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Abstract

We describe a new approach for developing and validating cog-
nitive process models. In our methodology, graphical models
(specifically, hidden Markov models) are developed both from
human empirical data on a task, as well as from synthetic data
traces generated by a cognitive process model of human behav-
ior on the task. Differences between the two graphical models
can then be used to drive model refinement. We show that iter-
atively using this methodology can unveil substantive and nu-
anced imperfections of cognitive process models that can then
be addressed to increase their fidelity to empirical data.

Introduction
Building cognitive process models of human behavior is a
challenging task that has rich rewards. Such models can be
used for many purposes, including to better understand where
people make errors (Hiatt & Trafton, 2015), to better under-
stand how to effectively teach people new skills (Lee, Ander-
son, Betts, & Anderson, 2011), and to design effective com-
puter interfaces (Cao, Ho, & He, 2018).

Because human thought processes can be only observed in-
directly, such as by recording external behavior (e.g., reaction
times, responses to questions, etc.), each cognitive process
model serves as a de facto theory of human behavior on the
task being modeled. To validate those theories, the simulated
behavior of the models on the task can be compared to the be-
havior of human participants on the task using measures such
as statistical goodness-of-fit measures (e.g., R2, RMSE, etc.).
A strong fit indicates that the model is a good theoretical can-
didate for how humans complete the task.

However, there are two related issues with this develop-
ment methodology that we address in this paper, both of
which stem from the fact that a strong or weak statistical fit
does not necessarily indicate which parts of the model may
fit human behavior better than others. First, a weak statisti-
cal fit does not necessarily give any actionable information
for which part of the model to modify to improve it. Second,
a strong statistical fit for part of the model’s task may mask
issues with another area.

Here, we use hidden Markov models (HMMs), a type of
probabilistic graphical model, as an new analysis tool for val-
idating the efficacy of a cognitive model on a human behav-
ioral task. First, we use the cognitive model to generate syn-
thetic data of human behavior on a task. Then, we train two
HMMs using two datasets: (1) human empirical behavior on

the task, and (2) the generated synthetic data. By comparing
these HMMs both qualitatively and quantitatively, we can not
only measure how similar the datasets (and thus the underly-
ing behaviors, or models of behavior) are, but also, because
HMMs are a form of graphical model, visually see ways in
which the datasets differ. We show that using this process can
improve cognitive model fidelity by both of these qualitative
and quantitative metrics, as well as improve the predictive
accuracy of the cognitive model when predicting a human’s
next action on a task.

In the following sections, we describe: the task; the em-
pirical data that was collected; the initial model of the task;
the graphical model approach; and the revision of the cogni-
tive model. Finally, we discuss the resulting improvement in
predictive performance.

Task Description
In order to study how cognitive models of complex behavior
can leverage machine learning as a tool for improvement, we
turn to a supervisory control task. Specifically, we consid-
ered how people performed while interacting with the Re-
search Environment for Supervisory Control of Heteroge-
neous Unmanned Vehicles (RESCHU) (Boussemart & Cum-
mings, 2008) simulator. RESCHU is an interactive super-
visory control task that requires complex decision making,
problem solving, and reasoning.

Figure 1 shows the simulation, which has three panels:
a map panel, a status panel, and a payload panel. The
map panel (Figure 1, right) displays unmanned aerial vehi-
cles (UAVs) (blue/red half ovals), targets (orange/green dia-
monds) towards which UAVs are moving, and hazard areas
(yellow circles) which should be avoided by UAVs and can
change location over time. The status panel (Figure 1, bottom
left) shows the status of the UAVs and includes information
on vehicle damage, time until the vehicle reaches a waypoint
or target, and time remaining in the simulation. The payload
panel (Figure 1, top left) is used by the operator to perform a
manual visual acquisition task once the UAV has reached the
target. It is not critical to this work so we largely omit its con-
sideration; it is more fully described in (Breslow, Gartenberg,
McCurry, & Trafton, 2014).

The goal for an operator’s session in RESCHU was to mon-
itor and guide the five UAVs to reach as many targets as pos-
sible, and complete the corresponding payload tasks, while



Figure 1: A screenshot of the RESCHU environment simula-
tor used in this experiment.

avoiding damaging the UAVs in the hazard areas.
At the start of the simulation, the UAVs were randomly

assigned to targets; thus, the UAVs might not be directed to-
wards the optimal target. After a target was reached and the
visual acquisition payload task was complete, the target “re-
set”, and the UAV was randomly assigned to a new currently-
unassigned target, which again might not be optimal.

Because of this suboptimal automation, as well as the
changing location of the hazard areas, a critical subtask of
RESCHU was changing the target of a UAV. Operators could
do this at any time by using the mouse to click on the UAV
and then clicking on the UAV’s new target. We focus on this
subtask here because of its import as well as because, as we
will see, even in this “simple” subtask there is variation in
how operators perform it, making it an ideal subtask to test
our proposed methodology. The end goal of the modeling ef-
fort is to be able to predict an operator’s final selected target,
so the interface can better assist with the selection process
(e.g., pre-selecting the target, highlighting the target, etc.).

Empirical data
The empirical data we consider was based on ten participants
using RESCHU. Participants were provided extensive train-
ing on the RESCHU system, through an online tutorial, in-
person instruction, and walk-throughs. Participants also had
as much time as they wanted to use the entire system until
they were well-versed in the intricacies of RESCHU. Partic-
ipants were all volunteers (no incentives), healthy, with age
less than 30 years. Details on the methodology of the study
are available in (Breslow et al., 2014).

After a participant was fully trained on RESCHU, they
were seated approximately 66 cm from the computer mon-
itor and were calibrated on an SMI RED eye tracker oper-
ating at 250 Hz, which collected eye tracking data once the
experiment began. A fixation was defined using the disper-
sion method based on a minimum of 15 eye samples within
60 ms and within 50 pixels (approximately 3◦ of visual an-
gle) of each other, calculated in Euclidian distance. Fixations
on specific objects were automatically identified after all data

collection was completed. The simulation also logged all op-
erator actions, i.e. mouse clicks, indicating what object was
clicked on (i.e., selected) at different times.

All instances of changing a UAV’s target were manually
extracted from the simulation. A total of 200 sequential pro-
cess traces, with eye fixations and mouse clicks listed in
chronological sequence, were created by these participants.
For this subtask, a process trace contained sequences of the
set of possible observations of the operator’s behavior, {uav1,
uav2, ..., haz1, haz2, ... tar1, tar2, ..., Action-SelectUAV1,
Action-SelectUAV2, ..., Action-SelectTar1, Action-SelectTar2,
...}. Note that if the observation corresponds to a mouse click,
it is designated specifically as an “Action-Select”; otherwise,
it is an eye gaze fixation.

We were able to create a simple coding scheme for the em-
pirical data to categorize different strategies people used (e.g.,
a planning strategy needed to fixate on both the UAV and
the target before selecting the UAV; an opportunistic strategy
picked and selected a UAV before looking for a target). The
coding scheme was implemented computationally and run on
all the empirical data to provide preliminary evidence of dif-
ferent strategies.

Hidden Markov Models for Comparing
Datasets

A hidden Markov model (HMM) is a graphical model that
stochastically transitions between states using the Markov as-
sumption (i.e., transitions depend on only the current state).
The hidden term refers to how states are not directly observ-
able; instead, states stochastically emit observations that give
clues to what state the model is currently in. Figure 3 shows
example HMMs that we will discuss later in our analysis.

A typical hidden Markov model (HMM) is formally de-
fined by the tuple 〈S,Z,A,B,π〉:
• S is the set of states.
• Z is the set of observations.
• A is an |S|× |S| matrix defining transition probabilities be-

tween states ai, j = p(xt = s j|xt−1 = si).
• B is an |S| × |Z| matrix defining observation probabilities

of the states bi,k = p(ot = zk|xt = si).
• π is a vector with initial state probabilities πi = p(x0 = si).
In this definition, xt and ot represent the true state and emitted
observation at time t, respectively.

Learning HMMs
In order to create an HMM that models a dataset, existing
techniques for learning HMMs can be used. Learning for
HMMs can refer to both learning the topology of the HMM
(i.e., learning what states connect to others; Singer & Os-
tendorf, 1996; Siddiqi, Gordon, & Moore, 2007), as well
as learning the parameters of it (i.e., learning the values of
A and B; Rabiner, 1989). Here, we adapt the basic strat-
egy from (Singer & Ostendorf, 1996) for learning the HMM
topology using repeated “state splitting,” followed by stan-
dard Baum-Welch parameter learning (Rabiner, 1989). The
Baum-Welch algorithm uses successive iterations of forward



and backward passes through all available data traces to it-
erate toward the transition and observation probabilities that
maximize the probability of the observed data. Repeating
these two steps of state splitting and Baum-Welch parame-
ter learning results in joint learning of both the topology and
parameters of the HMM.

The training procedure begins by reading in a set of obser-
vation sequences. We prepend each sequence with a START
observation and append each with an END observation to de-
note the fixed beginning and end of the sequence.

Then, an HMM is initialized with a start state that emits
only START, a middle state that emits all observations other
than START and END, and an end state that emits only END.
The start state transitions only to the mid state, the middle
state transitions to itself and the end state, and the end state
terminates the sequence.

From this point, state-splitting is used to expand the HMM
topology, one new state at a time. At every expansion step, a
new possible HMM is created and trained for each candidate
split, with every state (other than the specialized start and end
states) considered a candidate for splitting.

For each new candidate HMM, both of the newly split
states are initialized with the same transitions as the origi-
nal state. The new HMM’s parameters are then trained using
Baum-Welch learning. After all possible HMMs for the cur-
rent expansion step have been created and trained, the can-
didate HMM that maximizes the likelihood of the dataset is
selected for use or as the basis of the next expansion step; the
rest are discarded. This procedure can end once either a fixed
number of states is reached, or some measure of fit (such as
the likelihood of a validation set) stops improving.

HMMs as Dataset Representations
Learning the HMM directly from a dataset produces a graph-
ical model that represents some underlying structure in the
data. In particular, if two HMMs are created from datasets
generated by two different sources, the learned HMMs can
provide a graphical representation of the differences in the
sources underlying the two datasets. This provides a novel
way to analyze and validate cognitive process models: com-
paring HMMs learned from synthetic data from a cognitive
model with those learned from human empirical data.

Intuitively, we should be able to learn HMMs that do not
depend on the specific label of current action (i.e., looking at
tar1 vs. tar2), but instead consider its meaning (i.e., look-
ing at a target of interest vs. looking at a target not of inter-
est). There is an additional consideration, therefore, to using
HMMs as an analysis tool for cognitive process models on
tasks where a “template”-style process is applied to various
versions of a task. As an example, in the UAV re-routing sub-
task, the same processes are followed no matter which UAV
is being rerouted to which target. But because the specific tar-
gets of interest differ across observation sequences, learning
a single standard HMM on a dataset for this subtask would
essentially meaningless for understanding the process gener-
ating the data: the HMM will not be able to meaningfully

differentiate between targets of and not of interest.
To address this need, we next describe how we collapse

observations into composite observation sets in order to train
effective HMMs on these types of “template” tasks.

Composite Observations for HMMs

The first step in collapsing observations is to divide all pos-
sible raw observations into classes (e.g., group together all
hazard observations into a haz class, etc.). For each class,
we represent it using either one or two composite observa-
tions. For classes like hazard, all observations can generally
be collapsed into one composite observation haz. For classes
like target, however, they cannot: that would meaningfully
impact an HMM’s ability to understand the operator’s obser-
vations and actions. Such classes have two composite obser-
vations: tar+ which indicates the target of interest for a given
sequence, and tar- which indicates targets not of interest.

It is straightforward to convert raw observation traces into
composite observation traces. Each raw observation is re-
placed with either its single composite symbol, or with the
appropriate dual composite (i.e., if the raw observation is tar2
and tar2 is the selected target, it is replaced with tar+; other-
wise, it is replaced with tar-). The resulting composite dataset
can then be used to train an HMM as described above1.

HMM Comparison Measures

With two HMMs in hand, we can compare them to find
structural or other similarities or differences in the underly-
ing data. We consider two ways to compare HMMs: one
quantitative, and one qualitative. Quantitatively, comparing
HMM topology and parameters involves calculating the sim-
ilarity of the expected outputs produced by two HMMs. A
classic approach to do so, described by Juang and Rabiner
(1985), is to estimate the Kullback-Leibler divergence be-
tween the probability distributions of observation sequences
generated by the two HMMs. This estimation is done through
a Monte Carlo approach by repeatedly generating observation
sequences from one HMM, calculating the probability of each
of these sequences being emitted from both HMMs, and com-
paring the two probability values. Although this measure is
asymmetric, we transform it to a symmetric measure by cal-
culating it in both directions and averaging them. As the num-
ber of observations goes to infinity, the estimate approaches
the true Kullback-Leibler divergence of the two HMMs.

Qualitatively, a comparison of HMMs can be done by visu-
ally viewing them, and comparing transitions between states
as well as observation probabilities. For example, if one
HMM always begins by entering a state where it looks at a
UAV, while another always begins by entering the state where
it looks at a hazard, that can be viewed as a meaningful qual-
itative difference between the models.

1An additional, subtle, benefit of an HMM that reasons over
composite UAVs, hazards, targets, etc., is that it allows for adding or
removing additional items (such as more targets) at run time without
going through training again.



Cognitive Model Development Cycle
Our cognitive model development cycle began by one of the
authors of this paper hand-writing a cognitive model in ACT-
R/E (Trafton et al., 2013) to capture human performance on
the UAV re-routing subtask. The original models are identical
to that described in (Trafton, Hiatt, Brumback, & McCurry,
2020); we describe them generally here, but interested readers
can refer to that work for their specifics.

Original Model Description
While performing the re-routing subtask, people could use a
variety of cognitive strategies; here, we focused on modeling
two strategies introduced when discussing the empirical data:
a planning strategy and an opportunistic strategy.

The planning strategy captures the insight that people
sometimes plan a few actions ahead, or search for the best
action to do, when performing a task. Here, the strategy first
searches for a UAV whose target needs to be changed (be-
cause it is on a collision course with a threat or is far away
from its target, etc.), by using its perception to see the inter-
face, and its memory to interpret what it sees. It then holds
the UAV in working memory while searching for a better tar-
get (e.g., one that does not intersect a hazard or that is closer).
After identifying the UAV and the new target of interest, the
model executes the actions to change the UAV’s target (i.e.,
clicking on the UAV, then clicking on the new target).

The opportunistic strategy occurs when people may not
have time, resources or inclination to plan ahead. The model
of this strategy sequences its actions differently. It first
searches for a UAV whose target needs to be changed, and
then immediately clicks to select the UAV without a specific
target yet in mind. Next, the model searches for a target where
the UAV could be sent. After an appropriate target is found,
it clicks on it to change the UAV to go to that target.

Note that while the differences in strategies are subtle, they
are different in their actions (i.e., mouse clicks) as well as pat-
terns of eye-movements. Also, the planning strategy clearly
requires greater utilization of working memory (e.g., needing
to hold the UAV in mind while searching for an appropriate
target); however, we note that even though the RESCHU task
is dynamic, there seems to be enough time to execute both
strategies within the constraints of the subtask.

Analysis Set-Up
There are two steps to setting up the analysis of the cognitive
models: acquiring the right data, and training the HMMs.

Data Evaluating the cognitive process models using ma-
chine learning techniques requires both empirical as well as
synthetic data stemming from the cognitive models. The em-
pirical data was described when introducing the RESCHU
task. For the synthetic data, we used the developed cognitive
models to generate observation traces indicating the model’s
theory of how people perform the task. Critically, these mod-
els generate traces of observational data that were identical in
form to the traces that were generated from the human par-

ticipants, including eye fixations and mouse clicks listed in
chronological order. All together, both the planning model
and the opportunistic model were each run 20,000 times to
generate 20,000 individual, distinct traces of synthetic human
performance for each strategy.

HMM Training HMMs can then be trained using each
data source: empirical planning, empirical opportunistic, syn-
thetic planning, and synthetic opportunistic. Before training,
each dataset was converted into its composite dataset as de-
scribed above. Each HMM was limited to 5 splits while learn-
ing the topography, resulting in a total of 8 states per HMM
(six “split” states plus the start and end states). For each can-
didate split, parameters were learned using 500 Baum-Welch
iterations. Figure 3a shows one such trained HMM.

Analysis
The trained HMMs can next be compared both quantitatively
and qualitatively. Quantitatively, the HMM distance measure,
described above, calculates how related the different HMMs
are. The first columns of Table 1, show these values for the
original cognitive process models (PlanSynOrig, OppSyn-
Orig) compared to the empirical data (PlanEmp, OppEmp).
While there is not an exact “ideal” target for these values,
lower values indicate that the data generated by the two mod-
els overlap more and, as such, lower values are better. These
values show that the cognitive model of the planning strategy
is closer to that of the empirical data than the model for the
opportunistic strategy. These values do not, however, offer
any insight into why this is the case.

In contrast, Figures 3a and 3b show a qualitative compar-
ison of the empirical planning HMM and the synthetic plan-
ning HMM. As they show, there are several qualitative ways
in which the HMMs differently characterize the behavior of
their respective data. Notably, as we will discuss in the fol-
lowing section, there are several differences in what observa-
tions occur directly before and after actions (mouse clicks).

Revision
The HMM analysis highlighted several differences between
the cognitive models and the empirical data. These differ-
ences suggested changes in the models that potentially could
lead to not only a greater theoretical understanding of dy-
namic tasks but also improved fits and better prediction. Two
changes were made to both strategy models based on the re-
vealed differences between them and the empirical data.

Looking at the target of interest before selecting it Be-
fore clicking the target of interest, the original cognitive mod-
els looked directly at it and then selected it very consistently.
However, the empirical data did not show such a strong re-
lationship. One possible explanation for this is that people
used a sort of embodied cognition by focusing on a target,
moving their mouse to that target, looking around more, and
then simply clicking the mouse to finalize the selection. We
implemented this aspect in the models by providing a 50%
chance that people would use a form of embodied cognition.



PlanSynOrig PlanSynRev OppSynOrig OppSynRev
PlanEmp 0.209 0.181 OppEmp 0.312 0.181

Table 1: Distances between the empirical-based HMMs and original and revised process model-based HMMs for the planning
and opportunistic strategies. Lower scores indicate greater similarity between the HMMs.

Looking at the UAV immediately after selecting it The
empirical data suggested that people frequently (50%) looked
at the target of interest immediately after selecting the UAV.
In contrast, the original cognitive model used a GOMS-style
approach, generally looking at the UAV immediately after se-
lecting it to confirm that it was selected. To address this,
instead of increasing the probability that the target was fo-
cused on immediately after selection, we instead decreased
the probability that the model confirmed the UAV was se-
lected. By verifying that the UAV had been selected less of-
ten, we expected that the target would be examined sooner.

Note that for both of these changes, we did not perform
any sort of parameter-space search; we simply changed the
aforementioned probabilities to 50%. We assume that if we
had performed additional parameter-space search, the model
fit would be better, perhaps at the cost of over-generalization.

Results
We first look at the HMM measures to evaluate whether
the model fit to the empirical data has improved after revi-
sion. Table 1 shows that the quantitative fit did, in fact, im-
prove. The planning strategy showed a moderate improve-
ment, while the opportunistic strategy showed a large im-
provement. Qualitatively, as Figure 3 shows, the new plan-
ning cognitive model shows a stronger topological and pa-
rameter similarity to the empirical HMM; the opportunistic
shows a similar improvement.

As an additional measure, we have suggested that an effec-
tive way to evaluate a cognitive model is by predicting spe-
cific steps during task execution (Breslow et al., 2014; Trafton
et al., 2020; Ratwani & Trafton, 2011). In (Trafton et al.,
2020), we showed that we could predict what target a UAV
would be directed to by using synthetic data generated by a
cognitive model to train a CNN. If the HMM analysis added
value by improving the cognitive model, we should see an
improvement to the predictive capabilities of the CNN: the
cognitive model should capture the patterns in the data better,
allowing better prediction of the specific target selection.

Thus, we trained CNNs using synthetic data from the orig-
inal and revised cognitive models to see whether the revision
resulted in better predictive performance. For each CNN, 10-
fold cross validation was used to divide the empirical data
into training and testing data. All conditions used the same
folds for training and testing, and all models were evalu-
ated on the empirical data. In addition to training CNNs for
the planning and opportunistic strategies, we also trained a
combined strategy CNN that used half of each. As Figure 2
shows, in all cases, the revision improved the predictive per-
formance, showing that not only did our proposed process
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Figure 2: Original model predictive accuracy (bar) and up-
dated model predictive accuracy (red rectangle). The black
horizontal line is chance.

improve HMM-based metrics, but it improved the models’
eventual predictive power as well.

Discussion
In this paper, we have described a new methodology that cog-
nitive modelers can use to develop, analyze and verify cogni-
tive process models. In it, we learn hidden Markov models
from data from empirical experimentation, as well as from
synthetic data generated by candidate cognitive models. By
comparing those HMMs both qualitatively and quantitatively,
we can see the cognitive models’ goodness of fit, as well as
determine concrete ways in which the cognitive model can
be improved. This is different than validating models with
statistical goodness-of-fit measures, which do not offer con-
crete pointers for improving cognitive models. We also show
that this process can lead to increased predictive performance
by the cognitive model. In future work, we plan to expand
this methodology to demonstrate it for models in additional
cognitive architectures and of additional tasks.

Interestingly, this methodology revealed an issue with how
visual-based actions are typically done in cognitive mod-
els; namely, look at, encode, prep to act, then act upon it.
The HMM built for the empirical data suggests a different
paradigm for dynamic tasks: look at, encode, prep to act,
and then possibly look elsewhere before acting. This type
of insight is not possible to glean from summary statistics or
other typical measures of cognitive process models; a graph-
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Figure 3: HMMs of the planning strategy built from different datasets. The numbers of the states indicate the order in which
they were created. The meaning of the states can be derived from the observations they emit, which are shown in the figures.
Bolded observations occur with greater than 20% likelihood; italicized observations occur with less than 10% likelihood.

ical model allowed us to find this approach.
Another key insight is that, perhaps surprisingly, the im-

provements in HMM similarity and in predictive performance
did not mirror one another. For the HMM measure, the oppor-
tunistic model saw the greater improvement after its revision.
Considering predictive performance, the planning model saw
the greater improvement. This is because the different rep-
resentations of the HMM and the CNN lead them to capture
different aspects of the data: the HMM focuses on underly-
ing structure; the CNN focuses on non-linear patterns. This
subtlety only highlights the need for more diverse tools for
cognitive model analysis like the one that is proposed here.
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