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Abstract

Most computational theories of cognition lack a representa-
tion of physiology. Understanding the effects of compounds
present in the environment on cognition is important for ex-
plaining and predicting changes in cognition and behavior
given exposure to toxins, pharmaceuticals, or the deprivation
of critical compounds like oxygen. This research integrates
physiologically-based pharmacokinetic (PBPK) model predic-
tions with ACT-R’s fatigue module to predict the effects of caf-
feine on fatigue. Parameter mapping between PBPK model pa-
rameters and ACT-R are informed by neurophysiological liter-
ature and established mappings between ACT-R modules and
brain regions. Predicted caffeine concentrations in the brain
are used to modulate a parameter in the fatigue module to ex-
plain caffeine’s effects on multiple performance metrics.
Keywords: caffeine; fatigue; ACT-R; physiologically based
pharmacokinetic modeling; computational modeling

Introduction
Human cognition is intimately tied to the environment. In-
deed, there have been decades of research and discovery on
how subtle differences in interactive tasks impact cognitive
performance (Anderson, 1990; Gray & Boehm-Davis, 2000).
Cognitive performance can also be altered through the de-
liberate or accidental exposure to compounds in the envi-
ronment, such as pharmaceuticals, nutriceuticals, and toxins.
For example, most countries limit alcohol consumption to
avoid accidents that stem from alcohol-induced impairments
to cognitive processing (Japan’s blood alcohol concentration
is 0.03; Canada’s is 0.08). In the current paper, an approach
toward integrating models of physiology with models of cog-
nition to explain and predict the impacts of chemical com-
pounds on cognitive performance is described and evaluated.

Caffeine is one of the most widely used chemical com-
pounds (Barone & Roberts, 1996), and its effects on perfor-
mance (Aidman et al., 2021) and fatigue mitigation (Lorist
& Tops, 2003) are well documented. Fatigue negatively af-
fects many cognitive functions, including attention, memory,
learning, and executive function (Jackson & Van Dongen,
2011). A moderate use of caffeine seemingly reverses some
of fatigue’s negative effects (Bonnet & Arand, 2012), but too
much caffeine decreases those benefits and increases negative
subjective experiences (Kaplan et al., 1997).

Integrating the effects of caffeine and fatigue into cognitive
architectures through the integration of models of physiology
will provide a broader and more detailed understanding of
cognition. Even with the wide variety of studies related to

caffeine, it is difficult to accurately account for the effects
of caffeine on cognition (Lorist & Tops, 2003). The accrual
and integration of theories into a single framework to better
understand cognition is precisely the promise of cognitive ar-
chitectures (Newell, 1973).

The objective of the presented research was to develop a
task-independent mechanism within a cognitive architecture
to account for the fatigue mitigating effects of caffeine. In the
following sections we review the literature on caffeine, phys-
iological and cognitive modeling, and an earlier approach to
integrating the modeling approaches. We then present ob-
served data of fatigue mitigation through caffeine and present
a model that accounts for the data.

Related Literature
Research has been conducted across constituent facets of
physio-cognitive modeling. In the following sections we first
provide background on our target compound, caffeine. Next,
models of physiology are described. Finally, prior attempts to
integrate computational models of physiology and cognition
are provided.

Caffeine
Caffeine is a widely used stimulant known to provide benefits
to cognitive performance (Kamimori et al., 2015). Caffeine
and its metabolites (e.g., paraxanthine) act as adenosine an-
tagonists (inhibitors) on two types of receptors: A1 and A2A
(Kaplan et al., 1997). A1 receptors are distributed throughout
the brain, but are most concentrated in the thalamus, cerebral
cortex, and hippocampus. A2A receptors are less widely dis-
tributed, existing in dopamine rich regions like the striatum,
but are more central to caffeine’s stimulatory effects on cog-
nition (Lorist & Tops, 2003).

Physiologically-based Pharmacokinetic Models
A physiologically-based pharmacokinetic (PBPK) model is
an in silico representation of the movement of chemicals in
the arterial blood, flowing to each major organ or lumped
tissue compartment(s), including the brain. They provide
the time-course of compounds via ordinary differential equa-
tions to account for absorption, distribution, metabolism,
and excretion processes (Pearce, Setzer, Strope, Sipes, &
Wambaugh, 2017). Thus, PBPK models enable predictions



of the amount and time course of a compound in the brain
and enable dose-response predictions.

There are three components to PBPK models: 1) species-
specific physiological parameters, 2) chemical-specific pa-
rameters, and 3) experiment-specific details for the studies
to be simulated. Species-specific physiological parameters
are the organ weights and blood flow rates for the defined
organs in the PBPK model and are derived from the closest
like species when not available. Chemical-specific parame-
ters that are unique for each chemical are the tissue solubility
(partition coefficient), metabolism of the parent compound,
and plasma and tissue binding characteristics.

Atomic Components of Thought–Rational (ACT-R)
ACT-R is a cognitive architecture that specifies how cogni-
tive processes interact to produce cognition and overt behav-
ior (Anderson, 2009). Models developed within ACT-R posit
a common set of processes and mechanisms, which are in-
stantiated as a computer simulation. Independent modules
operate in parallel and include declarative memory, vision, at-
tention, and motor modules. Procedural memory coordinates
the behavior of the architecture through a set of production
rules. Production rules follow an ”if-then” structure that en-
codes the conditions under which specific actions are taken.

Prior research in ACT-R has related the striatum and
the thalamus to the architecture’s action-selection system
(Anderson, 2009). Both of these regions are associated with
adenosine receptors, which would suggest ACT-R’s action-
selection system is likely to be affected by caffeine.

Including Physiology within Cognitive Modeling
A few previous research efforts have integrated physiological
mechanisms into computational cognitive modeling. Some
cognitive architectures include physiological constraints from
the brain (e.g., spiking neural networks in Spaun; Eliasmith
et al., 2012), but the vast majority of architectures tend not
to include physiological constraints. A few efforts have inte-
grated simplified aspects of non-brain physiology into com-
putational cognitive models, like Ritter, Kase, Klein, Bennett,
and Schoelles (2009) that explored how ACT-R parameters
could be varied to explain effects of stress and caffeine. Work
by Dancy, Ritter, Berry, and Klein (2015) used a more com-
plete model of human physiology to affect behavior within
ACT-R (i.e., HumMod; Hester et al. 2011).

The research of Dancy and colleagues inspired the devel-
opment of a similar, yet novel, approach to integrating models
of physiology with models of cognition. This novel approach
provided compound blood concentrations to ACT-R mech-
anisms through PBPK models. The result was a cognitive
model capable of predicting cognitive performance effects of
a common volatile organic compound, toluene (Fisher et al.,
2017). The present research extends the research by Fisher et
al. in three ways: (1) another compound, caffeine, is explored,
(2) the mapping of PBPK predictions to ACT-R parameters
is informed by neurophysiological literature, and (3) the re-
search is focused on how caffeine mitigates fatigue, and so

ACT-R’s fatigue module is used (Walsh, Gunzelmann, & Van
Dongen, 2017).

Observed Data
Sleep deprivation data were collected and analyzed by
McIntire, McKinley, Goodyear, and Nelson (2014). All par-
ticipants were kept awake for 30 hours, and some were given
caffeine. A summary of the study and data are provided here
(additional details can be found in the original paper).

Thirty active-duty military personnel (22 male) partici-
pated in the study and were compensated for their time. Par-
ticipants were randomly assigned to one of three conditions:
transcranial direct current stimulation (tDCS) active stimu-
lation with placebo caffeine, caffeine with sham tDCS, and
sham tDCS and placebo caffeine. Data from the active stim-
ulation condition was omitted from the present study. Two
participants’ data were excluded from data presented here as
those two were non-compliant.

The psychomotor vigilance task (PVT) was used to as-
sess alertness. On each trial, digits were presented that show
the number of milliseconds since the stimulus was presented.
Each trial lasts for a minute, or until the participant responds
by pressing a button. The interstimulus interval varied ran-
domly from 2 to 12 s. The total task duration was 10 minutes.

Participants were instructed to sleep for at least 7 hours for
the two nights prior to the study. Participants awoke at 6 a.m.
and were awake for 30 continuous hours. One session of PVT
was administered every two hours starting at 6 p.m. Partic-
ipants in the caffeine condition received 200mg of caffeine
chewing gum at 3:15 a.m. Participants in the control group
received gum without caffeine.

All data were normalized to 2 a.m. values, just prior to
caffeine administration. McIntire et al. (2014) found a sig-
nificant difference in mean response times, and a marginal
difference in lapses, between caffeinated and control partici-
pants (see Figure 1, solid lines). No mention is made of false
starts, but Figure 1 shows little to no difference in false starts.
Lapses are responses that occur 500 ms after stimulus presen-
tation or later. False starts are responses that occur 150 ms
after stimulus presentation or earlier. Both are common PVT
metrics used in the sleep literature to understand the effects
of fatigue (Lim & Dinges, 2008).

Model
In this section, the constituent parts of the model are dis-
cussed. The ACT-R model is described first, followed by the
PBPK model. Finally, variants of the model are discussed
along with the strengths and weaknesses of each.

ACT-R Model
This modeling builds on previous research that integrates
ACT-R with biomathematical models (BMM) of fatigue
(Walsh et al., 2017), and PBPK models (Fisher et al., 2017).
The initial ACT-R model was identical to that in previous re-
search investigating sleep loss and vigilance with the PVT
(Veksler & Gunzelmann, 2018). Initial parameters of the



Figure 1: Predictions of the best fitting models for the EGS, UTMBC, and FPBMC variants. Error bars indicate ±1 standard
deviation of participant means.

model were set to the mean of individual participants’ pa-
rameter estimates from Walsh et al. (2017; Table 5).

The PVT model contains only three productions: wait, at-
tend, and respond. False starts, which are responses before
or within 150ms of stimulus onset, can occur due to partial
matching between the wait and attend goals. Additional de-
tails on the model can be found in Veksler and Gunzelmann
(2018).

The fatigue module accounts for the effects of sleep home-
ostasis and circadian rhythms. The module consists of a the-
ory of microlapses and a BMM of fatigue. The BMM pre-
dicts alertness levels based on sleep schedule and the time
of day. Lower levels of alertness increase the likelihood of
microlapses, a brief interruption of cognitive processing. Mi-
crolapses affect ACT-R’s production utility mechanism by re-
ducing the utility of all productions. The production utility
decrement caused by microlapses is determined by the fa-
tigue module’s FPBMC parameter. Microlapses also impact
a fatigue compensatory mechanism that decreases ACT-R’s
utility threshold. The degree of compensation by this mecha-
nism is determined by the fatigue module’s UTBMC parame-
ter. Additional details on the fatigue module can be found in
Walsh et al. (2017).

The model was initially fit to the control data. Solid lines
in Figures 1 and 3, and Table 1, show the fit of this baseline
model. The same parameters were varied as in Walsh et al.
(2017), and the best fitting values were very near the mean
parameters found in that study:

• Initial utility (IU) = 5.1
• Utility threshold (UT) = 4.62
• Production utility noise (EGS) = 0.43
• Default action time (DAT) = 0.04
• Fatigue production utility BMM constant (FPBMC) =

0.025
• Utility threshold BMM constant (UTBMC) = 0.0155
• Fatigue procedural decrement (FPDEC) = 0.99

PBPK Model
The blood pharmacokinetics of caffeine after oral consump-
tion of a 200 mg caffeine gum by a 70 kg individual (i.e. 2.86
mg/kg), was simulated using the R package “high throughput
toxicokinetics” (httk; Pearce et al., 2017). In addition to the
default tissue compartments in the PBPK model structure se-
lection of the httk platform (lung, G.I. tract, liver, kidney, rest
of body), we added a brain and an adipose tissue compartment
(fat), in order to address the main pharmacodynamic target
tissue for caffeine, that of the central nervous system (CNS)
and other peripheral tissue concentrations (fat). This allows
mapping of the pharmacokinetics of caffeine in the CNS in
addition to the plasma compartment.

The blood plasma concentration time-course from the con-
trolled human pharmacokinetic study of Syed, Kamimori,
Kelly, and Eddington (2005) after an acute oral chewing gum
dosage is plotted in Figure 2, with the PBPK model results
overlayed on the data. An excellent match to the data con-
firms the ability to predict accurately the concentration of caf-
feine in plasma after this unique dosing route.



Figure 2: PBPK model results (solid line) of human caffeine
plasma (dots) concentration time-course after an acute caf-
feine dose (200 mg) in chewing gum (n=1 human subject).

Model Variants

Table 1 shows a list of the model variants and their fit to the
observed data. Each model variant explored the use of a sin-
gle parameter affecting production selection. Production se-
lection was the focus of this research for two reasons. First,
the effects of alertness in previous modeling of the PVT have
been explained with procedural effects (Walsh et al., 2017).
Second, pharmacological research has noted that a primary
mechanism for stimulation by caffeine is as an antagonist of
A2A receptors in regions of the basal ganglia, most notably
in the striatopallidal and striatonigral pathways (Fredholm,
Bättig, Holmén, Nehlig, & Zvartau, 1999). The striatopalli-
dal pathway in the basal ganglia has been mapped to ACT-R
procedural processor, with the striatum more directly linked
to production matching and the pallidum more directly linked
to production selection (Anderson, 2009).

Production Noise Parameter (EGS). In the fatigue mod-
ule, as alertness decreases, noise plays a larger role in produc-
tion selection. Our initial hypothesis was that caffeine may
offset some of the effects of noise as alertness decreases.

The left plot in Figure 1 shows the best fitting predictions
of the model with EGS varied as a function of caffeine pres-
ence. Noise was increased to 0.5 (from the baseline model’s
0.43) in the caffeinated condition. As shown in the first row
of Table 1, the fit is not good. An increase in noise increases
false starts, just as a decrease in noise (not shown) decreases
false starts. In the observed data, the presence of caffeine has
no effect on false starts.

Utility threshold compensatory mechanism (UTBMC).
The next parameter explored was UTBMC. This parame-
ter determines how utility threshold is affected by the fa-
tigue module. Alertness predictions are scaled by UTMBC
and summed with the utility threshold. Changes to UTBMC
affects the complex interaction between activation of the

Table 1: Model fits for the baseline model and four variants.

Variant Mean RT Lapses False Starts

RMSE R2 RMSE R2 RMSE R2

Baseline 146 .95 5.1 .89 0.3 .80

EGS 68 .88 7.6 .65 3.5 .91

UTBMC 44 .82 3.2 .98 1.3 .76

FPBMC 77 .91 3.8 .79 0.5 .80

with
PBPK 55 .93 2.7 .73 0.5 .99

model’s response production, “misfiring” of the model’s re-
sponse production (due to partial matching), and microlapses.

Previous research has associated ACT-R action selection,
of which production utility threshold is a part, with the pal-
lidum in the brain (Anderson, 2009). Other research has
identified regions rich in dopamine receptors, especially stri-
atopallidal regions, as playing pivotal roles in caffeine’s effect
on behavior (Lorist & Tops, 2003). Therefore, caffeine could
modulate production utility thresholds, with greater caffeine
concentrations making it more likely that a production will
fire and therefore less likely that a micro-lapse will occur.

The center plot in Figure 1 shows the best fitting predic-
tions for the model with a UTBMC value of 0.018 when caf-
feine is present. These predictions are a substantial improve-
ment over the previous mechanisms. Mean response time
predictions remain good, and a differentiation of lapses as a
function of caffeine presence is predicted. However, there is
a slight, but substantial, increase in the number of false starts,
which is not present in the observed data.

Fatigue production utility decrement (FPBMC). The fi-
nal parameter explored was FPBMC. This parameter deter-
mines how production utilities are affected by the fatigue
module. Alertness predictions are scaled by FPBMC, and
then production utilities are scaled by one minus the scaled
alertness predictions. A decrease in FPBMC results in higher
utilities, and an increase results in lower utilities.

Just as with UTMBC, the literature suggests a link between
FPBMC and caffeine effects. Production utilities are as much
a part of action selection in ACT-R as utility threshold, and so
are also associated with the pallidum (Anderson, 2009) and
could also be modulated by caffeine (Lorist & Tops, 2003).

The right plot in Figure 1 shows the best fitting predictions
for the model with a FPBMC value of 0.02 with caffeine and
0.025 without caffeine (control). As with the UTBMC model,
this variant predicts a differentiation of lapses as a function
of caffeine. As shown in Table 1, the fits to the false starts
is better than with the UTBMC, and the fits to the response
times and lapses are comparable to those with the UTMBC
model.



Scaled by caffeine predictions. Once we had a good can-
didate parameter that could account for changes in perfor-
mance due to caffeine, the fatigue module (Walsh et al., 2017)
was modified to allow caffeine concentration predictions to
modify the FPBMC parameter similar to the method used
by Fisher et al. (2017). The modified FPBMC parameter,
FPBMCp, is:

FPBMCp(t) = FPBMC−βPBPK(t)

where PBPK is the predicted concentration of caffeine in the
brain tissue at time t, FPBMC is the fatigue module’s produc-
tion utility decrement parameter, and β determines the de-
gree to which the PBPK predictions modulate FPBMC. The
PBPK values used were the mean caffeine concentrations dur-
ing each task presentation in the McIntire et al. (2014) proto-
col. The concentrations varied little during the ten minutes
of task presentation. The scaling parameter was varied a few
times until the ACT-R predictions approximated the observed
performance.

Figure 3 and Table 1 show the results for the best fitting β

parameter, which was 0.0045. The model continues to do
a good job of predicting most of the trends that the static
FPBMC model did, with most metrics improving slightly and
the R2 for false starts improving substantially.

Figure 3: Predictions of the best fitting model varying
FPBMC modulated by PBPK predictions. Error bars indicate
±1 standard deviation of participant means.

Discussion
This work investigated the effects of caffeine on fatigued peo-
ple. While the effects of caffeine have been studied exten-

sively in psychology and physiology, few formal models have
been used to study these effects; exceptions include Ritter et
al. (2009) and Ramakrishnan et al. (2016). Ritter et al. inves-
tigated the effects of 200 or 400 mg of caffeine on the serial
subtraction task without sleep restriction on three ACT-R pa-
rameters related to vocalization and memory retrieval (SYL,
BLC, and ANS). Ramakrishnan et al. present a mathemati-
cal model that predicts human performance on the PVT from
a large number of protocols, with different sleep restrictions
and caffeine administration. While both models explain the
data well, neither model seems to be informed by the under-
lying physiological processes.

The mapping of physiological to cognitive processes is not
trivial. In both formal physiological and cognitive models,
there are many variables that could potentially interact to pro-
duce behavior (Dancy et al., 2015). In this work, we lim-
ited our parameter space to those parameters associated with
ACT-R’s action selection mechanism, as the PVT is largely
procedural. In addition, the caffeine literature suggests a crit-
ical connection between caffeine and action selection, with
caffeine affecting A2A receptors concentrated in dopamine
rich areas like the basal ganglia (Lorist & Tops, 2003). Still,
future research will need to employ other tasks that recruit
other cognitive processes, as caffeine has also been shown
to affect memory (Loke, 1988) and motor processes (Loke,
1988).

Walsh et al. (2017) integrated a mathematical model of
alertness with a theory of microlapses to create the ACT-R
fatigue module. The work presented here builds on that to ex-
plain how caffeine mitigates the effects of fatigue. The mod-
eling revealed that caffeine may effectively “reverse” some
of the decrement in production utility that result from fatigue.
This reversal is supported by the physiology literature. Caf-
feine is an adenosine inhibitor and adenosine plays a role in
sleep homeostasis (Landolt, 2008). This inhibition was im-
plemented by scaling the fatigue production utility decrement
(FPBMC) parameter as a function of predicted caffeine con-
centration in the brain. This one parameter captured the three
substantial trends in the observed data without the need to
vary other parameters explored in this research, namely the
fatigue module’s compensatory mechanism (UTBMC) and
production utility noise (EGS).

This research requires validation of the link function be-
tween the PBPK caffeine level predictions and the fatigue
module’s FPBMC parameter. While the use of the PBPK
model gives us some confidence that our mechanism will ac-
count for variations in caffeine, data from additional studies
that include multiple administrations and dosages of caffeine
will be required. Correspondingly, the mechanism does not
currently account for potential negative effects of too much
caffeine or individual differences (Kaplan et al., 1997). Fu-
ture research will include extending the PBPK-to-FPBMC
link function to account for known, physiological processes
like paraxanthine (a metabolite of caffeine) and adenosine
pharmacodynamics.



Conclusion
This research explains the effects of caffeine as a modera-
tion of fatigue’s effects on procedural utility. This is done by
extending previous research that integrated biomathematical
models of alertness (Walsh et al., 2017) and PBPK models
(Fisher et al., 2017). Utilizing physiologically-valid predic-
tions of compound levels in the brain, such as caffeine, to vary
parameters of cognitive modules mapped to relevant neural
mechanisms has the potential to increase the fidelity and ac-
curacy of cognitive models of human performance.
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