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Abstract

Simple laboratory tasks typically allow one or a few methods
of task performance. In contrast, moderately complex tasks,
such as video games, provide many methods of task perfor-
mance which, in essence, provide many ways of completing
the task without necessarily completing all possible compo-
nents. Although performance on complex tasks improves with
practice, the improvements do not represent the simple effects
of power-law learning but, rather, they tend to reflect the dis-
covery and practice of a diverse set of methods. Understanding
what we see during complex task learning, requires us to eval-
uate individual performance against benchmarks of optimality.
In this report, we use the game of Space Fortress (SF) as a com-
plex experimental paradigm in which we demonstrate two al-
ternative measures that reveal scopes of individual differences
in the discovery and implementation of an optimal method that
would be missed by traditional measures of the game.
Keywords: Complex Task Learning; Individual Learning;
Plateaus; Dips; Leaps; PDL; SpotLight

Introduction
General laws which explain human learning as a function
of practice (e.g., the power law or the exponential law) im-
plicitly assume that practice alone is sufficient to reach the
asymptote of performance. Although such assumptions may
be reasonable for simple tasks that afford few alternative
methods, they do not hold for more complex tasks, such as
video games, which afford many alternative methods. A
growing body of work (e.g., Siegler, 1987; Rickard, 1997;
Delaney, Reder, Staszewski, & Ritter, 1998; Towne, Boot,
& Ericsson, 2016; Thompson, McColeman, Blair, & Hen-
rey, 2019; Rahman & Gray, 2020; van der Mijn & van Rijn,
2021) shows that individuals demonstrate both inter- and
intra-individual differences of task execution methods during
learning and also that the practice benefits are largely local-
ized to the specific methods practiced. Indeed, even for seem-
ingly simple video games (e.g., Pacman or Tetris), it may be
difficult to identify the optimal method from amongst its nu-
merous alternative possibilities.

The difficulty in finding the best or even an appropriate
method can be observed in many real-world tasks; for exam-
ple, finding the fastest route in traffic, finding a sure-win for-
mula for Chess or Football, solving mathematical problems,
even choosing the tasks to learn in a lifetime. How do humans
search for and find the optimal method(s) in such tasks? To
reach the asymptote, optimal methods must be discovered or
invented. Therefore, theories of complex task learning must

include an account of how the individuals’ task execution
methods evolve with learning to reach the optimal one(s) at
the asymptote of performance.

Until now, we portrayed the complexity of complex tasks
from a performer’s perspective. But similar difficulties also
persist for the researchers of complex skill learning in decid-
ing where to look for measurable changes and which mea-
sures to use (Gray & Lindstedt, 2017). Looking at the wrong
or imprecise measures can easily lead to false negatives of
learning or training benefits, as underlying improvements
may remain undiscovered (Gray, 2017). Moreover, if the
asymptote(s) of performance and the corresponding optimal
method(s) are both unknown, it is difficult to ensure that in-
crements in performance measures are indeed steps towards
the asymptote. The reason is that individuals may be using
suboptimal methods that would lead to plateaus instead of the
asymptote (Gray, 2017; Rahman & Gray, 2020).

An approach that has been useful in evaluating complex
task performance is comparing performance against bench-
marks of optimality. For example, Anderson, Kleinberg, and
Mullainathan (2017) recently investigated the predictors of
blunders in chess endgames, by comparing each move against
known optimal moves. Relevantly, they found that the players
are more likely to err in positions with fewer optimal or near-
optimal moves within very large pools of possible moves.
This relationship was consistent across all skill levels, even
for the best human players with ELO ratings above 2300. In
cases where optimal performance is not known, expert perfor-
mance may serve as a substitute. For example, van Meeuwen
et al. (2014) compared performance of novice air-traffic con-
trollers against experts’ performance to investigate how effec-
tive strategies are formed in solving complex visual problems
(e.g., finding the optimal landing order for incoming planes).

In this work, we explore the benefits of evaluating indi-
vidual performance against benchmarks of optimality in a
historic experimental paradigm – the complex game of SF
(Mané & Donchin, 1989). Since its development, SF has been
used in many studies of complex skill learning to enrich our
understanding of human learning process. However, several
studies observed that two very important measures of SF –
Velocity and Control – that represent the most fundamental
skill needed in the game (flying in the game universe), are
prone to ceiling effects; consequently, the measures asymp-
tote before humans do (Boot et al., 2010; Destefano, 2010;



Gray, 2017). Here, we use two alternative measures – (1) an-
gular velocity of player ship and (2) approximations of Pi (π)
from ship paths – both tailored to capture progress towards
optimal flight strategy of moving in slow, small circles around
the enemy (i.e., the Fortress). These measures depict a much
clearer picture of individuals’ route to optimality and reveal
scopes of changes in individuals’ performance that would be
missed by the traditional measures of SF.

The Game of Space Fortress
The game of SF was developed by Mané and Donchin (1989)
as a common complex task for different research groups to
study complex skill acquisition. The goal was to create an
experimental task representative of real-world complex tasks
incorporating dimensions of complexity based on existing re-
search. Complexity of SF stems from both the multiplicity
of tasks to be performed and the specificity of the ways they
need to performed. In each game of SF, the player flies a ship
(yellow plane in Figure 1) equipped with a limited number of
missiles to engage in a five-minute battle against the Fortress
(located at the center of the screen). The Fortress needs to be
destroyed in two steps: (1) make it vulnerable by 10 or more
hits (at intervals > 400ms), then (2) a double shot with an in-
terval within 250-400ms to destroy it – any deviation results
in instant recovery of the Fortress. The Fortress fights back
by shooting shells at the ship; in addition, its minions (the
mines, Figure 1) spawn periodically at random locations to
chase the ship. There are two types of mines, each of which
requires identification by letter-codes shown at start screen
and specific handling. The player must also protect the ship
from getting hit by enemies, as four hits would result in ship
destruction. Both the ship and the Fortress respawn upon de-
struction and the battle resumes. Finally, the player needs to
manage the ship’s arsenal. Each game starts with a full ar-

Figure 1: Screenshot of Pygame Space Fortress 4 (Destefano,
2010). The Fortress is at the center; the player’s ship (yellow)
have recently fired a missile (red) at a mine (blue diamond).

senal and the player receives several bonus opportunities to
replenish the arsenal. The player can still shoot missiles with
depleted arsenal, but sacrificing points per missile.

Game-generated Scores as Performance Measures
The objective of the game is to maximize the Total score,
which is the sum of four subscores – Points, Speed, Con-
trol and Velocity – capturing performance in different sub-
tasks. The Points score serves as a measure of several skills
together; such as, skills in fighting the Fortress and the mines,
defending own ship, managing resources. The Speed score
rewards speed of killing mines and penalizes if mines escape.

The rest of the two scores are both measures of ship ma-
neuvering skills. The Control score measures the performers’
control over OS’ spatial location; the player is rewarded at
a higher rate for staying within the large hexagon than out-
side (Figure 1). The Velocity score measures the performers’
control over OS’ velocity; the player is rewarded for flying
the ship within a speed limit and penalized for any violations.
As mentioned previously, these two measures are prone to
ceiling effects and do not consistently reflect improvements
in associated skills. In the next section, we briefly review
findings of optimal/expert flight behavior, before discussing
alternative measures.

Review of Optimal (Flight) Strategies in SF
As mentioned earlier, SF was developed as a common
paradigm to compare different training regimens (Mané &
Donchin, 1989). The original game included only the Points
score. The other three scores were added by Gopher, Weil,
and Siegel (1989) for their Emphasis Change study. In their
experiment, players practiced in the whole task, but were in-
structed to prioritize different parts at different points during
practice. In contrast, Frederiksen and White (1989) adopted a
part-task training approach by discretizing the gameplay into
sub-tasks and trained the players by building up from small
to more integrated subtasks. The purpose was to develop
a better understanding of the dynamics of the SF universe.
The researchers first identified the gameplay variables that
affect task execution methods and the high-level goals of the
game, after verbal protocol analysis of expert players’ meth-
ods; then, decided on an optimal method as the foundation of
a hierarchical training regimen.

Frederiksen and White observed that the optimal methods
in low-level subtasks of Space Fortress are regulated by three
high-level goals: (1) Hit Fortress without getting hit (2) Han-
dle mines with the least possible disruption to the first goal
(3) Allocate resources to maximize the Points score. For the
two first goals, they suggested that players should fly around
the Fortress in circles constructed by a series of pre-planned,
linear trajectories at low speeds, and when a mine appears,
players should wait until mines move to locations which re-
quire minimum deviation from the circles.

Recent works confirm that the flight paths of expert play-
ers indeed converge to circles around the Fortress (Destefano,
2010; Towne et al., 2016; Rahman & Gray, 2020). The need



to construct circles with small lines stems from the constraints
imposed in SF’s input system: a player can either move the
ship along straight lines (using Thrust key) or rotate (using
Rotate key) to change ship direction, but cannot simultane-
ously use both to move at angles. To obtain a circular path
(and to attack the enemies), a player needs to periodically re-
peat a sequence of keypresses throughout the game: Thrust-
Rotate -(Shoot). This way, movement constraints force play-
ers to construct the circles with numerous straight lines. Sim-
ilar constraints also exist for joystick-based input systems.
The need to precisely synchronize actions indicates that even
if a high-level description of the optimal method is known, it
cannot be implemented without understanding the mechanics
of the SF universe and mastering the low-level action compo-
nents. Confirming this view, Rahman and Gray (2020) found
that players demonstrate both inter- and intra-individual dif-
ferences of flight paths during learning, even when explicitly
instructed on the optimal choice of slow circles.

Recent works also fine-tune Frederiksen and White’s sug-
gestions for optimal flight control. For example, Destefano
(2010) observed that although low velocities are optimal for
the Velocity score, players would benefit in defending against
the Fortress by flying the ship faster. The reason is: the
Fortress only fires at the ship if it can locate the ship for more
than 1 second, in one of 36 equally divided segments around
the Fortress (Destefano, 2010, pp. 34, Figure 14). Hence,
by moving at an angular velocity faster than 360/36 = 10 de-
grees/second, a player can prevent the fortress from shooting
at the ship. Therefore, the upper limit of velocity is the speed
limit for Velocity score, whereas the lower limit of velocity is
determined by the minimum angular velocity. In the next sec-
tion, we knit these pieces of information together for a more
precise description of optimal flight control in SF.

Methodology
Dataset used
We use the dataset from Destefano (2010). This dataset is
publicly available (osf.io/v5mzx/) and has been used in
several previous studies (Destefano & Gray, 2016; Gray,
2017; Rahman & Gray, 2020). We chose this dataset as it
contains millisecond-level performance records of nine indi-
viduals over 31 hours of gameplay. Each individual played
8 games in each 1-hr session (one session per day), resulting
in total 248 games per player. As the players needed time to
familiarize themselves with the complex rules of SF, we ex-
clude the data from the first day. Therefore, the final dataset
contains 240 games for each player.

To provide a glimpse of the richness of information,
the dataset contains about 40 game-aggregated measures to
capture performance in different subtasks (e.g., number of
Fortress kills, ship deaths, missiles bought). More impor-
tantly for our work, 9000 datapoints were collected at 30 Hz
frequency from each 5-minute game, documenting each key-
press by the player, each tiny movement by the Fortress or
the mines and many more. The detailed records at the lowest-

level performance mean that a researcher can develop per-
formance measures tailored to answer specific research ques-
tions, at any level of the complex task.

Description of Optimal Flight Performance
To maximize the Control score, a player must fly the ship in
the area between the large and small hexagons; using specifi-
cations of the hexagons, this statement can be written as:

50 < Ship distance from Fortress (in pixels) < 182

To maximize the Velocity score, a player only needs to
maintain linear velocities below a specified limit. But mov-
ing at a fast enough angular velocity in circles would prevent
the Fortress from firing at the ship. Therefore:

limit from ang. vel. < Linear velocity (pixels/sec) < 120
10 < Angular velocity (degrees/sec) < limit from lin. vel.

Measures of Flight Control
To demonstrate the reasons for ceiling effects of Control and
Velocity scores, we examine their main constituents – respec-
tively, distance from the Fortress and ship velocity. As exam-
ples of alternative measures, we demonstrate two measures:
(1) angular velocity of the OS and (2) approximations of π

using Archimedes’ method.
We chose angular velocity because, in circular motions,

the radius of the circle (i.e., the distance from Fortress) and
the linear velocities on the circles follow this mechanistic re-
lation: linear velocity = angular velocity ∗ radius (Beer et
al., 1972). Previously, it has been noted that the Control
and Velocity scores are correlated (Boot et al., 2010; Gray,
2017); the aforementioned relation indicates that this correla-
tion would exist only when the optimal method of moving in
circles is adopted.

Finally, as a measure of goodness of the circles, we use
approximations of π from the individuals’ flight paths us-
ing Archimedes’ method. The method of constructing cir-
cles with many lines, closely resembles Archimedes’ method
of calculating π by approximating circumferences of circles
from perimeters of polygons. In both cases, with increasing
number of sides, the polygons converge to the circles, result-
ing in better approximations of π.

Results and Discussions
Discrepancies between the Stories Revealed by the
Control Score and its Constituents
As mentioned earlier, several previous works noted that the
Control and the Velocity scores asymptote before humans
reach the limit of performance and thereby hide underlying
improvements in low-level constituents of the scores. In Fig-
ure 2, we show the game-averages of the Control score’s
main low-level constituent – ship distance from the Fortress
– which confirms that the players improved in flying close to
the Fortress deep into practice. However, the Control score
would stop showing these improvements beyond the red-
dashed line. The reason is, to max out the score, a player only



Figure 2: Mean distance for all players, almost none of whom
seem to have reached the limit of performance even at the end
of practice.

needs to stay within the large hexagon which corresponds to
the ship distance denoted by the horizontal red-dashed line.
However, as can be observed, players continue to improve
beyond this threshold and gradually approach the minimum
safe distance from the Fortress (green-dashed line).

The asymptote of the Control score is clearly false, but
what about the score’s ability to depict changes in individu-
als’ performance with learning? Figure 3 demonstrates the
Control score (red line) along with the game averages of
the distance from Fortress (blue line), for our best player
(Player 7) alone. Previously, it has been demonstrated that
Player 7 went through a period (games 50-80) of extensive ex-
plorations of optimal flight paths before permanently adopt-
ing the optimal flight paths of circles around the Fortress
(Rahman & Gray, 2020, samples of within-game trajectories
in Figure 3, pp. 981). But the player’s Control score in Fig-
ure 3 shows hardly any signs of these explorations. Rather,
the player seemed to have suddenly leapt from a plateau to
the asymptote. The mean distance (blue line) shows the im-
provement to be much more gradual than the Control score
does, with no obvious plateau in the preceding period.

Although we discuss only the Control score here, the same
discrepancies were also observed for the Velocity score and
its only low-level constituent, ship velocity. To find the rea-
sons behind these discrepancies, we next look at how these
scores are constructed.

Discontinuous Reward Functions⇒
Disproportionate Rewards with Performance
The step functions for rewards in Equations 1 and 2 explain
why we see a stepwise progression of the scores despite con-
tinuous improvement of players in associated low-level per-
formance, as step functions convert continuous input to step-
wise, discontinuous outputs. To elaborate, these two scores
are largely insensitive to any intermediate improvements in
flying skills apart from right at the transition point of the func-
tion. For example, Velocity score rewards would be the same
for flying OS at 10x, 2x and 1.01x of the speed limit, but dif-

Figure 3: Control score vs its main constituent (mean distance
from Fortress) for Player 7.

ferent at 0.99x. The situation is analogous to having a digital
watch showing only the hours of time; as the changes of min-
utes or seconds would not be observable, progression of time
would seem to follow a step function to uninformed eyes.

Control score reward=

{
+6 per second; Inside large hexagon
+3 per second; Out of large hexagon

(1)

Velocity score reward=

{
+7 per second; within speed limit
−7 per second; above speed limit

(2)
In summary, the disproportionate relation between reward

and performance level leads to (i) the asymptotes of the game-
generated scores not being equal to the asymptotes of players
skills, and may lead to (ii) false plateaus in individual perfor-
mance hiding underlying improvement and (iii) false leaps by
rewarding long-term improvement in one burst.

Exploiting Knowledge of Optimal Methods to
Capture Progress towards Optimality
Spurious plateaus and asymptotes are likely to lead re-
searchers to false conclusions about learning patterns and
training effects, especially when the performance records are
not as detailed as ours and are studied only at a high level.
Therefore, the step-wise reward functions of the Control and
the Velocity scores should be replaced with more continu-
ous functions to develop measures sensitive to fine-grained
changes in performance. One option is to adopt a reductionist
view and deconstruct elements of performance to investigate
progress towards optimality in each element. However, as all
subtasks within a whole complex task are not independent,
the true asymptote of performance in the whole task would
inevitably be lower than the one estimated from parts. A more
practical approach is to use the knowledge of optimal meth-
ods from previous works to identify or develop measures that
would unambiguously reflect progress towards optimality.

For example, as for flight paths in SF, we know that the op-
timal method is to move in circles around the Fortress. To
investigate progress towards this optimal method, we may



Figure 4: Instantaneous angular velocity (positive in the
clockwise direction) in three sample games for Player 7

simply investigate how these circles improve with learning.
The circles are implemented by controlling the ship’s angular
velocity, which we use as our first measure. Next, to inves-
tigate the goodness of end results (i.e., the circles), we use
approximations of π from ship’s paths.

Angular Velocity: The Velocity score aims to capture
players’ control over the ship based on its linear velocity (i.e.,
the rate of change of linear position) of OS; but for circular
motions, angular velocity (i.e., the rate of change of angular
position) is a more appropriate determinant of control. To
create a perfect circle, the player needs to maintain a constant
angular velocity throughout. This requirement, due to the in-
put constraints of SF, needs to be approximated by consis-
tently oscillating about steady reference values. In addition,
the Fortress can be prevented from shooting by maintaining
an angular velocity greater than 10 degrees/second within the
circles. Therefore, instantaneous angular velocity provides an
excellent measure to investigate within-game flight control.

Figure 4 shows the instantaneous angular velocities in three
example games (at 100-game intervals) played by Player 7.
As can be seen, from as early as the 20th game (shown in red),
the player demonstrates remarkable consistency in maintain-
ing a wave-like angular velocity about steady reference val-
ues. In the 120th game (blue), the player shows marked im-
provements in controlling the angular velocity and in staying
away from the Fortress’ firing range (marked in figure 4), and
then shows comparatively smaller improvements in the 220th

game (green). As mentioned earlier, Player 7 extensively ex-
plored and practiced different flight paths within games 50-80
before permanently adopting the circles, providing a specific
explanation for the diminished returns from practice. Finally,
based on the patterns observed in angular velocity, we can
safely conclude that the player indeed progressed towards op-
timal flight performance with practice.

Approximations of π using Archimedes’ Method:
Archimedes had observed that, with increasing number of

Figure 5: Approximations of π using Archimedes’ method,
for our best player (Player 7) and the worst (Player 2).

sides (n), regular n-sided polygons become increasingly bet-
ter approximations of circles. This simple observation led
him to develop one of the earliest methods to calculate π

as the ratio between the perimeter of the n-polygon and its
largest diagonal. Although the flight paths taken by our play-
ers are not regular polygons, this ratio can still be used to
approximate π for each full circle around the Fortress.

Figure 5 demonstrates the game averages of these π values
for two players: Players 7 and 2, respectively the best and
the worst performing players according to the Total scores
achieved in the last 50 games. As mentioned earlier, Player 7
experimented with different flight paths (e.g., moving along
lines or half-circles) within games 50-80. The impact of these
experimentations are clearly observable, as either π could not
be calculated (13 games) or were very inaccurate during this
period. To facilitate comparison between the players, we limit
the y-axis to show only values below 10, which occludes 11
games for Player 7 and one for Player 2.

Although these players demonstrate opposing trends early
in practice, both players can be observed to be approaching
the asymptote (i.e, the true value of π), yielding increasingly
better approximations of π with more practice. To illustrate
the level of accuracy reached at the end of practice, average
π in the last 50 games is 3.3 (SD = 0.09) for Player 2 and 3.4
(SD = 0.14) for Player 7.

To note, the approximations of π from each circle around
the Fortress can also be used as a within-game measure of
performance in maintaining the circles. We skip this demon-
stration due to space constraints, but the within-game approx-
imations fluctuate a lot more than the game-averages do, in-
dicating substantial detours from the circles. Therefore, even
though the game-averages suggest that the players are ap-
proaching the asymptote of performance, ample room for im-
provement may still remain.



Conclusions
In this work, we highlight the need to evaluate individual per-
formance in complex tasks against benchmarks of optimality.
Individuals demonstrate ample differences of task execution
methods in complex tasks, therefore, looking in the wrong
scopes of improvement may lead to false negatives regard-
ing individuals’ training or practice benefits. In such cases,
measures tailored to capture performance within scopes of
optimality, provides a commonground to compare different
individuals and search for general patterns underneath the in-
dividual differences.

For our demonstrations, we use the complex game of SF
and investigate individuals’ acquisition of one fundamental
skill – flying the ship – using two measures tailored to cap-
ture progress towards the optimal flight strategy. We chose
angular velocity as our first measure, as the optimal path of
circles needs to be implemented by controlling the angular
velocity. Second, we use approximations of π as a measure
of goodness of the circles created.

These measures – directed to capture performance within
scopes of optimality – are able to reveal scopes of consis-
tency and changes in individuals’ performance that would be
missed by undirected measures. For example, our results in-
dicate that the individuals did realize that the circular paths
need to be achieved by maintaining a consistent (optimally,
constant) angular velocity and improved in doing so with
practice. Excellent approximations of π towards the end of
practice show that these players attained near-asymptotic skill
levels in executing the optimal flight strategy. Importantly, as
the asymptotes are known for both measures (i.e., constant
angular velocity and the true value of π), improvements in
these measures can be unambiguously interpreted as progress
towards optimal performance. The known asymptotes also al-
low us to reliably investigate within-game performance of in-
dividuals with the same measures and identify both the scopes
of current expertise and for further improvements.

Although our demonstrations are in one game only, the
game of SF represents real-world complex tasks that present
performers with the general difficulty to identify optimal
methods among many alternatives. Evaluating performance
against benchmarks of optimality would help us find gen-
eral explanations for how individuals’ different routes con-
verge towards the same optimal methods and when do they
diverge towards plateaus of stable, suboptimal performance.
This way, by helping to uncover the evolution of individuals’
task execution methods, precise measurement and evaluation
of individuals’ performance can help us progress towards the
general laws of individual learning.
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