive nature of visual working memory.
Current directions in psychological science, 23(3), 164–
170.

Sims, C. R. (2016). Rate–distortion theory and human per-
ception. Cognition, 152, 181–198.

Still, S., & Precup, D. (2012). An information-theoretic ap-
proach to curiosity-driven reinforcement learning. Theory
in Biosciences, 131(3), 139–148.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning:
An introduction. MIT press.

Tishby, N., & Polani, D. (2011). Information theory of de-
cisions and actions. In Perception-action cycle (pp. 601–
636). Springer.

Zenon, A., Solopchuk, O., & Pezzulo, G. (2019). An
information-theoretic perspective on the costs of cognition.
Neuropsychologia, 123, 5–18.


