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Abstract
The Common Model of Cognition (CMC) has been
proposed as a high level framework through which
functional neuroimaging data can be predicted and
interpreted. Previous work has found the CMC is capable
of predicting brain activity across a variety of tasks, but it
has not been tested on resting state data. This paper adapts
a previously used method for comparing theoretical
models of brain structure, Dynamic Causal Modeling
(DCM), for the task-free environment of resting state, and
compares the CMC against six alternate architectural
frameworks. For a large sample of subjects from the
Human Connectome Project (HCP), the CMC provides the
best account of resting state brain activity, suggesting the
presence of a general purpose structure of connections in
the brain that drives activity when at rest and when
performing directed task behavior.
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Introduction
Despite a shared goal of understanding the underlying
mechanisms of the brain, research that focuses on
high-level structural models of cognition remains largely
isolated from efforts to interpret direct measurements of
brain activity. Many neuroscientists are reluctant to rely
on the results and conclusions from cognitive
architectures because, while the behavior of the models
often closely matches observed human data, the
mechanisms driving that behavior are rooted in the
principles of computer science and information theory.
Efforts have been made to connect components of
cognitive architectures to corresponding brain regions,
but direct biological brain functions are rarely well
captured by the more conceptual architecture modules,
and architectures often make incompatible assumptions
about the basic functional components that are needed to
support cognition.

The Common Model of Cognition
One successful attempt to achieve consensus is
represented by the so-called Common Model of
Cognition (CMC; Laird et al., 2017). The CMC is a
computational framework that can serve as a blueprint to
understand the organization of a human-like mind.

Abstract computations are categorized into five
functional components (long-term memory, working
memory, procedural memory, perception systems, and
action systems) with specific directional relationships
(Fig. 1A) between them.

Although it was not proposed specifically as a brain
architecture, a number of studies have found that the
CMC is surprisingly effective at modeling brain activity
across tasks and individuals (Steine-Hanson et al., 2018;
Stocco et al., 2018, 2021). In this interpretation, the
CMC’s functional components are mapped onto
large-scale brain regions (Fig. 1B) and their relations are
translated into predicted patterns of functional
connectivity. In other words, the neural counterparts of
the functional components and their connections serve as
a simplified architecture for the human brain, not only the
human mind.

Resting State Brain Activity
A secondary problem with cognitive architecture models
is their focus on the brain at work. Virtually all mappings
between cognitive architectures and brain activity have
been carried out based on neural responses to specific
tasks (Anderson et al., 2008; Eliasmith et al., 2012). This
bias was inherited from the brain imaging analyses
carried out to test the CMC, which, so far, have similarly
focused on task-based activity.

In contrast, while many analyses of fMRI data compare
differences in activity while subjects perform a variety of
tasks, a lot of recent work has instead focused on the
connectivity of the brain at rest. This line of research was
spawned by the observation that even spontaneous brain
activity shows a high degree of structure (Fox et al.,
2005; Sherzhad et al., 2008), which is revealed in terms
of correlations between the time courses of the activity of
different brain regions. These patterns of correlations are
fairly stable across individuals (Gratton et al., 2018) , to
the point that variations in the patterns of correlations
can be used to reliably predict abnormal neurological
conditions (Hohenfeld, Werner, & Reetz, 2018) and can
even be used to successfully predict the patterns of brain
activity during tasks (Cole et al., 2016; Yeo et al., 2011).
These findings suggest the possibility of an underlying
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structure to the brain that can be adapted to tasks as
needed, but is still present even when resting.

This paper extends the work of Stocco et al. (2021) by
testing the Common Model of Cognition on brain activity
at rest using a pre-defined network of brain regions.
Specifically, this paper adapts the framework of Dynamic
Causal Modeling (DCM) and compares the Common
Model of Cognition (CMC), against six other exemplar
network structures that could capture the underlying
structure of the mind.

Dynamic Causal Modeling
The DCM framework aims to identify the causal
influences of neuronal systems by quantifying the
dynamic fluctuations in brain activity (Friston et al.,
2003).

dy/dt = Ay + Cx (1)

In this equation, hemodynamic brain activity,
represented by vector y, is multiplied by matrix A, which
contains a set of parameters constituting a proposed
structure of connectivity between regions. Thus, the
structure of matrix A can be adapted to test alternative
connectivity architectures. C is a matrix of the
parameters that specify how external or driving inputs
elicit changes in brain activity, and x defines the matrix
of task inputs. Since there are not any external inputs
driving activity in the resting state data, the C matrix was
adapted to model low frequency fluctuations seen in this
state using deterministic inputs as task conditions (see
Materials and Methods, below).

Alternate Model Architectures
As pointed out in Stocco et al. (2021), DCM is a strictly
top-down, theory-driven method, and cannot be used to
infer an architecture from the data. Instead, to evaluate
the CMC as an architecture, its predictions were
compared against a collection of alternative networks that
consist of the same components, but different connection
patterns (Stocco et al., 2021). These alternate models are
not exact implementations of other cognitive architecture
systems, like ACT-R or SPAUN, but instead represent the
space of possible theoretical neural architectures.

The alternate architectures fall into two broad
categories, or families. In the “Hub-and-Spoke” family
(Fig. 1C), a single ROI is designated as the central
“Hub”, and is bidirectionally connected to all other ROIs.
However, none of the “Spoke” ROIs are connected to any
other - all activity must travel through the “Hub”. Three
different Hub-and-Spoke models are considered, based
on whether the role of the hub is played by the Prefrontal
Cortex, mapped to Working Memory (as proposed by
Cole at al., 2012), the basal ganglia, mapped to
Procedural Memory (as proposed by Anderson, 2007), or
the temporal lobe, mapped to Long Term Memory (as
proposed by Visser et al., 2012).

The “Hierarchical” family of models proposes an
alternate structure, wherein brain connectivity
implements hierarchical levels of processing that initiate
with Perception and culminate with Action (Fig. 1D).
Networks in this family conceptualize the brain as a
feedforward neural network model in which different
regions perform progressively greater levels of
representational abstraction (Huntenburg et al., 2018).
Three different hierarchical architectures are generated
based on the relative position of the basal ganglia
(mapped to Procedural Memory) in the hierarchy.
Specifically, the basal ganglia can be placed between
perception and long-term memory (as in models of
procedural categorization: Kotz et al., 2009; Seger et al.,
2008), between long-term memory and working memory
(as in models of memory retrieval: Scimeca & Badre,
2012), or between working memory and action (as in
models of action selection: Houk et al., 2007).

Broadly speaking, the CMC can be considered as a
“Hub-and-Spoke” structure, using Working Memory
(mapped to the Prefrontal Cortex) as the “Hub” ROI,
with an additional direct connection between Perception
and Action.

Figure 1: (A) The Common Model of Cognition (CMC);
(B) Proposed associations between components and
anatomical brain regions. (C) Three variations of
Hub-and-Spoke (HUB) models, and of (D) Hierarchical
(HIER) models. Arrows: dark blue, connections present
in both CMC and candidate models; red, connections
unique to candidate models; and dotted, connections
present in CMC and absent in candidate models.

Materials and Methods

The Human Connectome Project Dataset
The data used in this analysis was drawn from the Human
Connectome Project (HCP), a large scale effort to collect
neuroimaging data from healthy young adults. This study



in particular analyzed a subset (N=168) of rsfMRI data
exclusively. For each subject, 14 minutes of rest data
(eyes open with fixation) were recorded prior to a run of
task data collection. A second rest run was recorded after
the task battery, and was not included in this analysis.
Between the two collection days, each subject had a total
of 28 minutes of data. Each day’s data was modeled
separately, and then combined in the final analysis.

Data Processing and Analysis
Image Acquisition and Preprocessing. MRI images
were acquired and minimally preprocessed according to
HCP guidelines (Barch et al., 2013; Van Essen et al.,
2013). Scans were taken on a 3T Siemens Skyra using a
32-channel head coil with acquisition parameters set at
TR = 720 ms, TE = 33.1 ms, FA = 52°, FOV = 208 × 180
mm. Each image contained 72 2.0mm oblique slices with
an in-plane 2.0 x 2.0 mm resolution. Images were
acquired with a multi-band acceleration factor of 8X.
These raw images then underwent minimal preprocessing
including unwarping, motion realignment, and
normalization to the standard MNI template. From there,
the images were then smoothed with an isotropic 8.0 mm
full-width half maximum Gaussian kernel.
Simulated Task Events Both general linear modeling
(GLM) and DCM analysis require a design matrix that
specifies the timing of external events that drive brain
activity. Traditionally, these events are task related; the
onset or absence of some stimuli. Rest data, by contrast,
is collected without any specific task structure, and the
recorded activity must be driven by internal and
unobservable patterns. Following Di and Biswal’s
method (2014), a series of slow oscillatory waves of
different frequencies were created as input “events” that
simulate background brain activity (Fig. 2A).
Specifically, eight different driving waves were generated
as sine and cosine waves with frequencies of 0.01, 0.02,
0.04, and 0.08 Hz, respectively. The frequencies of these
oscillations capture the canonical frequency range (0.1 -
0.01 Hz) of spontaneous fluctuations in brain activity
(Fox et al., 2005). An event is considered to be occurring
during the positive cycle of the wave. A second
assumption concerns how different events affect the
different regions. In task-based DCM analysis, it is
possible to make reasonable assumptions about which
regions are affected by which events, such as the
presentation of visual stimuli affecting a perceptual
region. Di and Biswal (2014) explored a subset of
possible regressor-by-region combinations to determine
the most appropriate. Here, we followed the procedure of
Ketola et al (2020) and let each region be potentially
affected by each oscillatory regressor (Fig. 2B). Note
that, while being the most general approach, this method
goes against our hypotheses that spontaneous brain
activity would follow a structured architecture, as it gives
every region the greatest opportunity to have its time

series modeled by external inputs rather than by the
network effects of other regions.

Figure 2: (A) Oscillatory waves (dotted lines) translated
into “box-car” plots of events (solid lines). (B) Each
event used as drivers for activity in all ROIs.

GLM. A GLM analysis was carried out to define the
event matrix x that is used in the DCM equation (Eq. 1).
In task based DCM, events were differentiated by type
and served as input to specific regions of interest. Since
the resting state does not have any tasks, and the
artificial events were used to capture background activity
patterns, all “events” were used as direct inputs to all
regions of interest (Fig. 2).
Regions of Interest Definition. Previous DCM analyses
relied on task-based activity to define specific regions for
each model component, but in the absence of a task
structure for rest data, an alternate method was needed to
determine regions of expected activity. Initial region
masks were created using NeuroSynth
(www.neurosynth.org), a platform that combines the
results of thousands of published fMRI results and
produces meta-analysis images of activity associated with
various higher level conceptual category terms. For each
of the five model components of the CMC model, a
corresponding term was chosen from NeuroSynth’s
database, and a summary statistical mask was produced
for each term, with each voxel having an associated Z
value representing the probability that the voxel would
show up a study associated with the term. These
individual masks, however, were large and produced
significant overlap when combined, meaning that activity
in a particular voxel could belong to more than one
region. To solve this problem, two thresholds were
applied to the original masks, one height threshold
applied to each individual voxel statistic and a minimal
extent threshold applied to each cluster size. Both
thresholds were calculated proportionally for each
region, i.e. as a proportion of the highest Z-score and of
the largest cluster within an image, respectively. The
proportional adjustment was done to prevent regions
with large clusters and high statistics, like perception,
from overtaking regions with comparatively low Z score
levels, like procedural memory. The Nelder-Mead (1965)
optimization algorithm was then applied to find
thresholds in the two-parameter space that would produce
the largest possible regions without any overlapping
voxels. The final values identified by the Nelder-Mead



algorithm were a proportional height threshold of 0.5359,
and a proportional extent threshold of 0.4164. The final
masks are shown in Figure 3.

Figure 3: Final regions of interest derived from
Neurosynth activity masks. Individual ROIs were
selected from most active voxels within these areas for
each subject.

Model Fitting. Once the time-series for each ROI was
extracted, different networks were created by connecting
all of the individually-defined ROIs according to the
specifications of each model (Fig. 1). The predicted
neural activity for each model was then calculated using
Equation 1, and the predicted time course of BOLD
signal was then generated by applying a
biologically-plausible model of neurovascular coupling
to the simulated neural activity of each region. All of the
model parameters were estimated through an
expectation-maximization procedure (Friston et al., 2003)
to reduce the difference between the predicted and
observed time course of the BOLD signal in each ROI.
Model Comparison. The models were compared on the
basis of their likelihood function L(m | x). A model’s
likelihood is the probability of it producing the observed
data x; that is, L(m | x) = P(x | m). Group-level likelihood
values for a model m can then be expressed as the
product of the likelihood of that model fitting each
participant p, i.e., ∏pL(m | xp) . The log-likelihood is the
sum of all of the individual log-likelihoods: ∑p log L(m |
xp). Although more sophisticated model comparison
procedures have been proposed (e.g., Stephan et al.,
2009), the log-likelihood based metric used here is not
only the most easily interpretable, but also the most
relevant, as it specifically applies to cases in which it is
assumed that the model is constant or architectural across
individuals (Kasess et al., 2010).

Results

Regressor Quality Analysis
We first conducted a GLM analysis to ensure that our
oscillatory regressors successfully captured brain activity.
To do so, we calculated an omnibus ANOVA across all
oscillatory regressors at the participant level. This test
captures any variance that can be accounted for by any of
the oscillatory regressors. The resulting F-statistic map
was then log-transformed, yielding a measure of the

difference between the variance explained by regressors
and the residual variance (i.e., noise). Finally, a
group-level T-test was performed on the
individual-specific log-transformed F-maps. The result of
this analysis is a statistical test of whether the variance
captured by the regressors was significantly greater than
the variance of the residuals. The results are shown in
Figure 4, thresholded at a value of t(160) > 5.212, which
corresponds to p < 0.05 when corrected for multiple
comparisons through the Family Wise Error correction
procedure.

As Figure 4 shows, most of the grey matter voxels
exhibit oscillatory activity that was captured by our
regressors. Importantly, the significant voxels encompass
regions in all of our predefined ROIs, including the
medial temporal lobes (long-term memory ROI in Figure
3, visible in the coronal section of Figure 4) and the
subcortical basal ganglia (procedural memory ROI in
Figure 3, visible in the axial and sagittal sections of
Figure 4), which are notoriously affected by lower
signal-to-noise ratios in high-density neuroimaging
protocols.

Figure 4: T-test showing voxels whose brain activity was
significantly captured by the oscillatory regressors.

Comparison of Architectures
Each subject had two sessions of rsfMRI data, collected
on two separate days. Each session was modeled
individually, and then both sessions were combined on a
subject level for the comparison analysis. Figure 5
illustrates the group-level log-likelihoods of the models
in the rest condition. The figure presents relative
log-likelihoods: the lowest log-likelihood is subtracted
from all the others. As a result, the worst-fitting model
always has a relative log-likelihood value of zero, with
the best fitting model having the highest positive value.

Across both sessions, the CMC provides the best
account of resting state brain activity, when compared
against each of the six alternate structures. Because
log-likelihood is not sensitive to model complexity, it is
common to compute log likelihood in some penalized
form. For example, the common Akaike Information
Criterion (AIC) and Bayesian Information Criterion
(BIC) penalize likelihood by the number of parameters.
Both measures assume, however, that parameter values
are independently distributed, which is not the case for
DCM models (for example, connectivity values for the
same node tend to be correlated). For this reason, it is
common to use a different, penalized form of likelihood
known as Free Energy (Penny et al., 2012), which



accounts for non-independent parameters. The values
reported in Figure 5 depict this penalized form of
likelihood, and thus already account for varying model
complexity.

Figure 5: The log-likelihood of the CMC architecture
compared to six alternate architectures across both
sessions of rsfMRI data.

Analysis of Bayes Factors
Although the evidence in favor of the CMC is apparent,
one might wonder exactly how significant the difference
in log-likelihood is. To express log-likelihood in an
interpretable form, we will use Bayes Factors (BF). The
BF1,2 between two models m1 and m2 is defined as:

BF1,2 = P(m1 | x) / P(m2 | x)

In other words, the value of BF1,2 represents the odds of
model 1 fitting the data better than model 2. Given the
definition of likelihood as L(m|x) = P(x|m), BF1,2 can be
expressed as

BF1,2 = eΔL

where ΔL = log L(m1 | x) - log L(m2 | x) is the difference
in log-likelihoods between model 1 and model 2. As a
guideline, Kass and Raftery (1995) suggest that values of
BF > 20 correspond to a value of p < .05 in a canonical
null-hypothesis test and provide “strong” evidence in
favor of model 1 over model 2, while values of BF > 150
provide “very strong” evidence. All of the BF values for
the comparisons of the CMC against all the other models
exceeded 10250, indicating that the evidence in favor of
the CMC is, in fact, overwhelming.

Random-Effects Analysis
Although the results provide strong evidence in favor of
the CMC, it should be noted that they are not directly

comparable with the model comparison approach
reported by Stocco et al. (2021). In the original paper, the
authors compared the different architectures by
measuring the relative probabilities that each architecture
would fit any given participant (Stephan et al., 2009).
This approach is conceptually different from the
log-likelihood approach because it is based on relative,
rather than absolute, fit to the data and because
participants are considered as a random factor, thus
giving different architectures the opportunity to fit
different subgroups of participants.

To provide a better comparison to the original
findings, we replicate the analysis method of Stocco et al.
(2021) with the current resting-state data. The results are
reported in Figure 6. In the figure, the curves represent
the densities of the relative probabilities that each
architecture would fit a participant. The superiority of the
CMC is shown by the fact that its probability density
function lies to the right of all other architectures.
Architectures can be quantitatively compared in terms of
exceedance probabilities, i.e. the probability that a point
randomly sampled from their density distributions would
have a higher probability than any other architectures. In
this case, the Common Model had an exceedance
probability of 96.4%, further confirming its superiority.

Figure 6. Probability densities that each architecture
would best fit the data from a participant in our sample.

Discussion
The major finding of this paper is the apparent presence
of an underlying structure of brain connectivity that
predicts activity even during undirected and task free
behavior. The implications of these results are broad.

First, they demonstrate the success in adapting a
traditional DCM analysis to resting state through the use
of simulated task events and externally generated ROIs,
paving the way for future explorations of resting state
data. In particular, the use of summarized fMRI data to
determine ROIs presents the opportunity to explore
increasingly complex model structures involving more
specific brain areas. While the CMC provides the best



account of underlying connectivity, it remains only the
best model of those that we have tested so far, and is
deliberately composed of a few, high level components.
The use of more localized ROIs opens the door to
examining each component in greater detail; separating
visual perception from auditory perception, for example,
or decomposing the long term memory component into
semantic and episodic memory. The DCM framework
also allows models to account for modulatory
connections between regions, which, while not used in
this paper, provide further opportunities to define and
specify a general purpose framework of cognition.

While specific ROIs will always differ slightly across
subjects and tasks, the localized ROIs used in the present
study represent a much smaller search space than the
broad parcellation used to define ROIs in the original
CMC study. The data from the original study should be
reanalyzed using the more specific maps to ensure that
the findings still hold, with the ultimate aim of defining
more exact regions that can be used in future analyses.

The goal behind this study was to test large-scale
architectures in a task-free paradigm, using only signals
originating from spontaneous neural activity that would
capture the intrinsic organization of the brain (Fox et al.,
2005). Although this procedure has become the accepted
standard in neuroimaging research, the extent to which
resting state activity is truly spontaneous remains
debated: even at rest, participants do typically engage in
some form of thought, such as daydreaming or mind
wandering. A recent computational model of mind
wandering (Taatgen et al., 2021), for instance, argues
that mind-wandering is generated by the occasional
intrusion of task-unrelated goals and that, when activated,
it triggers a cascade of mental processes, such as memory
retrieval, that are similar to those required by canonical
tasks. The fact that the same architecture that was found
to best capture brain activity across multiple cognitive
tasks (Stocco et al., 2021) also explains brain activity at
rest supports the assumptions of this model and the idea
that spontaneous thought follows the same patterns as
task-directed thought.

The implications of a general framework for cognition
that remains persistent in the resting state will
significantly increase its applicability to other domains,
such as computational psychiatry and neurology.
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