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Abstract

A complete and holistic understanding of human cognition
should be able to relate idiographic parameters representing
cognitive functioning to interactions between connected
brain networks identified by neuroimaging methods. Here,
using the ACT-R cognitive architecture, we examine the
possibility of producing idiographic parameterizations of
cognitive functioning in a task environment and show that
these parameterizations produce reasonable predictions of
individual behavior. We then demonstrate a method of
determining a subset of parameters that are adequate for
prediction of behavior before confirming that the most
critical of these task-based parameters is related to functional
connectivity measures in individual resting-state fMRI data.
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Introduction

One of the advantages of the utilization of computational
models in the study of cognition is the possibility to
estimate parameters that characterize behavior and/or
cognitive performance on a per-individual, or idiographic,
level. For example, reinforcement learning (RL) models
can be fit to behavioral data, and the resulting parameter
estimates can be used to make inferences about individual
differences in dopamine function or to distinguish between
healthy and pathological groups (Frank et al. 2004).
Similar work has been performed with drift diffusion
models (DDM), which model decision-making through a
noisy information accumulation process that “drift”
towards one of two decision boundaries. In addition to
being more clearly interpretable than raw behavioral data,
parameters inferred through DDM are often more reliable
in detecting individual differences than behavioral metrics
(White et al. 2016). In the past, ACT-R models have been
used to make such inferences as well. For example, Daily
et al. (2001) estimated goal spreading activation from
behavioral data, used it as a proxy for working memory,
and successfully predicted performance on a different task.

This individual-difference approach, however, has not
been applied consistently - instead, the majority of
modeling efforts have focused on fitting parameter values
that are descriptive at the group level. Furthermore, ACT-R
is a far more complex computational framework than RL
or DDM, and it encompasses dozens of parameters. While
this complexity makes it possible to capture complex tasks

that lay outside the scope of RL or DDM models, it also
poses some significant challenges: is it possible to identify
idiographic parameter values that reliably characterize the
behavior of a given individual? How many parameters are
needed to characterize individual differences within a
group? How can each parameter’s contribution to
predicting these differences between individuals be
determined?

Here, we provide an empirical answer to this question.
We created a model of the zero-back condition of the
standard n-back working memory task, and then fit the
model to behavioral data from ~150 participants. We show
it is possible to use convex optimization techniques to
identify points in multidimensional parameter space that
accurately capture an individual’s performance. We then
provide a method to determine which estimated parameters
contribute most meaningfully to the prediction of
individual performance. Furthermore, we demonstrate that
these idiographic parameterizations are predicted by the
individual’s resting-state functional connectivity, indicating
that the parameterization captures fundamental aspects of
individual cognitive function.

Materials and Methods

The study presented herein consists of an analysis of N =
178 individuals from the Human Connectome Project, the
largest existing repository of young adult neuroimaging
data. The analysis was restricted to the resting fMRI subset
in conjunction with the zero-back condition of the
“Working Memory” (WM) task component. The resting
fMRI data collection consisted of two 30-min recording
sessions, performed 24 hours apart; the task fMRI data
collection consisted of two 30-min task sessions performed
directly after each resting-state acquisition session. During
each task session, participants performed six other tasks in
addition to the WM component, per the HCP protocol. All
subject recruitment procedures and informed consent forms
were approved by the Washington University in St. Louis’
Institutional Review Board. The present study met criteria
for exemption at the University of Washington’s
Institutional Review Board.



Task Data

Each working memory task session consisted of four
0-back blocks, with each block containing 10 trials. Each
block begins with a 2.5 s cue that informs the participant of
the target stimulus for the proceeding block of trials. Each
trial presents a single image centered on the screen, and
participants are required to indicate if the trial’s stimulus is
identical to the cue stimulus by pressing one of two
buttons. The stimuli belong to one of four possible
categories: faces, places, tools, and body parts. These
categories were presented in a block-wise fashion such that
two of the eight blocks presented a given category. Each
trial stimulus is presented for 2 s with a 500 ms ITI, for a
total duration of 27.5 s per block. Additionally, 15 s
fixation blocks were presented after the second and fourth
task blocks within a session. This paradigm produces
stimuli of three conditions: targets (match to the block
cue); lures (non-targets that have been presented at least
once before within the block); and non-target, non-lures
(non-targets that are presented for the first time within a
block).

fMRI Image Acquisition and Preprocessing

Functional neuroimages were acquired with a 32-channel
head coil on a 3T Siemens Skyra with TR = 720 ms, TE =
33.1 ms, FA = 52°, FOV = 208 x 180 mm. Each image
consisted of 72 2.0 mm oblique slices with 0-mm gap
in-between. Each slice had an in-plane resolution of 2.0 x
2.0 mm. Images were acquired with a multi-band
acceleration factor of 8X.

Images were acquired in the “minimally preprocessed”
format (Van Essen et al., 2013), which includes unwarping
to correct for magnetic field distortion, motion
realignment, and normalization to the MNI template. The
images were then smoothed with an isotropic 8.0 mm
FWHM Gaussian kernel.

ACT-R Modeling of WM Task Data

An ACT-R task device and model were developed in
order to characterize individual behavior in the zero-back
task. The task device implements the zero-back task by
updating the ACT-R visicon with a representation of the
task elements in the form of three strings: one that
identifies the category of the stimulus, a second
representing the stimulus itself, and a third indicating the
“kind” of the stimulus - either a block-cue or a
trial-stimulus. The model automatically attends to this
information before transferring the chunk representation of
the display to the imaginal buffer. In the case of a cue, the
model updates the goal buffer to represent that the target of
future retrieval requests is the block-cue “kind”, and then
waits until a new visual display - automatic buffer
harvesting ensures that the chunk representing the cue is
entered into declarative memory. In the case of a stimulus,
after the chunk representation is loaded into the imaginal
buffer, the model attempts to retrieve a chunk to compare
against the stimulus by making a retrieval request

specifying the category of the stimulus and the block-cue
“kind”. If retrieval is successful, the model proceeds to
determine if the stimulus identity represented by the
chunks in the imaginal and retrieval buffers are matched. If
so, it responds that the current stimulus is a target;
otherwise, nontarget. In some cases, the retrieval process
may not complete before the trial ends. If so, the model
detects the presentation of the ITI and interrupts the
ongoing retrieval attempt through a secondary retrieval
request. A flowchart depicting the strategy of the model
can be found in Figure 1.

The behavior of the model in Figure 1 ultimately
depends on the parameters that influence memory retrieval.
In ACT-R, retrieval is affected by a memory’s activation,
A(m), which is the sum of a base-level term B(m) and a
contextual spreading activation S(m). B(m) is the log sum
of the decaying traces of previous uses of m:

B(m)=log ¥, ;™

where ¢ is the time elapsed from the i-th time m was used
and d is the decay rate. The spreading activation is defined
as an additional boost coming from the information stored
in a buffer:

S(m) =22 ; (Wy/N) Sim

where W, is the amount of activation spreading from buffer
b and s,, is the association between slot i in buffer b and
memory m. In our model, two such sources of activation
exist, one for the goal buffer , and one for the imaginal
buffer W, The strength of association s;, is computed
through a function which returns a scalar integer value
equal to the number of source chunks j contained in chunk
i; 1 if chunks j and i are identical; and 0 otherwise. Task
accuracy depends on both the availability of a memory and
the probability of unintentionally retrieving a wrong item;
the latter is controlled by a partial matching similarity
parameter ¢ that determines the penalty between two slots.
Thus, chunks that do not match the retrieval specification
are penalized, but can still be retrieved.
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Figure 1. Flowchart of the ACT-R model strategy for
performing the zero-back condition of the n-back task.



Finally, the relationship between the activation of a
memory and the time RT it takes to retrieve is given by the
equation:

RT(m) = Fe'™

In summary, the dynamics of the model depend on five
parameters: d, W;, W,, F, and c.

Individual-specific Estimation of ACT-R Parameters

Five model parameters were fit to individual participant
behavior on an idiographic basis: d, W;, W,, F, and c. These
parameters were chosen as they each have a strong effect
on the model’s response time or accuracy, the two
participant measures that the model was fit against. The
parameters d, W,, W,, and c all influence the likelihood that
the correct cue-chunk is retrieved to be compared against
(with additional minor influence on the RT due to changes
in the activation level of the retrieved chunk), while the F’
parameter largely affects the retrieval time of the retrieved
chunk (and therefore, the response time of the model).
Parameters were only estimated for participants who
demonstrated greater-than-chance performance on the
target, lure, and non-target/non-lure conditions. To perform
the fitting process, the optimize.minimize() method of the
Python scipy package was utilized to minimize the RMSE
between a set of participant measures and the
commensurate model measures through the minimization
function’s Powell method. Bounds were placed on the five
parameters (c: (-1,1); W, (0,2); W (0,2); F: (1,3.5); d:
(0.2,0.8)) to ensure that the minimization function
remained within either reasonable or required ranges for
these parameters. To compute a single RMSE across both
RT and accuracy, these measures were placed on the same
scale by dividing the trial-by-trial model and participant
response times by 2 (as the maximum allowable RT by the
task was 2 s). Missing RTs for both model and participant
were replaced with the corresponding nan-meaned RT.
Additionally, as the binary trial-by-trial accuracy outcomes
had the potential to be exceedingly punishing to the
model-fitting process, the aggregate block-wise and
condition-wise (target/lure/non-target, non-lure) accuracies
were used instead. Model and participant trial-by-trial
scaled RTs and block-wise/condition-wise accuracies were
then vectorized in order to compute the RMSE. Once the
minimization algorithm converged to parameter estimates
for each participant, model predictions were produced by
running the model 100 times for each set of participant
parameters, and then first taking the trial-by-trial average
of the predicted RTs and accuracies over these runs before
determining the average RT and accuracy for each
participant.

Evaluation of Parameter Estimates

To evaluate the relative importance of each of the
estimated parameters to the predictive efficacy of the
model, a “decremental leave-one-out” (dLOO) procedure

was applied. In this procedure, a set of models utilizing a
subset of the estimated parameters are first produced from
the full parameter set n by applying n choose k, where k =
n-1. For each participant and each model in this set, the &
chosen parameters are set to the participant’s estimated
values, while the “left out” parameter is set to the mean of
that parameter’s estimates (across participants). Model
predictions are produced for each of the models in this set
(as described above), and the R’ between model predictions
and participant measures are determined for both RTs and
accuracies. The model with the largest mean R’ (across RTs
and accuracies) is determined to be the “best-fitting” model
in this set, and the parameter that was “left out” of this
model is “decremented” from the set of parameters. This
procedure is then repeated for the remaining parameters,
with both the “left-out” parameters and the “decremented”
parameters set to the mean of that parameter’s estimates,
until only a single parameter remains.

Brain Parcellation

To calculate functional connectivity, each participant's
brain was divided into discrete regions using a parcellation
proposed by Power et al (2011). Although other
parcellations have been proposed, this parcellation is
notable for including both cortical and subcortical regions
(see also Cole et al., 2016).

Statistical Learning Model

To identify the optimal combination of functional
connectivity measures that reliably predicts individual
parameters,  resting-state functional connectivity was
analyzed using a Lasso regression, a statistical learning
method that combines feature selection and parameter
fitting (Tibishirani, 1996). As a variant of linear regression,
Lasso results remain interpretable in terms of beta weights
that linearly scale a set of regressors. Unlike linear
regression, Lasso reduces the complexity of the model by
adding a penalty term that reduces to zero the weight of
unnecessary variables, dramatically reducing the number of
regressors provided. This feature is crucial for
high-dimensional data such as the set of connectomes
associated with a group of participants.

While in canonical linear regression the weights 3 are
obtained by minimizing the quantity ||y - BX]|, (where the
notation ||v||, represents the L(n) norm of a vector v), in
Lasso the quantity to minimize includes a penalty term:

B = argmin( |ly - BX|, + AllBl,)

The value of A represents the tradeoff between model
simplicity (captured by the first-order ||B||; penalty) and
accuracy (captured by ordinary least squares minimization
term |ly - BX],). When A = 0, the model reduces to
canonical linear regression. As A grows, however, more
and more regressors are eliminated to satisfy the
constraints.



Results

Participant Task Performance

Participants who did not achieve greater-than-chance
performance (binomial test) on the target, lure, or
non-target/non-lure condition were not included in the
analysis. This resulted in the exclusion of 36 out of 178
participants. Mean response times and accuracies were
calculated for each participant for whom parameters were
estimated. Mean RT was 0.78 + 0.10 s, while mean
accuracy was 0.94 £ 0.06. The distribution of RTs and
accuracies across participants can be seen in Figure 2.

Idiographic Parameter Estimation and Prediction

For each participant, the set of parameter values that
minimized the RMSE between trial-by-trial RTs and
block-wise/condition-wise accuracies were estimated. The
estimated cue-stimulus similarities ¢ had a mean value of
-0.43 + 0.22, with a range of (-0.88, 0.19). While the
majority of participants were found to have a negative ¢
value, the ¢ value for 2% of participants was estimated as
slightly positive. The goal buffer spreading activation
value W, estimates had a mean of 0.93 + 0.33 and a range
of (0.18, 1.74), while the imaginal buffer spreading
activation value ; had a mean of 0.68 + 0.34 and a range
of (0.06, 1.71). As W, and W, provide a complementary but
opposing influence on the retrieval process in this model
(except in the case of target stimuli, for which they both
promote the retrieval of the correct cue chunk), the
difference between these two parameter estimates (W, - W)
was examined. The mean difference was 0.24 + 0.51, with
a range of (-0.85, 1.38). Over 70% of participants were
estimated to have a W, value greater than their /¥, value,
indicating that overall, information in the goal buffer drove
the retrieval process. The mean of the latency factor F
estimates was 2.49 + 0.42, with a range of (1.31, 3.29).
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Figure 2. Histograms of accuracies and response times
across participants in the zero-back condition of the HCP
n-back task.

While F linearly affects retrieval times (and, by
extension, response time) and the mean of the estimates
was greater than the maximum allowable response time,
the magnitude of this parameter compensates for retrieval
time speeding caused by the influence of spreading
activation and partial matching. Finally, for the decay-rate
parameter d, the mean estimated value was 0.53 + 0.10,
and the range was (0.29, 0.71).

Once parameters for each participant were estimated,
model predictions of participant performance were
produced. Across predicted participants, the model’s mean
RT was 0.64 + 0.09, and the model’s mean accuracy was
0.89 + 0.08. Individual participant RTs and predicted RTs
were strongly correlated (» = 0.56, p < 0.001), while
participant accuracies and predicted accuracies were
moderately correlated (r = 0.23, p < 0.01). Scatterplots of
participant measures versus predicted measures can be seen
in Figure 3.
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Figure 3. Scatterplots of participant mean RTs/accuracies
versus model-predicted mean RTs/accuracies. Pearson’s r
between participant measures and model predictions shown
in the upper left.



Decremental Leave-one-out Procedure

To determine which parameters contributed most
strongly to the model’s ability to predict individual
participant RTs and accuracies, the parameter set was
subjected to a “decremental leave-one-out” procedure. In
the first round (five sets of four out of five parameters
included, one parameter in each set assigned to the mean
estimated value), it was found that the model containing
the individual predictions of W,, W, F, and d parameters
had the largest mean R’ (mean R> = 0.21; RT R? = 0.32;
accuracy R? = 0.11); consequently, the ¢ parameter was
“decremented”. In the second round, the model containing
the W,, W,, and F parameters was the strongest predictor of
participant behavior (mean R’ = 0.21; RT R’ = 0.33;
accuracy R’ = 0.09); the d parameter was dropped. In the
third round, the model that included the W, and W,
parameters was the most successful (mean R’ = 0.18; RT R’
= 0.27; accuracy R’ = 0.09), and in the final round, the
model including only the W, parameter was the most
predictive (mean R’ = 0.18; RT R? = 0.24; accuracy R’ =
0.11).

rs-fMRI Prediction of Individual-specific W,

For each individual, we extracted a matrix of functional
connectivity by calculating the Pearson correlation
coefficient of each pair of the 264 x 264 regions in the
Power (2011) parcellation. The group-level average of the
individual correlation matrices, known as the connectome,
was then visually inspected for comparison with similar
functional connectivity studies. The connectome was found
to be consistent with previous findings using the same
parcellation scheme (compare, for example, to Cole et al.
2016). Because correlations between pairs of regions tend
to be partially driven by common, unobserved factors
(such as motion and physiological noise), the matrices
were re-calculated using partial correlations (Cole et al.,
2016), so that correlations between each region in the pair
and the remaining 262 regions were partialled out. The
resulting mean connectome is a much more sparse matrix
(Figure 4B) and includes both negative and positive
correlations (as expected from the spontaneous dynamics
of brain activity: Fox et al., 2005).
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Figure 4: (A) Raw correlations between each of the 264
regions ; (B) Partial correlations between the same regions.
In each matrix, rows and columns are ordered by network.

Each participant’s sparse correlation matrix was then
reshaped into a row vector of (264 x 263) / 2 - 264 =
34,452 elements. The number of possible regressors was
further reduced by excluding connectivity measures related
to three irrelevant networks (the Auditory, Cerebellar, and
“Uncertain” networks in Power et al., 2011).

Lasso Fit and Cross-Validation

A cross-validation procedure was used to find the
optimal value of A. A sequence of possible A values was
generated, and, for each value, the performance of the
Lasso algorithm in predicting the parameter W, on a
per-participant basis was measured using leave-one-out
validation (LOOV). In LOOV, the algorithm is run 142
times, each time leaving out a different participant as the
test set while the B values are fit to the remaining 141
participants as the training set. The mean error in
predicting the parameter W, for the left-out participant was
then measured for all values of A, and the value of A that
produced the smallest cross-validation error across all
participants was chosen.

Resulting Connectivity

At the optimal level of A, only 19 functional connections
were left with a f > 0, involving a total of 36 brain regions
from eight different functional networks. These
connections and their regions are shown in Figure 5.

Notably, this list of regions includes the four ROIs in the
Power parcellation that span the anterior cingulate cortex
(ACC), corresponding to ACT-R’s goal buffer (Anderson,
et al. 2008). The list also includes five regions in the
salience network, a set of regions involved, like the ACC,
in the top-down control of attention. The functional
connectivity values that best predict individual values of
the W, parameter include connections between the salience
network and the default mode network, which is known to

correlate  with long-term memory function, and the
sensorimotor  network, including motor regions
corresponding to the right hand.
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Figure 5: Functional brain connections predictive of
individual rates of forgetting. Colored edges between
nodes represent functional connectivity between the
connected regions, while colors of nodes represent the
network each region belongs to, using the Power et al
(2011) scheme.



Together, connectivity between a group of networks
including the salience network, the default mode network,
and the sensorimotor network comprised a majority of the
identified connections (16 out of 19, y*(1) = 15.474 p <
0.001) and regions (24 out of 36, ¥*(1) = 10.667, p <
0.005), significantly greater that what could be expected by
chance.

As a final examination of this connectivity, we
determined how well the parameter W, can be recovered
from functional connectivity alone. To do so, we multiplied
each individual-specific set of functional connectivity
values by the beta weights produced by Lasso, and
compared them to the values inferred from the behavioral
data by the ACT-R model. The predicted and observed
values had a correlation of #(142) = 0.775, p < 0.001
(Figure 6).

Discussion

In the present study, idiographic parameterization of
working memory function was investigated through the
application of an ACT-R model. Values of five different
parameters capturing various aspects of cognitive
functioning were estimated for each participant through
minimization of the RMSE between participant behavior
and parameterized model predictions. A rank-ordering of
the importance of these five parameters to the predictive
efficacy of the model was determined through a
“decremental leave-one-out” procedure, demonstrating that
the goal-buffer spreading activation parameter W, was
critical to the model’s predictive ability. Furthermore, it
was shown that this essential parameter is predicted by an
individual’s resting-state functional connectivity.

This work makes it clear that ACT-R parameter
estimates are capable of producing quality predictions
regarding individual-level behavior. The correlation
between participant RTs and model-predicted RTs was
strong; while the predictions of accuracy were somewhat
weaker, this can be partially attributed to the fact that the
model was fit to the block-wise and condition-wise
accuracies, instead of trial-by-trial accuracies (as RTs
were). While this approach avoids the overly-punishing
nature of RMSEs computed on binary outcomes, it reduces
the amount of information the minimization algorithm has
to fit the participant accuracy, relative to the participant RT.
This effect was also apparent in the “decremental
leave-one-out” procedure; the RT R? measures were overall
larger than the accuracy R’ measures across the iterations
of the procedure. This procedure rank-ordered the
“importance” of the five parameters to the model’s
predictive efficacy (¢ <d < F < W, < W,), and made it clear
that W, was by far the most valuable parameter for this
model to predict individual differences in behavior, as both
RT and accuracy R’ measures changed negligibly as the
other parameters were set to the mean values. As W, was
indicated to be the most crucial for individual prediction, it
was chosen to be examined in relation to the participant’s
resting-state fMRI data.

Goal Activation From Brain Data

810
@ Error
=
I=] 0.4
<
© 0.3
[=]

0.9
o 0.2
B
5 0.1
=
o
o

o
@

@

0.5 1.0 1.5
Observed Goal Activation

Figure 6: Correlation between observed values of the I,
parameter and the values of W, predicted from functional
connectivity (Figure 5).

A functional connectome for each participant was
generated and subsequently used as the set of predictors for
W, in a Lasso regression. This resulted in the identification
of a set of functional connections between regions
inclusive of the salience, default mode, and sensorimotor
networks as being maximally predictive of individual
values of W,. Moreover, this particular set of functional
connections is entirely compatible with the putative role
played by the goal buffer’s spreading activation in the
model, where it is used to assist in the retrieval of the
correct cue from long-term memory (compatible with the
salience-default mode connections). The result of this work
would allow for the prediction of individual-specific W,
parameter values on individuals for whom resting-state
measures exist, and through the ACT-R model, prediction
of their behavior in a task environment.

In conclusion, this work exemplifies the potential of
utilizing ACT-R  modeling in conjunction with
neuroimaging measures for the identification and
prediction of signatures of cognitive functioning on an
individual basis. Potential future efforts in this area of
work include identification of a maximally predictive
subset of parameters for each individual, as well as
determination of resting-state nodes and functional
connections that allow for the prediction of these
parameters.
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