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Introduction 

Psychometric modeling usually assumes that the observed 

behavior is caused by a set of metric latent variables. For 

instance, the Rasch model, one of the most traditional models 

from the Item Response Theory (Embretson & Reise, 2013), 

assumes that the probability of getting an answer right (or 

saying yes, or agreeing to the statement, or simply that X = 1) 

is equal to a logistic transformation of an additive interaction 

between the respondent’s true score θ and the item’s 

difficulty b. Formally, the model is represented as: 

𝑃(𝑋 = 1) =
1

1 + exp⁡(𝜃 − 𝑏)
. 

(1) 

This type of model is used mainly to estimate and develop 

interval measures for θ and b. Perline et al. (1979) argued that 

this is possible because the Rasch model is a stochastic 

variant of the Additive Conjoint Measurement Theory (Luce 

& Tukey, 1964). The Additive Conjoint Measurement 

Theory is a formal theory of continuous quantities which 

allows for the derivation of interval scales from ordinal data, 

as long as some empirical relations are observed.  

However, some authors have disputed this view that the 

Rasch model is a stochastic variant of the Additive Conjoint 

Measurement Theory (e.g., Michell, 2008). More 

specifically, it has been argued that if the Rasch model is a 

probabilistic version of the Guttman scale (Guttman, 1944), 

which allows only for θ and b to be measured in the same 

ordinal scale, then the Rasch model provides an interval 

measure only because it is modeling response error. This 

apparent inconsistency is called the Rasch paradox. 

On the other hand, the Rasch paradox has also been 

disputed (e.g., Borsboom & Zand Scholten, 2008). 

Regardless of whether the Rasch paradox is real or not, it 

would be interesting for psychometric researchers if interval, 

or even ratio, (i.e., metric) scales could be derived from 

Guttman scales without reliance on response errors. The aim 

of the present study is to propose a procedure that combines 

the probabilistic Guttman scaling (Proctor, 1970) with 

Goode’s method (Coombs, 1964) to obtain metric scales 

from dichotomous psychometric data. We call this procedure 

the Guttman-Goode’s Scaling (GGS). 

Guttman-Goode’s Scaling 

The GGS procedure combines two methods for deriving 

interval and ratio scales from psychometric data. The first is 

the probabilistic Guttman scaling (Proctor, 1970). Guttman 

scales assume that the respondent will answer X = 1 if and 

only if θ > b. Otherwise, the respondent will answer X = 0. If 

this condition is exactly met, the matrix (or Guttman 

scalogram) of response patterns averaged by sum scores (for 

an instrument with 5 items) will be equal to the matrix 

represented in Table 1. It is possible to see that all cells are 

equal to 0 or 1, representing that all individuals with a 

specific ordinal θ level answered to the items in the same way 

(e.g., a correct answer, 1, or an incorrect answer, 0). 

 

Table 1: Perfect Guttman scalogram of response patterns 

averaged by sum scores for an instrument with 5 items. 

 

θ level Item 1 Item 2 Item 3 Item 4 Item 5 

0 0 0 0 0 0 

1 1 0 0 0 0 

2 1 1 0 0 0 

3 1 1 1 0 0 

4 1 1 1 1 0 

5 1 1 1 1 1 

 

However, real data seldomly result in a perfect Guttman 

scalogram, as represented in Table 2, which was calculated 

from a toy dataset with actual answers from respondents. 

Therefore, traditional Guttman scaling cannot be applied to 

this type of scenarios. The probabilistic Guttman scaling, 

then, estimates the probability of both the order of the items 

as well as the ordinal θ level by assuming that only the v + 1, 

where v is the number of items, levels of θ are 

distinguishable. This differs from the Rasch model, for 

instance, that allows for more than v + 1 values of θ to be 

estimated.  

 

Table 2: Empirical Guttman scalogram of response 

patterns averaged by sum scores for an instrument with 5 

items. 

 

θ level Item 1 Item 2 Item 3 Item 4 Item 5 

0 0 .253 .126 .149 .092 

1 1 0 .243 .216 .027 

2 1 1 0 .285 .228 

3 .727 1 1 0 0 

4 .760 .880 1 1 0 

5 .836 .873 .945 .727 1 

 

After estimating the ordinal θ level and the order of the 

items, our procedure uses Goode’s method to analytically 

derive an interval scale from an ordered metric scale of 

respondents and items. The ordered metric scale is a scale 

derived from the data dependent on empirical relations 
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regarding the distance between a respondent ordinal θ level 

and two items’ orders (i.e., b1 and b2), formally stated as: 

𝜃𝐼1̅̅ ̅̅ > 𝜃𝐼2̅̅ ̅̅ . (2) 

Equation 2 is simply an order relation of order relations 

(i.e., order relation of distances). Research in measurement 

theory has shown that ordered metric scales impose 

constraints on the uniqueness of numerical representations 

that can be derived from simple ordinal data (Coombs, 1964, 

p. 359). We propose that, for Guttman scales, the order 

relation of distances can be found by taking the average of 

the rows and the complement (i.e., 1 minus) of the average of 

the columns of the empirical Guttman scalogram. Because we 

know that the ordinal θ level represented with 0 is the 

smallest possible value and that the ordinal θ level 

represented with 5 is the largest possible value, we can use 

the aforementioned averages to create a dominance matrix, 

such as the one represented in Table 3. This table is created 

based on the distance between each point (i.e., a θ level or an 

item) and the ordinal θ level represented with 0. 

 

Table 3: Dominance matrix of θ levels and item orders. 

 

 I4 θ1 I3 θ2 I1 θ3 I2 θ4 I5 θ5 

I4 0 1 1 1 1 1 1 1 1 1 

θ1 0 0 1 1 1 1 1 1 1 1 

I3 0 0 0 1 1 1 1 1 1 1 

θ2 0 0 0 0 0 1 1 1 1 1 

I1 0 0 0 1 0 1 1 1 1 1 

θ3 0 0 0 0 0 0 1 1 1 1 

I2 0 0 0 0 0 0 0 1 1 1 

θ4 0 0 0 0 0 0 0 0 1 1 

I5 0 0 0 0 0 0 0 0 0 1 

θ5 0 0 0 0 0 0 0 0 0 0 
Note. I is an acronym for “Item”. 

 

For the next step of Goode’s method, one must choose the 

value for the smallest distance (represented as Δ0) and then 

analytically derive the next distances, Δj, for each distance j. 

We adapt Goode’s original equation to the current scenario 

and propose the following equation for calculating Δj: 

∆𝑗= ∆0(𝐶𝑆(𝑗) + 1) + 𝐶𝑆(𝑗), (3) 

where CS(·) is the sum of the column representing the 

distance j. For instance, CS(I4) is equal to 0 and CS(θ5) is 

equal to 9. Finally, the last step involves attributing values for 

each point. Arbitrarily, the smallest point θ0 may be set to 0. 

The other points can simply be attributed their Δj values, as 

these were calculated based on the points distance in relation 

to θ0. 

After analytically deriving all the scale values, which are 

measured in an interval level, one may wish to estimate how 

well this numeric approximation represents the data. One way 

of doing this is using a logistic or hyperbolic tangent function 

on the linearly transformed scale values and compare the 

results with the empirical Guttman scalogram. For the 

logistic function, we propose: 

𝐴𝑀(𝜃, 𝐼) =
1

1 + exp⁡(𝜓𝜃 − 𝜓𝐼)
, 

(4) 

where 𝜓θ and 𝜓I are, respectively, the normalized interval 

level measure for the ordinal θ level and for the item. For the 

hyperbolic tangent function, we propose: 

𝐷𝑀(𝜃, 𝐼) = 2
1

1 + exp⁡[−2(𝜑𝜃𝜑𝐼)]
− 1, 

(5) 

where 𝜑𝑙 = exp⁡(𝜓𝑙), as the exponential transform of the 

normalized interval scale values results in a ratio scale 

(Fishburn, 1974). Applying this procedure to the data that 

generated Table 2 results in a RMSE of .015 to the logistic 

function approach and in a RMSE of .184 to the hyperbolic 

tangent function approach. This result suggests that an 

interval representation is better than a ratio representation of 

the points. 

Final Considerations 

The GGS procedure can be used with any data following a 

direct response design (such as attitude or performance 

psychometric scales). The main advantage of the GGS 

procedure is that, different from Item Response Theory 

models, the scales are derived from ordered metric 

information in the data and, therefore, should be less reliant 

on response error. However, it should be noted that this is an 

initial implementation of the GGS procedure and limitations 

abound. For instance, Table 3 presents an intransitivity for θ2 

which is not dealt with. We also do not estimate the distances 

between intermediary points such as 𝜃2𝐼1̅̅ ̅̅ ̅ > 𝜃1𝐼2̅̅ ̅̅ ̅, which 

hides an implicit assumption that a unidimensional 

representation is the most appropriate (Coombs, 1964). 

Future studies should deal with these limitations to provide 

more robust metric scales for psychometric data. 
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