
Learning Basic Python Concepts Via Self-Explanation: 
A Preliminary Python ACT-R Model 

Veronica Chiarelli (veronicachiarelli@cmail.carleton.ca) 
Department of Cognitive Science 

Carleton University 
Ottawa, Canada K1S 5B6 

 
 
 
 

Abstract 
This paper presents a cognitive modelling approach to 
investigating student learning of computer programming 
concepts via self-explanation. Self-explanation involves 
explaining instructional material to oneself by generating 
inferences about the material. Here, we present a preliminary 
Python ACT-R model of novice and experienced students 
studying basic Python concepts and self-explaining. Our 
contributions include formalizing the self-explanation process 
and providing a framework that can be expanded to explore and 
simulate more aspects of this type of student study and learning 
in the domain of programming.  

Keywords: self-explanation; programming education; Python 
ACT-R; cognitive modelling 

Introduction 
Learning to program is difficult (Du Boulay, 1986; Duran, 
2020; Robins, 2019) with high drop out and failure rates in 
computer science classes relative to other courses. Research 
has shown that novices lack in-depth knowledge of computer 
science concepts and instead tend to approach programming 
activities in a superficial way (Robins, 2019). For instance, 
when aiming to comprehend programs, students tend to 
paraphrase the code in front of them rather than provide 
higher-level explanations of the program’s function (Biggs & 
Collis, 1982). 

Given these consistent difficulties, some research in 
computer science education has explored ways to help 
students learn more effectively. Some techniques are specific 
to topics of computer science while others draw inspiration 
from educational tools or approaches used in other domains. 
One general technique is self-explanation. 

Self-explanation is the process of generating explanations 
of instructional material to oneself (Chi et al., 1989). To 
illustrate, self-explanation can involve making inferences on 
the domain concepts needed to generate worked-out example 
solutions and/or by making connections between various 
concepts. Self-explanation is highly beneficial for learning, 
(Chi et al., 1989; Chi et al., 1994; Renkl, 1999). While not all 
students spontaneously self-explain, Chi et al. (1994) found 
that explanations can be elicited by simply prompting 
students to self-explain instructional text. This result has 
since been replicated in other studies (Conati & VanLehn, 
2000). 

To date, the utility of self-explanation has been mainly 
investigated in domains other than programming and so work 

is needed to identify the mechanisms of self-explanation for 
this domain. This paper presents a preliminary model of how 
students learn through self-explanation of a short 
instructional text about the programming language Python. 
Before we present the model and results, we provide some 
background research to contextualize our findings.  

Background 
Chi et al. (1989) identified the self-explanation effect through 
their seminal study examining how students learn from 
instructional materials. The goal was to identify why some 
students learned more than others from studying activities. 
The student participants read a physics textbook and then 
studied examples and worked on problems. While they 
studied examples, they verbalized their thoughts, providing 
access to their reasoning. Student utterances were analyzed 
using qualitative methods and this analysis revelated that 
some utterances contained self-explanations while others 
corresponded to mere paraphrases of the instructional 
materials. The results showed that students who learned more 
produced more self-explanations than paraphrases and that 
their self-explanations expanded on the material and/or 
linked concepts or examples. The self-explanation effect has 
been replicated through studies in diverse domains like 
biology (Chi et al., 1989), math (Renkl, 1997) and 
programming (Recker & Pirolli, 1995). The focus on 
experimental work, and particularly studies aimed at 
characterizing the self-explanation phenomena and/or 
interventions to encourage this activity has meant that there 
is less work computationally modeling self-explanation. 
There are, however, notable exceptions that we now describe. 

Cascade is a Prolog-based computational model of how 
students solve physics problems in the presence of examples 
(VanLehn, Jones, & Chi, 1992). Cascade can both study 
examples and solve problems. When studying, it “reads” an 
example and attempts to self-explain each solution step by 
deriving it using existing facts in its memory. If no 
appropriate rule can be found, Cascade self-explains the 
example using common sense and reasoning to derive a new 
rule. Good students modelled by Cascade use different 
strategies while studying examples than poor students do. 
Namely, good students self-explain examples that they are 
studying while poor students simply accept that the examples 
are correct without actively processing why that is the case. 
Running the model demonstrates the self-explanation effect. 



That is, the results show that the number of simulated self-
explanations is positively correlated with the number of 
correct problems solved by the model. This makes sense 
since self-explanation increases the likelihood that a student 
will encounter new rules or uncover impasses or gaps in 
knowledge that act as learning opportunities. 

Jones and Fleischman (2002) investigated student learning 
about probability via faded examples (incomplete examples 
that require the students to fill in the missing material). The 
hypothesis was that more learning will take place if a student 
is challenged to complete faded examples as opposed to 
studying already fully worked out examples that can more 
easily be passively accepted as accurate. To test this 
hypothesis, they added a new knowledge base to Cascade to 
support computing probabilities. To evaluate the extended 
model, they conducted simulations of the model, and also 
compared the model actions related to learning probabilities 
from faded examples with a student learning from the same 
examples. The simulations revealed that faded examples 
resulted in more student self-explanations than completely 
worked-out examples and that faded examples exposed more 
impasses (knowledge gaps), thereby uncovering more 
learning opportunities. However, not all student learning was 
accurately modeled. For example, some students would learn 
the correct application of a rule over the course of several 
examples. Cascade was unable to capture that gradual 
progression.  

Other work has focused on modelling problem solving 
without including example studying or self-explanation 
behaviours. Braithwaite and Pyke (2017) created a 
computational model of learning fraction arithmetic and 
compared it to student learning data. The model simulated 
problem-solving via reinforcement learning of rules, initially 
including various correct and incorrect rules and then 
increasing activation of selected rules as it progressed 
through example study and problem solving. The model was 
implemented to reinforce strategies that lead to correct 
problem-solving actions when applied correctly by 
increasing the strategies’ activation. Because they were 
reinforced, those strategies became simultaneously more 
likely to be correctly selected to solve a problem and more 
likely to be incorrectly selected to solve a problem for which 
they were not appropriate. This reinforcement of strategies 
was implemented because the model assumed that the 
majority of student errors come from overgeneralizations of 
fraction arithmetic rules. Test runs revealed that the textbook-
trained model accurately reproduces student performance 
data and that model simulations trained on unbiased 
distributions of examples and problems performed better on 
problems that are underrepresented in popular textbooks. The 
model accurately simulated student difficulties while 
learning and provided some evidence in support of the 
assumption that unrelated statistical properties also have an 
impact on student learning. 

So far, we have described computational models that aim 
to simulate human problem solving and/or example studying. 
Other computational frameworks produce interventions to 

enhance learning. For example, Conati and VanLehn (2000) 
extended Andes, a tutoring system for the domain of 
Newtonian physics, to support example studying by 
encouraging self-explanation through prompts and feedback. 
The framework doesn’t simulate self-explanation but rather 
assesses its presence or absence using a model of the student. 
For example, if a student using this system spends enough 
time viewing an example, they will not be prompted to self-
explain because the model will deem that sufficient effort was 
spent on the example to result in learning. Results from an 
evaluation of the system showed that the tutor was a 
beneficial tool, specifically for increasing student learning in 
the early stages of example study. 

Recker and Pirolli (1995) also created a type of computer 
tutor, in this case for programming education. They 
investigated how students learned programming skills 
through self-explanation using an embedded hyper-text non-
linear environment to present the instructional materials and 
elaborations on the text versus a typical linear instructional 
text. They found that high ability students (labelled as high 
ability based on post-test scores) benefitted from the hyper-
text environment, suggesting that the self-directed learning 
skills of those students enabled them to use the embedded 
elaborations to their advantage. Conversely, low ability 
students did not benefit from the experimental environment, 
suggesting that it may have increased cognitive load for these 
students. Analysis of self-explanations demonstrated that 
good students most frequently made comments about the 
domain (showing that their focus was on the content) while 
poor students most frequently made comments related to 
navigation (showing that they were more focused on interface 
features than on the lesson content).  

The challenge of understanding how students learn and 
how to enhance student learning is one that has been 
approached in various ways. We contribute to this effort and 
introduce a preliminary model of learning via self-
explanation in the domain of programming education.  

Python Self-Explanation Model 
The goal of the Python self-explanation model is to simulate 
student learning through self-explanation in the domain of 
learning to program. It simulates the process of novice or 
experienced students self-explaining a short instructional text 
about Python. In its current state, the model randomly assigns 
a pre-test score, then self-explains each line of text by 
retrieving existing knowledge from memory and producing 
that knowledge as a self-explanation and then finally it 
calculates the post-test score based on the self-explanations 
produced. For this preliminary model, learning is simulated 
by an increase from pre-to post-test scores.  

Theoretical Foundation 
Muldner, Burleson and Chi (2014) investigated how self-
explanation helps students learn about emergent phenomena 
in a study where students were prompted to self-explain texts 
about diffusion. To investigate the impact of different kinds 
of self-explanations on learning, each utterance was labelled 



as either a macro-level explanation, a micro-level 
explanation, an inter-level explanation, a paraphrase, or 
other. The results showed that some explanations were more 
strongly related to student learning than others. We extend 
this framework to the domain of programming, modifying the 
characterization of the explanations to make them suitable for 
the programming domain.   

In the present work, micro-, macro- and inter-level self-
explanations are defined for the domain of programming as 
follows. Micro-level self-explanations correspond to 
utterances about the directly visible elements in a program 
(such as programming syntax) or in the instructional text. 
Macro-level self-explanations are inferences about high-level 
programming concepts, such as the idea behind a given code 
segment. Inter-level self-explanations act as a bridge between 
micro-level and macro-level concepts and, as such, they 
explain the connection between the directly visible elements 
in the instructional text and their use or purpose. 

For example, the line of instructional text “It is necessary 
to update the condition in order to eventually break out of the 
loop.” could be explained in the following ways. A micro-
level self-explanation could be “This works using conditions 
that can change.” This is micro-level because it focuses 
uniquely on the words condition and update which are found 
in the line of text. A macro-level self-explanation of the same 
line could be “Just like if there is no stop sign, people will 
keep driving.” This self-explanation shows an understanding 
of the purpose and function of a while loop. An inter-level 
self-explanation connects micro- and macro-level ideas. 
“Just like you will wash one dish at a time until there are no 
more dirty dishes, this will repeat until some condition 
happens” is an example of an inter-level self-explanation for 
that same line of text. In this model, paraphrases are just 
restatements of the instructional text.  

As in Muldner, Burleson and Chi (2014), the present model 
defines learning as the increase from pre- to post-test scores. 
Based on the learning outcomes of Muldner, Burleson and 
Chi (2014), in the present work, the most learning occurs with 
inter-level self-explanations, followed by micro-level, then 
macro-level, and finally the least learning occurs with 
paraphrases. Since the model here has not yet been developed 
to acquire new rules and knowledge, it uses the experimental 
findings about the relationship between levels of self-
explanations and learning (from other domains) to calculate 
a post-test score, as we will describe in more detail shortly. 

Model Framework, Environment and Components 
Modeling Framework. ACT-R is a well-known theory of 
cognition which includes theories of declarative memory, 
procedural memory, and a chunk and buffer system 
(Anderson, 2007). The original computer architecture of 
ACT-R was implemented using Lisp. That implementation 
restricts modelling to directly reflect the theory, so 
implementing some features can implicitly have side effects 
on other parts of the model. To allow for flexibility, Stewart 
and West (2007) created Python ACT-R. This framework has 
the three main components from ACT-R (a chunk-based 

communication system, a chunk storage system, and a pattern 
matching production system), but is implemented in Python. 
The Python code is based on the theory itself rather than 
being a direct translation from the original Lisp. Stewart and 
West (2007) thus demonstrated that the theory is separable 
from the code.  Also, the simple module creation in of ACT-
R and the ability to manually adjust more components makes 
it more flexible than Lisp ACT-R and promotes more 
extensive exploration of ACT-R theory, claims, and 
components. For these reasons, we used Python ACT-R as 
the basis for the present model. The model includes an 
environment and modules, described below.  
Model Environment. The main component of the model 
environment is the instructional text. For the present work, 
the text describes the syntax and the concepts of “if 
statements” and “while loops” in Python. There are 13 lines 
of text in total.  Each line is stored as an element in the 
instructional text environment and has an associated state. 
The lines are initially in a state of “read” to indicate that the 
line has yet to be read (and subsequently self-explained by 
the model). Each line of the text is also labelled as belonging 
to one of the three levels of knowledge (macro-, micro- or 
inter-level). 

Other information stored in the environment includes a 
count of the number of macro-level, micro-level, and inter-
level self-explanations as well as a count of paraphrases. All 
of these are initially set to 0 since no self-explanations have 
been produced before the model runs. During model 
execution, the counts are updated as each line of the text has 
been self-explained to keep track of the type of self-
explanation produced. The environment also includes the 
pre-test score and the post-test score used to quantify 
learning. The calculation of these scores happens in the self-
explain module (described below). Finally, the environment 
includes the experience level of the student being simulated 
by the model, either “novice” or “experienced”. This 
experience level influences the model execution, reflecting 
that novices self-explain differently and have more to learn 
than experienced students.  
Model Modules. A key benefit of self-explanation is the 
integration of new and existing knowledge, meaning that 
students make connections between the text and what they 
already know. In order for the model to simulate existing 
knowledge, the Python ACT-R declarative memory module 
is initialized to model a student’s prior knowledge. 
Specifically, the model’s declarative memory is initialized 
with chunks of domain information. Each chunk specifies the 
knowledge itself (a piece of existing knowledge), the level of 
that knowledge (macro-level, micro-level, inter-level), and 
the topic of the knowledge (a label indicating the topic of the 
existing knowledge). When the model runs, the declarative 
memory buffer is used to retrieve existing knowledge chunks. 
Some noise is added to the declarative memory to account for 
the fact that which chunk of knowledge is retrieved is not 
always predictable.  

When the model self-explains a line of text, it attempts to 
retrieve a relevant chunk of existing knowledge from 



declarative memory. The relevance of a chunk is influenced 
by its topic and its knowledge level. A chunk is most relevant 
to a line of text if they have the same topic and if their 
knowledge level (inter-, micro-, macro-level) is similar. 
Knowledge levels were defined as partially similar to one 
another as follows. Inter-level was set to be partially similar 
to both macro-level and micro-level while micro-level and 
macro-level are set to be dissimilar. This choice was made 
based on the assumption that an inter-level explanation for a 
topic is always suitable since it serves as a bridge between the 
other concept levels. Meanwhile, micro-level and macro-
level concepts are quite different and, therefore, it is less 
likely that a student would choose to produce a micro-level 
self-explanation for a macro-level line of text, for example.  

The model also includes a self-explanation module that 
contains a production to change the state of a line of text from 
“read” to “self-explain” (to indicate that the line has been 
read and self-explained), a production to update the count of 
the different levels of self-explanations produced, and 
productions for updating the pre-test and post-test scores. 
Since this is a preliminary model, it does not yet simulate the 
process of taking the pre-test and the post-test. Instead, the 
pre-test score is randomly determined from a range of values 
depending on the student experience level. Novice student 
pre-test scores arbitrarily range from 30% to 40% based on 
the assumption that novices will not have the knowledge 
required to pass a programming pre-test. Experienced 
students are assumed to only have minimally more 
experience than novice students and, as such, their randomly 
chosen pre-test score will fall within the range of 45%-60%. 
Given that previous research has demonstrated that inter-
level explanations are associated with the most learning, 
micro-level with slightly less learning and macro-level and 
paraphrases with the least learning (Muldner, Burleson & 
Chi, 2014), the following equation was used to determine a 
post-test score: 

Post-test score = S + ! !
!"
" •  

(I + !"
#
" • M + !!

$
" • A + !!

"
" • P) • (100-S) 

where S is the pre-test score, I is the number of inter-level 
self-explanations produced, M is the number of micro-level 
self-explanations produced, A is the number of macro-level 
self-explanations produced, and P is the number of 
paraphrases produced. With this formula, all simulated 
students will have post-test scores higher than their pre-test 
scores, which makes sense since it is assumed that students 
will not lose any programming knowledge by self-explaining 
the instructional text. Further, in order to match previous 
findings in other domains that show the most learning is 
associated with inter-level explanations, a perfect score in 
this model is possible if all self-explanations are inter-level. 
(Note this is based on an assumption that the findings in other 
domains hold in this domain which still needs to be verified 
experimentally.) All other possible scores are a function of 
the number of each level of self-explanation produced 
weighted by the relative amount of learning assumed to be 
associated with the given level of self-explanation. 

Model Execution 
A run of the preliminary model begins by manually setting 

the model parameter for experience level as either novice or 
experienced. While the same Python ACT-R parameters are 
used to produce self-explanations when simulating either 
type of student, the student type influences the levels of self-
explanations produced.  In the programming domain, novices 
have been shown to be more likely to provide micro-level 
self-explanations than any other level of self-explanation 
(Robins, 2019). So, if simulating a novice student, the model 
rehearses micro-level knowledge in memory, thereby 
making it more salient in memory and strengthening its 
activation. In other words, novice student simulations are 
more likely to retrieve micro-level knowledge when self-
explaining. If the experience parameter indicates previous 
programming experience, then the model will rehearse inter-
level knowledge since, unlike novices, experienced learners 
are known to have more complete schemas and can therefore 
connect different levels of ideas (Robins 2019). This is why 
inter-level knowledge is more likely to be retrieved during a 
simulation of an experienced student’s self-explanations. 
Like all other levels of knowledge, macro-level knowledge 
still is added to declarative memory for every type of student, 
it is just not rehearsed and therefore is less salient and less 
likely to be retrieved. This is because Muldner, Burleson and 
Chi (2014) reported than macro-level self-explanations are 
least frequently produced by all students. Next, the model 
fires the pre-test production to randomly assign a pre-test 
score to the student, influenced only by the experience level. 

The model then simulates self-explaining of the text. 
Specifically, it reads a line of instructional text and connects 
that text to existing knowledge. This is achieved by retrieving 
chunks of knowledge from declarative memory related to the 
topic and knowledge level of the text line (recall that all 
chunks in declarative memory are labelled with the topic and 
level). Figure 1 demonstrates a summary of the process of 
self-explaining a line of the instructional text. The model 
reads the line “The syntax of an if statement is: if [condition]: 
[do something] else: [do something else]”, retrieves a micro-
level chunk from memory, and produces the chunk’s 
knowledge as a self-explanation “So we have to write down 
the words ‘if’ and ‘else’”.   

 

 
Figure 1: Self-explaining a line of text. 

 
 As mentioned, knowledge levels have been assigned to 

lines of instructional text and to chunks in declarative 
memory. However, given the a priori specified similarity 



between knowledge levels and the effect of noise in 
declarative memory, the retrieved knowledge may not 
correspond to the knowledge level or topic of the line of 
instructional text. This simulates the fact that students may 
not always be able to retrieve related knowledge when they 
want to self-explain. For this model, any topic-relevant 
knowledge that is retrieved will lead to successful self-
explanation since, for example, a macro-level line can be 
explained by inter-level knowledge. However, if the retrieved 
knowledge does not relate to the topic of the line of text, then 
that knowledge cannot be used to produce a self-explanation 
of the line resulting in the model disregarding the retrieved 
knowledge and, instead, just paraphrasing the line. Similarly, 
a failure to retrieve knowledge of any kind for a given line 
leads to a paraphrase of that line. After each line is self-
explained, the count of each level of self-explanation is 
increased accordingly.  

Finally, when the model has self-explained each line of the 
text, it calculates a post-test score using the post-test score 
formula previously described. The simulation displays the 
pre-test score, the number of self-explanations of each level 
produced, and the post-test score. 

Results 
Sample runs of the preliminary model were used to evaluate 
how it performed when modelling learning via self-
explanation in the domain of programming. Table 1 displays 
results of running the Python self-explanation model 5 times 
as a novice programming student, and 5 times as a more 
experienced programming student. The table displays the 
pre- and post-test percentage scores and the percentage of 
learning gains along with the count of each level of self-
explanation produced. 

The results indicate that the Python self-explanation model 
does accurately simulate some findings of learning via self-
explanation. Micro-level self-explanations were the most 
common type of explanation produced by novice student 
simulations and inter-level self-explanations were the most 

common type produced by experienced student simulations. 
The novice student simulation reflects experimental data 
showing that novice programmers focus on the line-by-line 
details rather than the overarching concepts or connections 
between the syntax and the concept (Robins, 2019). This 
model also accurately reflects prior findings that, with 
experience, more complete schemas exist connecting code to 
concepts thereby permitting inter-level self-explanations for 
experienced learners. The very low number of macro-level 
self-explanations as compared to inter-level or micro-level 
self-explanations matches the observations of Muldner, 
Burleson and Chi (2014) and is understandable in our 
simulations since the model rehearses micro-level or inter-
level knowledge (depending on student experience level) but 
not macro-level knowledge. So, while chunks of all three 
levels of knowledge exist in declarative memory, macro-level 
chunks have not been rehearsed for the reasons stated above 
and are therefore less salient and less likely to be retrieved for 
self-explanation.  

The relationship between learning gains and levels of self-
explanation matches the relationship described in the 
Muldner, Burleson and Chi (2014) data. This is built into the 
model as the post-test score is a weighted function of the 
levels of self-explanations produced. For example, the 
highest learning gains for a novice come from S1, and for an 
experienced simulation, S10, both of whom produced more 
inter-level self-explanations than any other simulations with 
their experience level. So, inter-level self-explanations 
resulted in the most learning.  

The results accurately indicate that there were learning 
gains for all simulated students. Further, novice runs of the 
model result in more learning than experienced runs. This 
seems reasonable since novice students simply have more to 
learn. However, since the pre-test scores are randomly 
selected and the post-test scores are simply calculated as a 
function of weighted level of self-explanations produced and 
the pre-test score, this result is hard coded into the model 
rather than being determined by simulating the pre-test and 
post-test in full, so these results are expected. 

 
Table 1: Results of 10 sample runs. 

Student Pre-test Micro Inter Macro Paraphrase Post-test Gains 
N S1 37 5 6 0 2 87 50 
N S2 36 6 1 0 6 72 36 
N S3 38 7 2 1 3 79 41 
N S4 36 5 4 0 4 80 44 
N S5 32 5 3 0 5 76 44 
Average 
(Novice) 

35.8 5.6 3.2 0.2 4 78.8 43 

E S6 51 3 4 1 5 82 32 
E S7 55 2 3 2 6 80 25 
E S8 51 3 5 1 4 85 34 
E S9 52 4 3 2 4 82 30 
E S10 49 1 7 0 5 85 36 
Average 
(Experienced) 

51.6 2.6 4.4 1.2 4.8 82.8 31.4 



Discussion and Future Work 
As described in the background section, cognitive models 

can provide valuable insight into how students learn and can 
inform effective teaching strategies and interventions. Yet, 
due to the complexity and intricacies involved in learning, 
such as individual learner differences and differences in 
domains, a complete model of the learning process has yet to 
be created. The Python self-explanation model is a 
preliminary step for informing on learning via self-
explanation in the domain of programming. 

While the current model captures some aspects of self-
explanation such as drawing on existing knowledge, it does 
not yet simulate the acquisition of new knowledge. If the 
learning process were expanded to include the ability to learn 
new rules through commonsense and general reasoning, as is 
the case with models like Cascade (VanLehn, Jones, & Chi 
1992), then it would be possible to also simulate the pre- and 
post-test activities, as opposed to randomly producing a pre-
test score and then a post-test percentage calculated using 
weighted counts of levels of self-explanations. Supporting 
new rule acquisition and subsequently modelling the pre- and 
post-tests could provide insight into mechanisms used by 
students when they apply the knowledge gained from the self-
explanation exercise to a problem-solving test.  

There are various other avenues for future work. One 
extension would be to model more types of students. Robins 
(2019) describes that in the field of programming education, 
three distinct clusters of students emerge. There are 
“stoppers” who withdraw from or abandon the activity 
quickly when they encounter difficulties, “movers” who trace 
code and try to navigate to a correct solution when they notice 
an issue, and “tinkerers” who react to problems by trying 
different tweaks of the code somewhat haphazardly and 
without code tracing. These clusters all pertain to program 
generation and so work is needed to determine if these 
clusters also emerge in activities that involve reading and 
explaining programs and instructional materials. If similar 
clusters of student types exist when self-explaining, these 
student types’ self-explanation patterns could be modelled in 
addition to modelling differences in two experience levels. 
Alternatively, modelling the learning patterns of good and 
poor students as examined in Chi (1989) or of high and low 
ability students as in Recker and Pirolli (1995) could be an 
informative next step. A more sophisticated extension could 
include modelling individual differences on a continuum 
from novice to expert rather than modelling students as 
falling within specific experience or type categories. 

Another avenue for future work involves adding capability 
to model student emotion during the self-explanation process. 
We began work for this step. Specifically, although it was not 
described here, our model includes a preliminary emotion 
module. Currently, all simulations produce states 
corresponding to motivated and happy at times, but also 
individual runs of the model will produce either frustration or 
boredom while self-explaining each line of text, influenced 
only by the student experience level. That is, runs of the 

model representing experienced students produce reports of 
feeling bored more often than frustrated while novice runs 
more frequently produce frustration. This was a first step in 
modelling some basic emotions guided by the assumption 
that novice difficulties lead more often to frustration while 
experienced pre-existing programming knowledge makes 
reading a basic instructional text a more boring exercise. The 
model does not yet take into account text complexity (e.g., 
which may commonly elicit frustration across all experience 
levels). Also, the emotion is not yet related to the level of self-
explanation produced so, the fact that a student paraphrases 
because they cannot retrieve relevant knowledge, for 
example, does not make them any more likely to feel any 
frustration than if they, say, successfully self-explain a line 
with inter-level knowledge.  This leaves a lot of room for 
improvement in the emotion module of future versions of the 
model including modelling a wider range of emotions, the 
connection between lines of text and emotions, the 
relationship between successful self-explanations and 
emotions, or even the intricacies of the various emotions 
associated with more types of students (such as the stoppers, 
movers, tinkerers, or good and poor students suggested 
previously).  

Additionally, most existing data comes from self-
explanation studies in other domains. Confirming that the 
same patterns emerge within the topic of learning to program 
would better inform this and future models. 

Acknowledgements 
Thank you to Robert West for providing guidance on Python 
ACT-R and to Kasia Muldner for providing feedback on this 
work and paper. 

References  
Anderson, J. (2007). 1 Cognitive Architecture. In How Can 

the Human Mind Occur in the Physical Universe? Oxford 
University Press.  

Biggs, J. B., & Collis, K. F. (1982). Evaluating the Quality of 
Learning: The SOLO Taxonomy (Structure of the 
Observed Learning Outcome). New York: Academic Press.  

Braithwaite, D. W., Pyke, A. A., & Siegler, R. S. (2017). A 
computational model of fraction arithmetic. Psychological 
Review, 124(5). 

Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & 
Glaser, R. (1989). Self-explanations: How students study 
and use examples in learning to solve problems. Cognitive 
Science, 13(2). 

Chi, M. et al. (1994). Eliciting self-explanations improves 
understanding. Cogn. Sci. 18 (1994). 

Conati, C., & VanLehn, K. (2000). Toward computer-based 
support of meta-cognitive skills: A computational 
framework to coach self-explanation. The International 
Journal of Artificial Intelligence in Education, 11. 

Du Boulay, B. (1986). Some difficulties of learning to 
program. Journal of Educational Computing Research, 
2(1).  



Duran, R. (2020). Cognitive Complexity of Comprehending 
Computer Programs. Aalto University.  

Fleischman, E., & Jones, R. (2002). Why example fading 
works: A qualitative analysis using cascade. 

Muldner, K., Burleson, W., & Chi, M. T. H. (2014). Learning 
from self-explaining emergent phenomena. Proceedings of 
International Conference of the Learning Sciences, ICLS, 
2. 

Recker, M. M., & Pirolli, P. (1995). Modeling individual 
differences in students' learning strategies. Journal of the 
Learning Sciences, 4(1). 

Renkl, A. (1999). Learning mathematics from worked-out 
examples: Analyzing and fostering self-explanations. 
European Journal of Psychology of Education, 14(4). 

Robins, A. (2019). Novice programmers and introductory 
programming. The Cambridge Handbook of Computing 
Education Research. 

Stewart, T., & West, R. (2007). Deconstructing and 
reconstructing ACT-R: Exploring the architectural space. 
Cognitive Systems Research, 8(3). 

VanLehn, K., Jones, R. M., & Chi, M. T. H. (1992). A model 
of the self-explanation effect. Journal of the Learning 
Sciences, 2(1).Hill, J. A. C. (1983). A computational model 
of language acquisition in the two-year old. Cognition and 
Brain Theory, 6. 


