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Abstract

Intelligence is fundamentally the ability for an agent to infer
causal dependencies in its environment. However, the pre-
cise conceptualization across systems and scales is a polemical
question. The concept of “Intelligence” may as well refer to a
quantitative measure of formal cognitive ability than to a quali-
tative property of skilled agency. This difficulty in understand-
ing the concept compounds when we try to scale to descriptive
and predictive models of collective behavior. While it is self-
evident that groups may leverage pairwise interactions or their
collective resources to tackle complex problems, is that pro-
cess only the sum of individual intelligence or is the group in-
telligent in its own right? If the latter, what does it mean for the
classical internalist conception of intelligence and agency? If
the former, then what is the proper scale of analysis in systems
of nested organization, such as human societies? This question
can be approach rigorously through a non-reductive account of
the physical processes underlying intelligence. Here I propose
that the latent model framework(with active inference as in-
trinsic reward mechanism) framework is a promising approach
that could live up to the multiple dimensions of adeptness re-
quired by any framework that would attempt to generalize cog-
nition across scales. A statistical state model for mathematical
state transitions can be built and can be used to further define
cognitive model.
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Introduction

The view of mind as an experience generating machine or a
generative model goes further back than just recent Machine
learning breakthroughs (like Variational Autoencoders). This
paper takes a similar route. Starting out with explaining pos-
sible state-space configurations, a world-model (World Mod-
els, Ha and Schmidhuber) is mapped in the latent space. This
could be enough framework to explain individual actions in
an environment, just like it does with many model-based ap-
proaches to Reinforcement Learning. But, in contrast to most
RL approaches where reward is extrinsic and task structure
changes with it which works well in specific RL environ-
ments, where rewards are intrinsic in the complex environ-
ment itself (Reward is enough, Silver et. al) It fails to explains
intelligence at the collective level where the agents apart from
the environment, have formed a dynamic between themselves
too. This dynamic is represented through a collective latent
which can be traversed in an abstract space by the agents of
the collective for inference to eventually reach cognition as a
collective.

Towards a Free Energy Agent Cognitive Model

Agent’s configuration at an instant is defined by its state with
parameters interacting to form state variables. To establish a
stable ground I invoke the Free-Energy principle. While we
can argue about all derivations of intelligence, we can come to

standstill that the system exists. This is the basic formulation
of the Free Energy principle and everything is deduced from
this assumption with agent and environment in the frame.
The Active inference principle can be framed as the minimi-
sation of surprise (Friston, 2009) by perception and action.
Here, in discrete state models - agents select from different
possible courses of action (i.e., policies and their gradient of
preferences) in order to realise the preferences and thus min-
imise the surprise that they expect to encounter in the future.
This enables a Bayesian formulation of the perception—action
cycle (Fuster, 1990): agents perceive the world by minimis-
ing variational free energy, ensuring their model is consistent
with past observations, and act by minimising expected free
energy, to make future sensations consistent with their model.

Active inference describes the dynamics of systems that
persist (i.e., do not dissipate), and that can be statistically seg-
regated from their environment—conditions which are satis-
fied by biological systems. Mathematically, the first condition
means that the system is at non-equilibrium steady-state. This
implies the existence of a steady-state probability density to
which the system self-organises and returns to after perturba-
tion (i.e., the agent’s preferences). The statistical segregation
condition is the presence of a Markov blanket, where a set
of variables through which states internal and external to the
system interact (e.g., the skin is a Markov blanket for the hu-
man body).
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Above is an example of a discrete state-space generative
model which is how the agent represents the world. The gen-
erative model is a joint probability distribution over (hidden)
states, outcomes and other variables that cause outcomes. In
this representation, states unfold in time causing an observa-
tion at each time-step. The likelihood matrix [A] encodes the
probabilities of state—outcome pairs. The policy (Pi) spec-
ifies which action to perform at each time-step. Note that
the agent’s preferences may be specified either in terms of
states or outcomes. It is important to distinguish between



states (resp. outcomes) that are random variables, and the
possible values that they can take in S (resp. in O), which
we refer to as possible states (resp. possible outcomes).
Note that this type of representation comprises a finite num-
ber of timesteps, actions, policies, states, outcomes, possible
states and possible outcomes. The arrows represent causal
relationships (i.e., conditional probability distributions). The
variables highlighted in grey can be observed by the agent,
while the remaining variables are inferred through approxi-
mate Bayesian inference and called hidden or latent variables.
The Markov blanket of a random variable in a probabilistic
graphical model are those variables that share a common fac-
tor.

Concept of an Unsupervised Loss function and
Intrinsic Motivation

Since, most behaviour in individuals is directed or supervised
by a goal, agents seem conformity and don’t actually build
on cognitive structures. Here, the agents is set to traverse in
the abstract space without any prior goal or anything such, it
forms a geometrical projection on its own manifold, as the
process repeats, we can see what the function is being opti-
mised for intrinsically over the timesteps.

Convergence on the Latent

Letting the agents interact with the environment unsupervised
and intrinsically, they map out common latent abstract ge-
ometric manifolds (shown below). This is the moment of
Cognitive Convergence on abstract space. The energy-based
modeling view would be how a collective converges to a man-
ifold of equivalent energy.
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Results and further research directions

The Convergent latent can later manifest itself at common
playground of lingual abstractions through language, implicit
demographic knowledge through culture or any common cog-
nitive structure that developed intrinsically within the collec-
tive. The framework can also be used to describe any process
where goal(s) is(are) not explicit and system is set to evolve
with random initial configurations.
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