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Abstract

In dynamic decision tasks, the situations we confront are never
the same: the world is constantly changing. Generally, our
ability to generalize learned skills depends on the similarity be-
tween the learned skills and the situations in which we will ap-
ply those skills. However, in dynamic tasks, the situations we
are trained in will most likely be different from the situations
in which we need to apply skills. For example, in the face of
emergencies, one could be trained to handle hypothetical disas-
ter scenarios, but remain unprepared for the emergency that is
actually experienced. This raises an important question: how
can we best prepare for the unexpected? Cognitive science
research suggests that heterogeneity during training helps peo-
ple adaptat to unexpected situations. However, evidence for
a general diversity hypothesis is limited. In this research, we
investigate this Diversity Hypothesis using a cognitive model
of learning and decisions from experience based on Instance-
Based Learning (IBL) Theory. We focus on the concept of
decision complexity to investigate whether confronting deci-
sions of diverse complexities results in improved adaptation to
unexpected decision complexities, compared to situations of
constant decision complexity. We conduct a simulation exper-
iment using an IBL model in a Gridworld task, and expose
agents to various degrees of diversity as they learn; we then
observe how these agents transfer their acquired knowledge to
a situation of novel decision complexity. Our results support
the Diversity Hypothesis and the benefits of diversity on adap-
tation.
Keywords: transfer of learning; diversity hypothesis;
instance-based learning; adaptation; gridworld tasks

Introduction
Most decisions we make in life are dynamic: we evaluate
potential alternatives sequentially, determine the values of
the options as they develop over time, and select our op-
tions in the presence of environmental uncertainties and time
constraints (Gonzalez, Lerch, & Lebiere, 2003; Gonzalez,
Fakhari, & Busemeyer, 2017). Unfortunately, most research
on decision making today involves static situations: decisions
are often studied in one-shot choice environments, with no

time constraints or high workload and where most informa-
tion is provided to the decision maker (Gonzalez et al., 2003;
Gonzalez, 2013). Notably, research on heuristics and biases
has dominated behavioral decision research. For example,
while demonstrating the explanatory power of Prospect The-
ory, one of the best known theories of risk, researchers often
use monetary gambles (i.e., “prospects”) that explicitly state
outcomes and associated probabilities. People are presented
with a description of the alternatives and are asked to make a
choice based on the conditions described (Tversky & Kahne-
man, 1974).

In dynamic situations, decision making is considered as
a learning process, in which individuals must rely on their
experience to make decisions (Gonzalez et al., 2003). Im-
portantly, by definition, dynamic situations are unique and
constantly evolving. Thus, in dynamic situations, a decision
maker never confronts the same exact decision situation more
than once—“you cannot step twice into the same stream”
(Burnet, 1930). An important research question is therefore:
how can decision makers prepare for unexpected and novel
situations? This question has been addressed in the learning,
skill acquisition, and transfer of skills literatures. For exam-
ple, it is clear that decision makers can successfully transfer
learning when the skills learned during training can be rein-
stated at transfer, or more generally, when transfer situations
share some similarity of the procedures and skills learned dur-
ing training (Healy, Wohldmann, Parker, & Bourne, 2005;
Healy, Wohldmann, Sutton, & Bourne Jr, 2006). While these
conditions might be possible in less dynamic situations, they
might be more difficult to meet in dynamic conditions of
choice.

Schmidt and Bjork (1992) argued that what works best
for improving performance during training will not necessar-
ily work well in new conditions of transfer; they suggested



that diverse training might be beneficial. This idea has been
tested in some studies in which diverse training appears to
be particularly important for adaptation to unexpected situa-
tions (Brunstein & Gonzalez, 2011; Gonzalez & Madhavan,
2011). For example, Brunstein and Gonzalez (2011) studied
effects of diverse training in a luggage screening task. They
prepared targets of various categories (e.g., knifes, guns, etc.)
and tested conditions in which people were trained in only
one category of objects (e.g., guns) or in diverse categories
(e.g., guns, knives, etc.). They observed that those individuals
who were trained with diverse categories were able to classify
novel items as potentially dangerous in a transfer condition,
while those trained with consistent categories of weapons ex-
hibited poor adaptation. Their conclusions suggest a general
Diversity Hypothesis: Acquiring diverse experiences during
learning will result in better adaptation to unexpected situa-
tions.

Here, we test the Diversity Hypothesis and investigate the
adaptation to novel levels of decision complexity. Decision
complexity is defined as in Nguyen and Gonzalez (2020): the
trade-off between low-cost, low-value and high-cost, high-
value alternatives. When we make decisions, we often have to
handle such cost-benefit trade-offs to determine what actions
to take. To test this idea, we rely on a Gridworld task devel-
oped by Nguyen and Gonzalez (2020), where agents perform
a goal-seeking task under uncertainty by navigating a grid. In
this situation, we test how the diversity of experienced lev-
els of decision complexity during learning affects adaptation
to unexpected levels of decision complexity. This is carried
out using a cognitive model based on Instance-Based Learn-
ing Theory (IBLT; Gonzalez et al. (2003)), and we discuss the
resulting predictions for human adaptation to novel decision
situations.

Instance-Based Learning Theory
IBLT is a theory of decisions from experience, derived from
the mechanisms proposed in the ACT-R cognitive architec-
ture (Anderson & Lebiere, 1998), developed to explain hu-
man learning in dynamic decision environments (Gonzalez et
al., 2003). IBLT provides a decision making algorithm and
a set of cognitive mechanisms that can be used to implement
computational models of human decision making and learn-
ing processes. The algorithm involves the recognition and re-
trieval of past experiences (i.e., instances) according to their
relevancy to a current decision situation, the generation of ex-
pected utility of the various decision alternatives, and a choice
rule that generalizes from experience. An “instance” in IBLT
is a memory unit that results from the potential alternatives
evaluated. These are memory representations consisting of
three elements: a situation (a set of attributes that give a con-
text to the decision, or state S); a decision (the action taken
corresponding to an alternative in state S, or action A); and a
utility (expected utility or experienced outcome x of the ac-
tion taken in a state).

An option k = (S,A) is defined by taking action A in state

S. At time t, assume that there are nk,t different generated in-
stances (k,xi,k,t) for i= 1, ...,nk,t , corresponding to selecting k
and achieving outcome xi,k,t . Each instance i in memory has
an Activation value, which represents how readily available
that information is in memory, and it is determined by similar-
ity to past situations, recency, frequency, and noise (Anderson
& Lebiere, 2014).

Here we consider a simplified version of the Activation
equation which only captures how recently and frequently in-
stances are activated:

Acti,k,t = ln

(
∑

t ′∈Ti,k,t

(t− t ′)−d

)
+σ ln 1−ξi,k,t

ξi,k,t
(1)

where d and σ are the decay and noise parameters, respec-
tively, and Ti,k,t ⊂{0, ..., t−1} is the set of the previous times-
tamps in which the instance i was observed. The rightmost
term represents the Gaussian noise for capturing individual
variation in activation, and ξi,k,t is a random number drawn
from a uniform distribution U(0,1) at each time step and for
each instance and option.

The probability of retrieving an instance i from memory is
a function of its activation Acti,k,t relative to the activation of
all instances:

pi,k,t =
exp(

Acti,k,t
τ

)

∑
nk,t
j=1 exp(

Act j,k,t
τ

)
(2)

where τ is the Boltzmann constant (i.e., the “temperature”) in
the Boltzmann distribution. For simplicity, τ is often defined
as a function of the same σ used in the activation equation
τ = σ

√
2. Importantly, the noise and temperature values add

stochasticity to the model, ensuring that action selection is
non-deterministic. The nature of the model allows for ex-
ploration of the option space to reduce over time, and to treat
the “explore-exploit tradeoff” without hard coded exploration
(e.g., as in ε-greedy reinforcement learning methods (Sutton
& Barto, 2018)).

The expected utility of option k is calculated based on
a mechanism called blending (Lebiere, 1999), using the
past experienced outcomes stored in each instance. Here
we employ the blending calculation as defined for choice
tasks (Gonzalez & Dutt, 2011; Lejarraga, Dutt, & Gonzalez,
2012):

Vk,t = ∑
nk,t
i=1 pi,k,txi,k,t . (3)

The blending operation (Eq. 3) is the sum of all past expe-
rienced outcomes weighted by their probability of retrieval.
The choice rule is to select the option that maximizes the
blended value.

Experiment: Knowledge Transfer Across
Decision Complexities

Gridworld Goal-Seeking Task
We use the goal-seeking Gridworld environments developed
by Nguyen and Gonzalez (2020), implemented in the OpenAI



Gym framework (Brockman et al., 2016). The goal-seeking
task is formalized as a Markov Decision Process (MDP),
which consists of a set of states S , a set of actions A and a re-
ward function R : S →R. We consider a solution to a MDP
to be a policy π : S → A . In the goal-seeking task at hand,
each state S ∈ S is a (row, column) coordinate in an 11× 11
grid. At each time step l ∈ {1, ...,T}, an agent first observes
the current state Sl , takes action Al ∈ A corresponding to one
of four cardinal directions in the grid, then transitions to Sl+1
and receives reward Rl .

In the task at hand, an agent must learn to navigate a grid
environment to find one of the four outcome goals. The val-
ues of the goals are drawn from a Dirichlet distribution such
that one goal, which we refer to as the preferred goal, is val-
ued higher than the rest of the goals—the distractor goals.
Interactions with the environment are broken into episodes.
Each episode is a set of at most 31 steps, and we denote a tra-
jectory T = {(Sl ,Al)}T

l=1 to be the sequence of state-action
pairs in an episode, with T ≤ 31 being the terminal step. The
episode ends when the step limit is reached or the agent finds
one of the four goals. Agents receive a penalty of -0.01 for
each step taken, -0.05 for walking into walls or obstacles, and
the reward of the target if they reach a goal. The optimal pol-
icy π∗ is always to take the shortest path to the preferred goal.
An example of a full grid is shown in Figure 1.

IBL Model in the Goal-Seeking Task

An IBL agent in the Gridworld task stores in memory in-
stances, which take the form of a triplet (S,A,x), where x
the value assigned to taking action A in state S. Both action
and states follow from the definition of the task: the agent ob-
serves their state S as their coordinate in the grid and selects
actions from the set of four cardinal directions. As previ-
ously described, the action selection mechanism dictates that
the agents select the action with the highest blended value
(Equation 3).

Finally, IBLT suggests a feedback process that uses deci-
sion outcomes to update and refine the utility estimates of
past options, such that updated instances inform future deci-
sions (Gonzalez et al., 2003). The present task involves re-
wards that are earned at the end of a task, so we must ad-
dress the problem of temporal credit assignment (Minsky,
1961); that is, how will the agents assign delayed outcomes to
their actions over the course of a trajectory T ? Here, we use
a relatively simple notion of credit assignment, inspired by
(Nguyen & Gonzalez, 2020), that disseminates equal credit
amongst candidate actions in a sequence if a positive reward
is attained, and assign the step-level reward otherwise. For-
mally, we have that, ∀l ∈ 1, ...,T ,

xl =

{
RT RT > 0
Rl otherwise

(4)

In the context of this task, an agent will update all of its in-
stances in a trajectory with the value of the goal reached RT .

Figure 1: An example Gridworld with a randomized spawn
location. The optimal policy is for the agent to reach the pre-
ferred goal via the shortest path, avoiding walls and distractor
goals.

If a goal is not reached, it will simply update with the step-
level cost Rl .

Experimental Simulation Methods
We investigate the diversity hypothesis by looking at within-
task adaptation between levels of decision complexity.

Decision complexity is defined as in Nguyen and Gonza-
lez (2020): the difference between the distance to the nearest
distractor dd and the distance to the highest value goal dp,
formally defined as ∆d = dp− dd . Intuitively, this measure
captures the tension between navigating to or discovering the
preferred goal versus reaching the distractor: high values of
∆d correspond to more complex decisions.

We separate an agent’s interaction with the environment
into two within-task phases: learning and adaptation. In the
learning phase, each agent spawns in a specified location in
a Gridworld with a predetermined level of decision complex-
ity. The agent then executes the task over 60 episodes. In the
adaptation phase, the agent remains in the same grid config-
uration (the same Gridworld); however, their spawn location
is changed to create a different level of decision complexity.
The agent then continues for another set of 60 episodes un-
der the new level of complexity. Broadly, the agent carries
over the experience from the learning phase to apply it to the
adaptation phase.

We defined three decision complexity conditions:

1. High, where the agents’ learning phase is in decision com-
plexity ∆d = 5;

2. Low, with learning decision complexity ∆d = 1; and

3. Mixed, where the spawn location is randomized at each
episode in the learning phase to generate various levels of
complexity. The spawn position during learning is never
the same as the one in the adaptation phase.



In all three conditions, the agents are required to perform un-
der a new spawn position with decision complexity ∆d = 3,
unexpectedly, after their 60th episode.

We hypothesize that the agents with the most diverse
experiences—the agents in the Mixed condition—will per-
form better during adaptation than the agents in the Low and
High complexity conditions. We expect that the agents who
have been exposed to more diversity in decision complexity
during learning will be able to adapt to a new decision com-
plexity more effectively than those that learned with a consis-
tent level of decision complexity. We also expect that agents
in the Low Condition will perform better during learning than
agents in the Mixed and High conditions. This is due to the
variation in spawn location for the Mixed condition and in-
creased decision complexity for the High condition.

We simulate 100 distinct grid configurations with different
goal locations and obstacles. Spawn locations corresponding
to the desired levels of decision complexity are generated for
each distinct grid.

Our primary dependent measure is accuracy, defined as the
proportion of episodes where the agent obtains the preferred
(i.e., maximum value) goal. Using this metric, we examine
agents’ performance in the learning and adaptation phases in
aggregate, over time, and at the transition between phases.

Results
Overall Accuracy
The average accuracy across 60 learning episodes and 60
adaptation episodes in each condition is shown in Figure 2.
The results are aggregated across all 100 grid configurations,
with three independent trials in each. We observe that dur-
ing learning, agents in the Low decision complexity condition
perform significantly better than the agents in the High com-
plexity and Mixed complexity conditions. During the adap-
tation phase, however, agents in the Low complexity condi-
tion experience only a slight improvement compared to the
learning phase, while agents in the Mixed complexity condi-
tion show the largest improvement from the learning phase.
Agents in the Mixed condition agent are able to use the di-
verse experiences acquired in the learning phase to, on av-
erage, adapt more successfully than the agents in the other
conditions.

Accuracy Over Time
In addition to overall average accuracy, we plotted the learn-
ing curves of the agents, which show the average accuracy
per episode, grouped by the experimental condition. The re-
sults are presented in Figure 3. We observe that although the
agents in the Low complexity condition learn to perform ac-
curately very rapidly compared to the High complexity and
Mixed conditions, this is the condition where agents appear
to have the most difficulty adapting immediately to the new
level of complexity (more discussion on this “surprise” effect
in the next section). Perhaps the most interesting observation
is that agents in the Mixed condition are the only ones that

Figure 2: Average accuracy during the learning and adapta-
tion phase for each condition.

Figure 3: The learning curve for each condition. Agents
transfer to the unseen decision complexity ∆d = 3 at the 60th
episode, remaining there until the 120th episode.

continue to improve their performance, without an initial de-
crease during adaptation. During the 60 adaptation episodes,
the Low complexity agents are able to match the performance
of the Mixed condition agents. This contrasts with the High
complexity agents, which are unable to achieve comparable
levels of accuracy.

Surprise Effect
Following on the previous analysis, here we focus on the “sur-
prise” effect per condition, characterized by both the accuracy
in the first adaptation episode alone (i.e., Episode 61), as well
as by the change in accuracy from the last episode of learning
and the first episode of adaptation (i.e., Episodes 60 and 61).
Figure 4 presents both of these measures. We observe that
the agents in the Mixed complexity condition have the high-
est average accuracy in Episode 61. Furthermore, the differ-
ence in accuracy between Episodes 60 and 61 for the Mixed
complexity agents is near zero. That is, their surprise effect
is low.

In contrast, the Low complexity condition has a lower per-
formance than the Mixed condition, but has the highest sur-
prise effect, where the accuracy decreased more than in any
of the other conditions in Episode 61. The High complexity



Figure 4: The accuracy in the transfer episode and the dif-
ference in accuracy between the first adaptation (Episode 61)
episode and final episode of training (Episode 60).

condition has the lowest accuracy in the first episode of adap-
tation and a small surprise effect as it transitions to a lower
decision complexity.

Explanations for the Benefits of Diversity
In this section, we dive into the mechanisms that may lead to
the benefits of diversity for adaptation. A primary explanation
is that the likelihood that agents will experience states dur-
ing learning that are similar—or equivalent—to the states that
they will experience in the adaptation phase changes across
conditions.

Due to both the nature of the task and the definition of de-
cision complexity, an agent in the High complexity condition
is more likely to end up on a shorter path and fail to gain
sufficient exposure to the environment to facilitate transfer.
To demonstrate this, we simulate a random agent in the same
training phase for the Low and High conditions and measure
the average number of steps per episode. The High condi-
tion with a random agent has, on average, significantly (two-
sided T -test, p < 0.01) shorter episodes (20.57±0.74 steps)
than the Low complexity condition (24.37±0.59 steps). This
shows that an agent is more likely to reach a goal earlier (e.g.,
the nearest distractor) in the High complexity condition, and
thus be less exposed to the environment. This lack of ex-
posure during the learning phase makes it more difficult for
an agent to apply the instances stored in memory to new sit-
uations successfully. The memory instances will be biased
towards the previously learned behavior.

As discussed, the Low complexity condition dictates a
spawn location that has an increased relative distance to the
nearest distractor target. The longer expected episode length
in the Low condition—the same value presented above—
allows agents an increased opportunity to gather diverse ex-
periences in the environment.

Finally, the Mixed complexity condition results in a higher
likelihood of experiencing states that are similar to the com-

Figure 5: The proportion of times an agent in each condi-
tion visited a particular grid cell throughout the learning and
adaptation phases. Each condition pictured here represents
the same grid configuration.

plexity experienced during the adaptation phase. In contrast
to the above cases, this is because diversity is built into the
learning phase. The agent in the Mixed condition has, by def-
inition, a diverse set of experiences. The relative levels of di-
versity correspond to the relative performance in adaptation.

An illustrative example of the differences in the diversity
of experiences during the learning and adaptation phases for
each condition is shown in Figure 5. Considering the learn-
ing phase, the Mixed complexity condition depicts the high-
est level of diversity in state visitations, followed by the Low
complexity condition; whereas the High complexity condi-
tion has a small and focused set of highly visited states.

The behavior in the adaptation phase demonstrates how the
behavior during learning translates to the unexpected situ-
ation during adaptation phase: in both the Low and Mixed
conditions, the agent is able to discover a roughly equivalent
policy, whereas the High condition agent fails to learn the lo-
cation of the preferred goal and a policy that will allow it to
reach that position.

Discussion
In past research, the notion of diversity has been applied to
motor tasks (Wulf, 1991), visual discrimination tasks (Wolfe,
Friedman-Hill, Stewart, & O’Connell, 1992) and classifica-
tion decisions (Brunstein & Gonzalez, 2011; Gonzalez &
Madhavan, 2011). Here, we expand this line of research to
demonstrate the diversity of training in the context of deci-
sion complexity. We find that agents who learn in consistent
decision complexity environments have poorer adaptation to
novel and unexpected situations than those that learn with di-
verse decision complexity.



An interesting observation is that agents that learned in the
Low complexity condition performed closely to agents in the
Mixed condition during adaptation, while agents that learned
in the High complexity condition are very far from reaching
the level of performance of the Mixed complexity agents. An
explanation we offer in our analyses is that the experiences
of the agents in the Low complexity condition are quite di-
verse during the learning phase. By definition, a Low com-
plexity decision would encourage the agents to navigate the
Gridworld to find the target of higher value, because the deci-
sion trade-off is easy to resolve (Nguyen & Gonzalez, 2020).
In other words, it is a “no brainer” to ignore the temptation
of a distractor, because a larger value target is also close to
the spawn location. These diverse experiences are thus appli-
cable to a novel level of complexity at transfer, as shown in
Figure 5.

In our immediate future work, we plan test both the robust-
ness of the results to changes in environmental parameters, as
well as the predictions of these simulations in human exper-
iments. Are humans with diverse experiences in the Grid-
world able to adapt more successfully to novel situations?
Given that IBL models have been shown to emulate human
behavior very closely in many tasks including the Gridworld
(Nguyen & Gonzalez, 2021), we expect that the predictions
of this paper will hold in human experiments. How far can we
stretch the Diversity Hypothesis? That is, how different can
the transfer conditions be to take advantage of the diversity of
training? Answers to these questions can help us craft diverse
training conditions and predict the way these conditions can
result in robust decisions under changing and dynamic situa-
tions.
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