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Abstract 

Traditional anti-phishing training is often non-personalized 
and does not typically account for human experiential learning. 
However, to personalize training, one requires accurate models 
and predictions of individual susceptibility to phishing emails. 
The present research is a step toward this goal. We propose an 
Instance-Based Learning model of phishing detection decision-
making, constructed in the ACT-R cognitive architecture. We 
demonstrate the model’s ability to predict behavior in a 
frequency training study, and its generality by predicting 
behavior in another phishing detection study. The results shed 
additional light on human susceptibility to phishing emails and 
highlight the effectiveness of modeling phishing detection as 
decisions from experience. We discuss the implications of 
these results for personalized anti-phishing training. 

Keywords: phishing; cybersecurity; personalized training; 
decision making; instance-based learning theory; ACT-R 

Introduction 

Despite significant advances in security technologies, a large 

number of phishing emails continue to evade automated 

detection and are often successful because it is cognitively 

challenging for humans to distinguish the rare deceptive 

phishing message from benign emails. As such, phishing 

attacks remain the biggest, growing threat for cybersecurity 

(APWG Phishing report, 2020). While phishing attacks exploit 

human weaknesses using social engineering and psychological 

techniques (Jagatic et al., 2007), defenders typically employ 

technological solutions to defend against them, such as 

machine learning filtering of phishing emails, email 

authentication tools, and URL filtration/blacklisting (Prakash 

et al., 2010; Marchal et al., 2014; Peng, Harris, & Sawa, 2018). 

However, attackers are persistent and phishing emails continue 

to reach their victims. Since the success of phishing attacks 

relies on exploiting cognitive and psychological weaknesses, it 

becomes essential to understand the underlying decision-

making processes that influence end-user susceptibility to 

phishing emails (Canfield, Fischhoff, & Davis, 2016). 

Recent research has shown that end-user phishing 

detection decisions are similar to other kinds of decisions 

from experience (e.g., Hakim et al., 2020; Singh et al., 2019, 

2020). An individual’s personal history and experience with 

emails can have a large influence on phishing susceptibility. 

Specifically, phishing decisions are influenced by the 

recency, frequency, and similarity of past emails to the 

features of the current email. For example, Singh et al. (2019) 

manipulated the frequency of phishing emails in an anti-

phishing training study. The results showed that increasing 

the frequency of phishing emails during training increased 

the hit rate of detecting phishing emails. In other research, 

Singh et al. (2020) examined how the similarity of email 

features influenced detection accuracy. Their results showed 

that detection accuracy suffered the more similar the features 

of a phishing email were to the features of the benign emails. 

Lastly, Hakim et al. (2020) developed a regression model of 

end-user phishing susceptibility in an email rating task and 

revealed an effect of recency on detection decisions. In the 

task, end-users rated phishing and ham emails on a scale of 

suspiciousness. The regression model showed evidence of 

sequential effects of the emails, such that current ratings were 

positively affected by the previous rating. 

Although the evidence shows that phishing decisions are 

influenced by experiential learning with emails, current 

training procedures do not take these factors into account, nor 

have the effects been investigated. Organizations typically 



use embedded-training methods that involve sending 

simulated phishing emails and only provide more traditional 

phishing training whenever one clicks on the link in the 

simulated phishing message (Kumaraguru et al., 2009; 

Kumaraguru et al., 2007). Traditional techniques have often 

focused on teaching end-users to understand and identify the 

relevant features that distinguish phishing emails from 

benign ones (Kumaraguru et al., 2009; Singh et al., 2020). 

However, there is a deficit of effective experiential phishing 

training methods that directly address important underlying 

human cognitive processes in context. Traditional phishing 

training is often generic and non-personalized. That is, all 

end-users receive the same set of training emails, the non-

phishing emails lack the familiar context that personal ham 

emails tend to have (e.g., from senders who are familiar to 

the end-user), and the phishing emails are sent without 

consideration of the individual’s history. Consequently, in 

many phishing-detection tasks, end-users have trouble 

distinguishing the phishing emails from the ham, and due to 

the generic nature of training, the effects of training vary 

considerably between individuals. In addition, different types 

of phishing emails have had varied effectiveness across 

individuals, further emphasizing the need to personalize anti-

phishing training (Lin et al., 2019; Oliveira et al., 2017). 

Personalized training interventions could prove immensely 

useful for improving anti-phishing detection, but such 

methods require models that can be tailored to individuals 

and that can make accurate decision predictions for a specific 

phishing email presented at a specific time. Therefore, as a 

first step toward this goal, we propose a cognitive model that 

leverages the influence of individual experience on phishing 

detection decisions, specifically turning to a memory-based 

theory of experiential learning called instance-based learning 

theory (IBLT; Gonzalez, Lerch, & Lebiere, 2003). According 

to IBLT, decisions are made by generalizing across past 

experiences, or instances, that are similar to the current 

situation. Typically, instances represent the features of the 

decision, the action taken, and the outcome of that decision. 

However, for emails, there is usually a dissociation between 

the actions taken and feedback regarding whether the email 

was ultimately malicious. For a given email, IBLT suggests 

that end-users make decisions by retrieving a classification 

from memory based on the similarity of features of the 

current email to features of past emails. Thus, decisions are 

influenced by typical memory effects such as recency and 

frequency of past instances and are susceptible to cognitive 

biases that emerge from these memory processes (e.g., 

confirmation bias; Lebiere et al., 2013). 

General cognitive theories of decisions from experience 

indicate that the low frequency of phishing emails (compared 

to benign emails) could be a major issue in the success of 

detection decisions if end-users underweight the probability 

of these rare events (Gonzalez et al., 2003; Gonzalez & Dutt, 

2011). Additionally, phishing emails often mimic quite well 

the benign (i.e., ham) emails that regularly flood our inboxes. 

In other words, phishing emails are similar to the highly 

frequent and usually recent benign emails that we receive 

regularly, and phishing decisions are susceptible to effects of 

frequency, recency, and similarity of features. 

Our cognitive model builds upon that proposed by 

Cranford et al. (2019). In this paper, we first extend and 

improve upon that model to explore the effects of frequency 

on phishing detection training by modeling the Phishing 

Training Task (PTT) in Singh et al. (2019; 2020). We then 

demonstrate the model’s generality by running it through the 

task in Hakim et al. (2019), the Phishing Email Suspicion 

Test (PEST), which tests on a different database of emails. 

Finally, we discuss the implications of the model for future 

research towards personalized, adaptive anti-phishing 

training interventions. 

Modeling the Phishing Training Task 

The PTT (Singh et al., 2019) was designed to examine the 

impact of learning factors (e.g., frequency effects) on 

phishing detection decisions. The task is based on the design 

in Canfield et al. (2016) in which participants are presented a 

series of email messages and are requested to make 

classification decisions. In the PTT, participants make three 

responses to each email: a classification decision of whether 

the email was a phishing email or not, a confidence rating of 

their decision (from 50, “not confident at all”, to 100, “fully 

confident”), and the action they would take in response to 

each email (selected from a 6-point, Likert-type scale ranging 

from “Respond to this email” to “Report this Email”). For the 

present model, we focused on the first classification decision. 

The PTT consists of three phases: pre-test, training, and 

post-test. During the pre- and post-test phases, end-users are 

presented with 10 emails, two of which are phishing emails, 

and the remaining are benign, ham emails. During the 

training phase, end-users are presented 40 emails of which 10 

20, or 30 are phishing emails. End-users are randomly 

assigned to one of the three phishing frequency conditions. 

Feedback about decision accuracy is provided after each trial 

during the training phase but not during either testing phase. 

IBL Model Description 

The IBL model was adapted from Cranford et al. (2019) and 

constructed in the ACT-R cognitive architecture (Anderson & 

Lebiere, 1998). The modifications made to the model were 

few, but important, and provided substantial improvement to 

predicting human behavior in the PTT. These will be discussed 

below, after presenting the model results. 

The model performs the PTT in the same way as humans, 

processing one email at a time, judging whether each is 

phishing or ham. For each email, the model takes the content 

of the email as input and generates a classification by retrieving 

from similar past instances. For the PTT, the elements of an 

email include the sender’s email address, subject line, email 

body, link text, and underlying link URL. The classification 

(i.e., decision) is either phishing or ham. In ACT-R, the 

retrieval of past instances is based on the activation strength of 

the relevant chunk in memory and its similarity to each of the 

elements of the current situation. The activation Ai of a chunk 

i is determined by the following equation: 
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The first term provides the power law of practice and 

forgetting, where tj is the time since the jth occurrence of chunk 

i and d is the decay rate of each occurrence. The second term 

reflects a partial matching process, where Sim(vk,ck) is the 

similarity between the actual memory value and the 

corresponding element for chunk slot k, and is scaled by the 

mismatch penalty (MP, which was set at 2.0; discussed below). 

The term εi represents transient noise, a random value from a 

logistic distribution with a mean of zero and variance 

parameter s of 0.25 (common ACT-R value, e.g., Lebiere, 

1999), and introduces stochasticity in retrieval. 

The probability of retrieving a particular instance is 

determined according to the SoftMax equation (i.e., the 

Boltzmann equation), reflecting the ratio of an instance’s 

activation Ai and the temperature t (which was set to the default 

value which scales to the noise parameter, √2 ∗ 𝑠): 
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The model uses ACT-R’s blending mechanism (Lebiere, 

1999, Gonzalez et al., 2003) to generate a classification based 

on the similarity to past instances. Blending is a memory 

retrieval mechanism that returns a consensus value across all 

memories with similar elements, rather than from a specific 

memory, and is computed by the following equation: 

argmin
𝑉

∑ 𝑃𝑖 × (1 − 𝑆𝑖𝑚(𝑉, 𝑉𝑖))
2

𝑖

 (3) 

The value V is the one that best satisfies the constraints among 

actual values 𝑉𝑖 in the matching chunks i weighted by their 

probability of retrieval Pi. Satisficing is defined as minimizing 

the dissimilarity between the consensus value V and the actual 

answer Vi contained in chunk i. 

In summary, the model matches memories to the current 

email content and uses blending to generate the classification 

decision. After generating a classification, the experience 

(email content plus decision) is saved in declarative memory 

as a new instance, which affects future decisions. During the 

training phase, the classification slot is first updated to match 

the feedback prior to being saved to memory. 

While prior research has identified relevant features for 

detecting phishing emails (Kumaraguru et al., 2009; Singh et 

al., 2020), and training tools have attempted to teach end-users 

to identify such features, the current model relies solely on the 

semantic features of the email to make classifications. At the 

lowest level, an end-user that has not undergone training to 

identify expert features would likely rely on the semantics of 

an email to make a classification. An email that is semantically 

similar to past known phishing emails would more likely be 

classified as phishing. Additionally, by relying on only the 

semantics of the email, the model does not need to identify 

expert features in a body of text (which is a difficult task to 

automate by any natural language processing, NLP, standards). 

In contrast, current NLP techniques are quite efficient at 

computing the semantic similarity between texts and can 

therefore feasibly be used to generate the similarities between 

emails required for blending computations. 

A novel feature of the model, therefore, is how similarities 

are computed between slot values. Typically, similarities 

between numeric values are computed using a linear function 

scaled between 0 and 1.0, where 1.0 is a perfect match and 0 is 

maximally dissimilar. However, for non-numeric information, 

unless a value is specified for a relation, they are either 

maximally similar or maximally different. For emails, the 

content is non-numeric, often several words to paragraphs in 

length. Because two texts that are semantically similar should 

have higher similarity values (closer to 1.0) compared to texts 

that are semantically very dissimilar, it is possible to compute 

individual similarities between semantic content. 

To compute similarities between textual information, we 

used the University of Maryland Baltimore County’s semantic-

textual-similarity tool (UMBC; Han et al., 2013). The tool uses 

a combination of latent semantic analysis (LSA) and WordNet 

to produce semantic similarity values between two texts. The 

two input texts can be of any word-length and it produces a 

value between 0.0 and 1.0, with 1.0 being maximally similar in 

meaning. For example, the similarity between “happy dog” 

and “joyful puppy” is 0.65, whereas “happy dog” and “sad 

feline” is 0.34, and “happy dog” and “hot tea” is 0.0. This 

technique has proven useful for producing meaningful 

similarity values between textual content. 

Model Results 

To generate stable estimates of performance compared to that 

of humans, the model was run 10 times per participant and 

given the same sequence of emails presented to the 

participant. Therefore, in the analyses below, we compare 

2980 model runs to 298 humans. Before beginning the task, 

the model must first be initialized with a set of instances to 

be able to retrieve a classification. Therefore, the model was 

initialized with 10 instances that include the email content 

and ground-truth classification, five of which were phishing 

emails and five were ham. The initialized instances were 

sampled from the remaining emails that were not presented 

during the task. 

To examine the model performance compared to that of 

humans, we computed signal detection measures and plotted 

the receiver operating characteristic (ROC) curve for each 

phase and frequency condition of the task. We plotted the 

mean True Positive Rate (TPR; or Sensitivity) on the y-axis 

and the False Positive Rate (FPR; or 1-Specificity) on the x-

axis. The TPR is equivalent to the hit rate of classifying 

phishing emails as phishing. The FPR is equivalent to the 

false-alarm rate of classifying ham emails as phishing. 

Therefore, in ROC space, points closer to the top left of the 

graph indicate greater discriminability while points toward 

the middle indicate less discriminability. Meanwhile, points 

toward the top right or bottom left indicate greater overall 

bias toward responding phishing or ham, respectively. 

Figure 1 shows the mean ROC curves for the humans 

(black) compared to the model (gray). As can be seen, the 

model generates very accurate predictions of human behavior 



across phases and frequency conditions. Like humans, the 

model does not perform perfectly, highlighting the difficulty 

of the task in discriminating phishing from ham emails. As 

observed in humans, the frequency of phishing emails 

observed during training (Phase 2) had a direct impact on 

discriminability in the post-test phase (Phase 3), such that 

greater increases in frequency during Phase 2 led to greater 

increases in TPR, but also FPR, in Phase 3 compared to Phase 

1. However, as can be observed, the model is slightly more 

sensitive to frequency effects than are humans. When the 

base rate is 25% (10 phishing, 30 ham) the model tends to 

underpredict human performance at post-test and classifies 

more of the phishing emails as ham. When the base rate is 

50% phishing emails or more, then the model tends to more 

accurately classify the phishing emails compared to humans. 

The model demonstrates that a greater frequency of 

experience with phishing emails leads to more cautious 

decisions with future emails. This is because the greater 

number of phishing instances in memory the greater 

influence they have on retrieval (i.e., a greater probability of 

retrieving a phishing classification from memory). 

 
Figure 1: ROC curves of phishing decision accuracy across 

three phases of the PTT and three frequency conditions, for 

humans (black) compared to the model (gray). 

Discussion 

That the model generated highly accurate predictions of 

human behavior is good news towards developing 

personalized anti-phishing training interventions. The model 

is able to rely on experience, through interaction with the 

environment, and the dynamics of memory to generate a 

range of behavior. The modifications we made to the original 

Cranford et al (2019) model helped to provide a better 

understanding of end-user susceptibility to phishing emails. 

For the original model, the important parameter values for 

activation and blending were left at their default values. 

These include, decay rate d, mismatch penalty MP, transient 

noise s, and temperature t. For the decay rate, the default 

value is 0.5. Decay rate is related to forgetting and influences 

recency effects such that the higher the value the less of an 

impact older instances will have in retrieval, and thus more 

recent instances will have a greater impact. At the default 

value, the model tended classify emails as ham due to the 

greater frequency of ham emails during the pre-test phase. In 

the current model, we set this parameter to 0. This allowed all 

instances to play a more equal role in retrieval and reduced 

excessive recency effects. Studies have shown that the default 

decay rate of 0.5 is effective for modeling the typical 

laboratory task that is short in duration and involves novel 

stimuli, however, for longer duration tasks this value is less 

useful at representing retrieval effects (Pavlik & Anderson, 

2005). For the present task, reading emails is a task with 

which humans come to the experiment with vast amounts of 

prior experience. It is presumable then that these past 

experiences play a role in retrieval and have decayed to a 

steady level at experimentation. With such a vast memory 

base, spreading activation more evenly across new instances 

by setting decay to zero is a suitable solution for representing 

this memory phenomenon. 

Ideally, we would use a portion of the end-user’s actual 

history of emails to initialize the model, but using examples 

from the database was a reasonable alternative. Interestingly, 

the model was initialized with equal numbers of ham and 

phishing emails, whereas in reality, humans see many more 

ham emails than phishing. Initializing the model with 

comparatively more ham emails resulted in too many ham 

classifications. It could be that phishing emails are inherently 

more emotionally valent and thus more salient in memory. Or 

it could be an experimental effect of end-users expecting 

some of the emails to be phishing. In any case, these results 

reveal a bias to respond phishing in the task that was 

accounted for through initialization of instances. 

One issue with the original model was that the UMBC 

semantic similarity tool produces a compressed range of 

values, which in turn compresses the range of differences 

between emails and makes it more difficult to discriminate 

stimuli. During retrieval, the instances are more evenly 

weighted. To alleviate this constraint, we modified the 

temperature and mismatch penalty parameters. The noise s 

was left at its default value of 0.25 which provides a 

reasonable amount of stochasticity in retrieval. Increasing 

this value resulted in overly varied responses, and reduced 

discriminability. However, lowering this value did not 

produce enough stochasticity between model runs. The 

temperature on the other hand was reduced from a neutral 

value of 1.0 to the default value of √2 ∗ 𝑠, which equals 

approximately 0.35 given the current value of s. Temperatures 

of 1.0 reflect an unbiased retrieval given the historical 

frequency distribution of instances. This means that retrieval is 



more evenly distributed across instances. Increasing this value 

tends toward randomness, making discrimination more 

difficult. Therefore, lowering the temperature by reverting to 

the default ACT-R value resulted in greater discriminability 

where more weight is given to instances with higher activation 

values. This in turn rewards those instances that are more 

semantically similar to the current instance. Finally, we 

increased the mismatch penalty MP, from 1.0 to 2.0. The 

mismatch penalty directly influences the model’s 

discriminability because it scales the dissimilarity between 

instances. Therefore, increasing this value enhanced the 

differences between different emails while simultaneously 

strengthening the similarities between similar emails, 

effectively decompressing the range of similarities produced 

by the UMBC semantic-similarity tool. The result was an 

increase in overall discriminability of the model. 

The current model predicts human performance well, but 

even still, there is room for improvement. We did not perform 

any detailed parameterization of the model, but instead 

settled on reasonable and justifiable values through strategic 

exploration. Therefore, the model has potential to be further 

refined. Additionally, relying on the semantic similarity of 

features of an email, generated through NLP techniques, 

instead of attempting to extract the presence of features 

within the email text, allowed us to create a model that can 

more easily generalize to novel environments (i.e., with 

different emails). Relying on the semantic content means we 

do not have to preprocess new emails, manually or through 

automated means, to identify relevant features. To test the 

generality of the model, we ran the model through another 

task that used a different database of emails, the Phishing 

Email Suspicion Test (Hakim et al., 2019). 

Modeling the Phishing Email Suspicion Test 

Hakim et al. (2019) used the PEST task to assess the 

relationship between real and simulated phishing and ham 

emails and to examine the efficacy of using the simulated 

phishing emails for anti-phishing training against real-world 

phishing attempts. In the PEST task, 97 participants rated a 

total of 160 emails each on a Likert-type suspiciousness scale 

from 1 “Definitely Safe” to 4 “Definitely Suspicious”. 

Participants were presented 40 of each type of email: real-

ham, simulated-ham, real-phishing, and simulated-phishing. 

The emails were presented in random order and selected 

randomly from the database of emails. 

The IBL model described above was tasked to perform the 

PEST. Because the PEST included four types of emails, the 

model was initialized with a total of 20 emails (five of each 

type). However, to model the individual differences observed 

in the human PEST data, we introduced stochasticity in the 

initialization. That is, the model was initialized with three to 

six ham emails of each type, randomly selected from a 

uniform distribution, and the remaining were phishing. This 

also introduced varied initial biases between model runs, 

where some runs were initially biased toward ham and other 

runs more biased toward phishing, thus resembling a human 

population, but with a skew toward phishing. However, as 

will be discussed in more detail below, to produce the 

following results, each run was initialized with an extra 2 

simulated-phishing emails. This is consistent with the finding 

of Hakim et al. (2019) that participants displayed a bias to 

respond phishing, and with the phishing bias observed in the 

PTT model. Increasing the number of phishing emails was 

required to drive such a bias in the PEST model. 

Since the PEST database of emails includes only 40 

examples of real-ham emails, to ensure no initialized real-

ham emails were presented during the test, we reduced the 

number of emails of each type presented during testing from 

40 to 30. Therefore, the model experiences 120 total emails 

per run, still allowing for ample observations. For the PEST, 

emails did not show the underlying link URL if hovered over 

with a mouse, so the URL feature was removed from the 

instance representation and only the link text was compared 

in retrievals. Instead of generating a classification, the model 

takes the semantic features of the email as input and 

generates, via blending, a rating score between 1 and 4. The 

retrieved value is a continuous value that is rounded to the 

nearest whole number to provide a discrete rating. The 

blended rating value is replaced with the discrete rating value 

before saving the instance to declarative memory at the end 

of each trial. Like humans, the model does not receive 

feedback regarding the accuracy of its decisions. 

Model Results 

To generate stable estimates of performance, the model ran 

through the task 200 times, with initialized and tested emails 

selected randomly for each run. Therefore, in the analyses 

below, we compare 200 model runs to 97 humans. 

Because the PEST requires a rating response as opposed to 

a classification response, to analyze the model performance 

compared to humans, we examined the mean suspicion scores 

per email type as well as the subject-level correlation between 

ratings for simulated and real emails, separately for phishing 

and ham emails. These combined measures provide accounts 

for the mean as well as the full range of human behavior. 

Figure 2 shows a boxplot of the mean suspicion score per 

email type. The results align very well with the human data, 

closely accounting for the mean behavior as well as the 

variance between individuals. The real-ham emails were 

rated the lowest at approximately 2, while the simulated- and 

real- phishing emails were rated highest at almost 3. 

Meanwhile, the simulated-ham emails were rated at near 2.5. 

Figure 3 shows the correlation between simulated and real 

emails for ham and phishing emails separately. These results 

highlight the model’s ability to account for both the within- 

and between-subject variances in performance. As will be 

discussed further, a key contributor to the model’s 

performance is the randomization of initial instances. 



 
Figure 2: Boxplot of mean suspicion scores for each type of 

email in the PEST for humans compared to the model. 

 

 
Figure 3: Scatterplots showing the correlation between real 

emails and simulated emails for ham emails and phishing 

emails separately, comparing humans to the model. 

Discussion 

The IBL phishing susceptibility model was able to 

successfully generalize to other environmental conditions 

with a different pool of participants performing a slightly 

different task with different stimuli. To produce the level of 

accuracy in predicting human behavior in the PEST, the 

model required stochasticity in initialization and additional 

initialized phishing instances. The result was an increase in 

correlations between real and simulated emails and an overall 

bias toward rating emails more suspicious. In fact, using a 

static initialization considerably reduced the observed 

correlations in Figure 3. 

In exploring an appropriate initialization for the model, the 

results revealed a relationship between simulated-ham and -

phishing emails. For example, increases in simulated-

phishing emails had a positive impact on simulated-ham 

emails. These results suggest there is large semantic overlap 

between simulated emails, which is consistent with how the 

simulated-phishing and -ham emails were constructed. The 

simulated-ham emails were modified versions of simulated-

phishing emails made to seem less suspicious. The model 

picks up on this semantic overlap which results in simulated-

ham emails having a higher match to simulated-phishing 

emails, producing inflated ratings for simulated-ham emails. 

Conclusion 

Our IBL model highlights the role of experiential learning for 

end-user phishing detection decisions. The major influences 

in generating accurate predictions of human susceptibility to 

phishing emails were initialization of instances and similarity 

between email features. A phishing bias was accounted for 

by adding disproportionally more phishing emails than ham 

emails compared to real-world frequencies. Adding 

stochasticity in initialization accounted for individual 

differences in behavior. Humans have distinct experiences 

that influence decisions and capturing this background 

knowledge is essential to building models that not only 

predict a range of human behavior, but also that can predict a 

specific individual’s behavior. Because the model is expected 

to generate better predictions of an individual the more the 

model’s memory aligns with the human’s, model-tracing 

techniques should prove useful in developing personalized 

anti-phishing training interventions (Anderson et al., 1995). 

Future research is aimed at further exploring the effects of 

initialization, with an emphasis on generality and in exploring 

ways to decompress the range of semantic similarities or even 

representing alternative features. 

While the current model uses only the semantics of the 

email to make decisions, current training methods teach end-

users to identify so-called “expert” features (e.g., a request 

for personal information; Singh et al., 2020). Using only 

semantic features of an email produces human-like, albeit 

fairly poor discriminability in the experimental tasks. A goal 

for future research is developing a model that can learn to 

identify expert features so that we can use the model to help 

train end-users to detect such features. For now, the current 

model proved a successful first step toward personalized anti-

phishing training. 
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