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Abstract 

Polarization of attitudes is an important, and often troubling 
or disruptive, effect of interest in many fields. We seek to shed 
some light on how polarization arises by applying cognitive 
architectures to the problem. We created a novel embedding 
of individual cognitive agents, using ACT-R’s declarative 
memory model, into social networks, simulated them 
communicating over time, and observed the evolution of the 
agents’ attitudes, both collectively and individually. The 
primary measures we use are both Shannon entropies, of the 
distribution of attitudes in the final configuration of the whole 
social network, and of the distributions of memory traces in 
the individual agents at the end of the simulation. Simulations 
were run over ten different network topologies, using three 
different distributions of narrative valences, and five different 
values of the agents’ memory decay parameter. These 
simulations demonstrated that polarization can be understood 
from a social and cognitive perspective simultaneously, each 
providing insights into the system’s behavior.  
 
Keywords: Cognitive Modeling; Long-Term Memory; 
Resting-state fMRI; Functional Network, Attitudes, 
Polarization, Social Networks. 

Introduction 

Attitudinal polarization has a long history in political 

science, sociology, and social psychology.  It is no less 

relevant today than it was 50 years ago.  A seemingly 

obvious scientific question is to ask to what extent we can 

understand attitudinal polarization from the perspective of 

cognitive architectures.  This question has interest beyond 

the purely scientific.  Understanding the structure of 

attitudes (as relations among beliefs) and the dynamics of 

attitude change can yield actionable insight for applications 

in, for example, public health (Orr, Thrush & Plaut, 2013).  

Yet, our understanding of attitudinal polarization, from a 

cognitive perspective, relies nearly exclusively on work in 

social psychology, a discipline with little intersection with 

cognitive architectures.   

Polarization in attitudes, typically, is a valenced affair, in 

which an object of contention is evaluated with respect to its 

goodness/badness, desirability/repulsiveness, 

approachability/avoidability.  It is typically described as a 

distribution across individuals (humans, bots, agents, or 

even models).  It is also naturally described as a networked 

phenomenon, where clusters of individuals can develop 

solidarity or polarization or other variants on a theme.  

Important questions include:   What aspects of cognitive 

functioning are implicated by polarization?  Do polarized 

minds lead to polarized social spaces (or vice versa)?  Are 

there interesting threshold effects or other non-linear 

relations between mental and social scales? 

If the answers to these kinds of questions seem obvious to 

you, then consider this.  The famous Shelling segregation 

model (Shelling, 1971) provided somewhat shocking insight 

into the relation between mental states and social structure -

- low degrees of individual-level preferences for segregation 

generated strong system-level segregation.  We use this 

example to illustrate that the relation between levels of scale 

is not obvious.  It must be investigated rigorously.  Using 

the perspective of cognitive architectures, as a 

computational, mechanistic lens, should yield a set of novel 

insights into polarization and other social phenomena of 

interest to those working on public health, security, human 

rights and environmental issues. 

The goal of this paper is to describe an approach for 

studying attitudinal polarization using cognitive 

architectures and to show its potential value.  We do this in 

a stylized way, with an abstract social space and the co-

opting, in a highly formal way, of a specification of attitudes 

from social psychology.  The central question we pose, but 

do not yet answer, is this:  Can we describe the conditions, 

initial or otherwise, of the mental and social systems that 

guarantee stability in both (or either) the mental or social 

systems. Stability is well-understood in real-valued or 

binary networked systems (e.g., Bhat and Redner, 2019).   

But these networks are a poor abstraction for human 

cognitive complexity and their organization in social 

structures. What about socio-cognitive systems? 

Toward this end, we provide a study of the relation among 

the distribution of attitudes and beliefs in a population and 

the social network structure of that population with respect 

to two outcomes, one in terms of external behavior and the 
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other in terms of internal mental representation.  The former 

is derived from the distribution of beliefs in the population 

and the latter is derived from the distribution of beliefs 

within individuals.  Thus, we capture both the mental and 

the social in equal, symmetrical measures. In the results 

section, we will tie our work to future directions in the 

contexts of cognitive architectures, social psychology and 

sociology. 

Simulating Social Networks 

The spread of information across social networks is 

difficult to study experimentally. For this reason, 

researchers frequently make use of either large-scale, quasi-

experimental data, such as analysis of large corpora of 

Twitter messages, or multi-agent simulations. Such 

techniques also are routinely used by social media 

companies. 

In social network simulations, agents are modeled as 

nodes in a network whose edges are communication 

channels. Agents exchange information across these 

channels. The spreading of information is then studied as a 

function of factors such as network geometry (e.g., small 

world networks), agent goals (e.g., reaching consensus), and 

communication intent. 

Simulating Plausible Cognitive-Social Agents 

To reduce the complexity of the simulations, most 

computational social science efforts use relatively simple 

agents, often with little or no cognitive ability. This is 

sufficient to capture some network-level dynamics, such as 

those that lead to consensus within a group (Romero & 

Lebiere, 2014) or the production of original ideas in science. 

When the goal is to understand the interplay between social 

interactions (at the network level) and psychological 

constructs (at the agent level), it is warranted to imbue the 

agents with cognitively plausible assumptions about their 

thought processes. For example, Lindstrom et al. (2019) 

augmented social agents with reinforcement learning 

capabilities to successfully capture the addictive qualities of 

social media behavior.  

Because we are interested in the interaction between 

network dynamics and internal beliefs, we endowed our 

agents with a realistic model of declarative memory. 

Specifically, we used Anderson’s model of memory, 

reflecting the rational analysis of our environment reflected 

in our memory mechanisms (Anderson & Schooler, 1991). 

Those regularities, such as the power law of practice and 

forgetting, have also been observed in recently developed 

information environments such as social networks (e.g., 

Hubermann et al, 1998; Stanley & Byrne, 2016). In this 

model, the availability of memory m is related to its base-

level activation function B(m). Every time m is retrieved or 

re-encoded, a new trace is created. The final activation of m 

is the sum of the decaying activations of all its traces, with 

stochastic noise added to make the retrieval process 

stochastic: 

 

B(m) = log ∑i ti
-d 

 

where ti is the time elapsed since the creation of the i-th 

trace and d is the characteristic decay rate of an agent 

memory. 

Connecting Memory and Social Behavior 

In addition to receiving and internalizing information, an 

agent in a social network also sends messages across the 

network. The choice of which messages to spread is, 

ultimately, a problem of decision-making (Hackel et al., 

2020.). To connect an agent’s decisions to its memory, we 

used  Gonzalez et al.’s (2003) instance-based learning 

framework (IBL). In IBL, agents select their next action by 

generating expectations reflecting previous experiences in 

memory that match the current context. This framework is 

particularly appealing because it meshes well with the ACT-

R declarative model and has a long history of successful 

applications in decision-making (e.g., Erev et al, 2010). 

Furthermore, while rooted in declarative memory models, 

IBL gives predictions that are largely consistent with 

reinforcement learning (Chelian et al., 2015), another 

framework that has been successfully applied to social 

networks.  

In IBL previous memories are aggregated through a 

mechanism called blending, which combines different 

outcomes in a weighted average, based on the probability 𝑃𝑖 
of retrieval of each memory reflecting its activation and 

similarities between the contents of the memories: 

𝑉 = 𝑎𝑟𝑔𝑚𝑖𝑛∑ 𝑃𝑖 ⋅ (1 − 𝑆𝑖𝑚(𝑉𝑖 , 𝑣𝑖))
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Our model represented narratives and their associated 

valence (defined in a [-1, 1] interval) as chunks in memory. 

At each iteration, the model representing a node in the 

network would store in memory all the narratives received 

from its neighbors. It would then compute the node’s 

attitude by performing a blended retrieval over all narrative 

chunks in memory, extracting a consensus valence. The 

model would then generate a narrative to spread to its 

neighbors by matching the node’s attitude against the 

valence of the narrative chunks in memory. The resulting 

output reflects a combination of attitude of the node and 

popularity of narratives in its ego network. 

Information Entropy as a Common Measure of 

Cognitive and Behavioral Dynamics  

Because our goal is to measure changes in social behavior 

and in agent cognition at the same time, it is useful to have 

a common metric that applies to both.   

To do so, we used Shannon’s information entropy H 

(Shannon, 1948), which can be defined over the set of 

beliefs S (pairs of narrative and valence): 

 

H = −∑i ∊ S P(i) log P(i) 

    



where P(i) is the probability of encountering the i-th  

belief, Although the definition of H is the same, the 

interpretation is different within a social context (between 

agents) and a cognitive context (within a single agent’s 

memory). 

Social Entropy. Social entropy is a measure of uncertainty 

or consensus of the narratives that were propagated by all 

agents in the network during the final time step of a 

simulation. The probability P(i) of the i-th belief is defined 

as the proportion of times it is propagated over the network 

in a given interval time. Thus, social entropy reflects the 

order or disorder of each simulation's final state.  Roughly 

speaking, 0 bits of social entropy indicates consensus, i.e. 

all agents propagating the same narrative with the same 

valence, whereas fragmentation (a diversity of opinions) is 

indicated by 2 or more bits of social entropy.  One bit of 

social entropy indicates polarization. 

Cognitive Entropy. Within a single agent, entropy is 

defined by the activation of beliefs in memory. Because the 

combination of narrative/valence pairs are encoded as 

chunks in ACT-R, entropy is calculated from the probability 

that a given chunk in declarative memory (DM) will be 

retrieved and spread over the network. In turn, the retrieval 

probability of a chunk i is related to a memory’s base-level 

activation by the function: 

 

P(i) = eB(i)  /  ∑j ∊ DM eB(j)  

 

Thus defined, Shannon’s entropy captures the degree of 

the internal organization of memories in a given agent and 

captures the agent's need to allocate cognitive resources to 

the different narratives. In this sense, information entropy 

has been previously used, for example, to derive predictions 

about the size of the hippocampus in humans (Smith et al., 

in press).  

 Materials and Methods 

We conducted a 5 (Memory Decay Rate) x 10 (Network 

Topology) x 3 (Narrative Valence) simulation-based 

experiment with 10 replications per cell.  The Memory 

Decay Rate manipulation varied the architectural decay rate 

parameter to address the general question of whether 

memory matters for simulations of information diffusion. 

The Network Topology and Narrative Valence 

manipulations addressed general questions about the effects 

of social context and the types of messages exchanged.   

During each of the 1500 simulations, a connected social 

network of 200 cognitive agents exchanged a set of 10 

narratives over a period of 100 ticks.  During each tick, an 

agent encoded the narratives conveyed by all alters in its 

ego-network, decided on a narrative to convey, and then 

conveyed that narrative to all neighbors in its ego-network 

at the next tick.  Agent behavior thus arose from a 

combination of neighbors' opinions and ego's evolving 

attitude in a closed-loop system defined by a simulation’s 

initial state. 

Initialization of social structure and cognitive agents 

proceeded as follows.   

Network Topology: Agents were embedded in one of 10 

network structures, all of which were based on a classic 

“caveman” graph (e.g., Watts, 1999).  In our caveman 

networks, agents are divided into 10 “caves” of 20 agents 

each.  All agents within each cave are fully connected with 

each other, except for two agents, each of which 

communicates with one other cave (see Figure 1).  

 
Figure 1: Different network topologies used in this study. 

 

We manipulated the dense clustering of social interactions 

within caves by randomly replacing in-cave connections 

with new between-cave connections with probability prewire. 

Ten levels of  prewire were used to transition from regularity 

to randomness:  0, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 

and 1.0.  

Agent Initialization. As described above, an agent’s 

attitude is a consensus valence produced by blended 

retrievals of belief chunks from declarative memory.  Each 

belief is a combination of a narrative with an associated 

valence, a number representing the extremity of the belief 

conveyed by the narrative.  For instance, a neutral narrative 

would have a value close to zero, while extreme narratives 

would have values close to +1.0 or -1.0 (e.g., Eagly & 

Chaiken, 1993).   

To establish an initial attitude for each agent, we seeded 

declarative memory with 100 belief chunks.  The procedure 

to generate and allocate these agent belief histories involved 

three steps.  First, we generated a population of notional 

attitudes by drawing 200 values from a truncated normal 

distribution (mean = 0, standard deviation = 0.25, minimum 

= -1, maximum = +1).   

Each notional attitude was then combined with the 

valences associated with 10 narratives to determine the 

probability that a belief chunk would appear in an agent’s 

history.  Specifically, each agent’s history was generated by 

drawing 100 samples from a discrete, truncated normal 

distribution (mean = notional attitude, standard deviation = 

0.8, minimum = -1, maximum = +1).    

For our experiment, we created three types of narrative-

valence associations: polarized, centrist, and linear.  



Polarized narrative valences represent strong, extremist 

message content (5 narratives with valences of -1 and 5 with 

valences of +1).  Centrist narrative valences represent the 

use of moderate language, where valences for narratives 

were drawn from the same truncated normal distribution 

used to generate the notional attitudes.  Linear narrative 

valences represent well-defined narratives that convey 

attitudes which span the valence spectrum (-1, -0.8, -0.6, -

0.4, -0.2, 0.2, 0.4, 0.6, 0.8, 1). 

Finally, we randomly allocated notional attitudes and 

their histories to agents in the network.  The red and blue 

node colors in Figure 1 illustrate the distribution of negative 

and positive notional attitudes, respectively.    

Results 

Social networks have an inherent duality.  They can be 

described by focusing on (a) global properties at a network 

Level Of Analysis (LOA), or (b) local properties at a node 

LOA.  Our initial analyses, reported below, reflect this 

duality in separate ANOVAs: one concerned with entropy 

at a network (i.e., social) LOA, the other concerned with 

entropy at a node (i.e., cognitive) LOA. 

 

A Memory Decay Rate x Rewiring Probability x Narrative 

Valence ANOVA of social entropy yielded a 3-way 

interaction, F(72, 1350) = 1.37, p < .05.  Figure 2 shows the 

means and 95% confidence intervals for each experimental 

condition in the Decay x Rewiring x Valence interaction. 

 

 
Figure 2: Effects of network topology on social entropy.  

 

 
1 One bit of entropy is an indication that two narratives 

dominate a network, not necessarily that narratives 

representing two opposing attitudes dominate the network. 

The pattern of interaction indicates that networks tend 

toward consensus (i.e., social entropy near 0) at rewiring 

probabilities of 0.4 and greater, independently of memory 

decay rate and narrative valence.  Thus, in networks that are 

poor imitations of real-world social networks (i.e., those 

lacking local coherence), memory and message content have 

minimal effects on social entropy.  This tendency toward 

consensus replicates agent-based simulation studies 

demonstrating assimilation with simplified agent models.   

At rewiring probabilities that produce networks more 

similar to real-world social networks (i.e., those exhibiting 

dense clusters of peers), the networks tend toward 

polarization (i.e., entropy near 11) or fragmentation (i.e., 

entropy near 2 or more bits), depending on memory and 

narrative valence.  In the context of messages with a linear 

valence distribution, polarization is more likely to occur at 

reasonable values of memory decay (i.e., near the default 

ACT-R value of 0.25 for the transient activation noise 

parameter).  As decay rate increases toward unrealistic 

values, social entropy increases and the networks tend 

toward fragmentation (narrative diversity) as patterns of 

narratives fluctuate across the network without the damping 

effect of memory to stabilize them.  Messages with 

polarized and centrist valence distributions tend to produce 

fragmentation regardless of memory decay rate. 

Generally, these results indicate that polarization is a 

relatively infrequent phenomenon that arises when 

narratives of a particular type are exchanged in realistic 

social networks by agents who act in a manner that is 

congruent with memory (e.g., strong, stable attitudes).  The 

narratives that lead to polarization are distinct from one 

another (linear).  Narratives that are more easily confused 

with one another (polarized, centrist) lead to a diversity of 

opinions.   

Furthermore, it was puzzling that polarization, when 

viewed across the complete network, was rare even when 

we tried to force the issue by using extreme values of belief 

valence for the initial conditions (e.g., in the polarized 

condition).  This may seem paradoxical, but what may 

explain it is that, within each cave, there existed low social 

entropy, due to the strong effect of the polarized initial 

condition.  When aggregating across caves, however, the 

entropy is naturally larger as each cave has settled on a local 

set of beliefs that are uncorrelated with other caves and this 

is reflected as more equal probabilities for each of the 10 

narrative beliefs (this would be especially true of the zero-

rewire condition).  A prediction, for cognitive entropy 

(which we explore next), is that the differences across the 

three valence distribution conditions will be much less than 

we see in social entropy, especially when the rewiring 

probability is zero or low. 

 



To study cognitive entropy, we conducted a 5 (memory 

decay rate) x 3 (narrative valence distribution) x 10 

(rewiring probability) ANOVA yielded 3 2-way interactions 

of p < .05: Decay x Rewire, F(36, 1350) = 1.86; Decay x 

Valence, F(8, 1350) = 2.15; Rewire x Valence, F(18, 1350) 

= 15.99. 

 

Figure 3 shows how cognitive entropy changes as a function 

of social context and the memory decay rate.  Cognitive 

Entropy (and variance in cognitive entropy) generally 

increases (up to a certain level) as the local coherence of 

networks decreases (i.e., as rewiring probability increases).  

The relatively homogeneous social contexts provided by 

locally coherent networks minimize the effect of decay rate 

on entropy.  As local coherence decreases, the decay-rate 

effect grows more pronounced.  Thus, networks that tend 

toward a social consensus produce more cognitive entropy 

than do networks tend toward polarization or fragmentation. 

Our memories help reduce the degree of cognitive entropy 

experienced from social pressures to conform in contexts 

that lack the redundancy of cliquish peers.  

 

 
Figure 3: Effects of network topology and decay rate on 

cognitive entropy.  

 

Our memories also help reduce the entropy experienced 

from narratives we encounter in social environments -- if the 

narratives can be distinguished from another.  As can be 

seen in the left panel of Figure 4, the degree of cognitive 

entropy generally increases as the distinctiveness of 

narratives decreases.  Thus a linear valence distribution 

(with clearly differentiable narratives) generally produces 

less entropy than a centrist valence distribution (with 

narratives that are more similar to one another), and centrist 

narratives produce less entropy than a polarized distribution 

in which everyone is using strong language which 

essentially conveys attitudes for or against some issue.   

 

Interestingly, as shown in the right panel of Figure 4, 

heterogeneous social environments maintain the general 

effects of narratives on cognitive entropy:  polarized > 

centrist > linear.  In more cliquish environments, the effects 

of narrative valences on entropy are very similar (especially 

for zero rewiring probability), with the difference between 

polarized and centrist narratives being the most similar.  

 

 
Figure 4: Effects of memory decay (left) and network 

topology (right) on memory entropy, divided by the 

distribute of narrative valence. 

Discussion 

We set out to show the potential value in exploring social 

kinds of phenomena from the perspective of cognitive 

architecture.  At a high-level, this meant developing an 

understanding of the relation between internal mental 

representations and social structure using a single construct, 

information entropy.  We demonstrated the ability to 

manipulate both cognitive and social entropy via both 

distribution of valence as an initial condition and network 

structure as a static condition.   

Relations Between Cognitive & Social Entropy 

According to our definition, the distribution of activation of 

the  chunks in declarative memory determines cognitive 

entropy.  If we imagine the hippocampus (a wetware 

component of declarative memory) as a communication 

channel between stimulus environment and response, the 

interpretation of cognitive entropy seems straightforward.  

Cognitive entropy describes the resources (i.e., channel 

capacity, aka attention) required to encode future events 

(which is compatible with the biological interpretation of 

Smith et al., in press). 



In our simulations, agents with low cognitive entropy 

exist in predictable (orderly) social environments.  Opinions 

from the neighbors of such agents provide little information 

for responding (i.e., propagating particular narratives).  

Responses of these agents thus may be driven more by 

expectations (cf. attitudes) than by social environments.  

When cognitive entropy is less than 1 bit, for example, 

agents "could" choose to propagate narratives that are 

"socially appropriate" without bothering to encode 

narratives received from their neighbors.  

 

High cognitive entropy, on the other hand, indicates that 

social context requires responses that are more data-driven 

than conceptually driven.  This implies that attitude strength, 

in some sense, should decrease as cognitive entropy 

increases.  It also implies that agents with high cognitive 

entropy can be more easily influenced than those with low 

entropy.  Furthermore, it implies that agents with low 

cognitive entropy may be difficult to influence, not because 

they harbor strong attitudes, but because experience limits 

their capacity for effectively encoding more complex 

messages; they simply do not have the bandwidth required 

to carry the information in complex messages that is relevant 

for accurate comprehension.  They overgeneralize (and 

communication fails) because they have learned to attend to 

a non-discriminating subset of the features of meaning 

underlying the narratives of their neighbors.   

Limitations 

A number of limitations need to be acknowledged. This 

work used a highly-stylized social system to explore 

polarization. These results were not designed to provide 

insight into real-world social network dynamics, but to 

illustrate the approach.   Another limitation is that the 

attitude  of each belief was simulated at a purely symbolic 

level, without any connection to the possible effects of 

valence in cognition. These effects, instead, are well 

documented in the literature and have been incorporated into 

ACT-R agents in the past (Juvina et al., 2018; Smith et al., 

2021). Future studies should aim to remove these limitations 

and test our findings in simulations with a greater degree of 

realism. 

Implication for Polarization 

These limitations notwithstanding, we believe that our 

results entail a number of interesting implications. First, 

these results  might also shed light on a related, but different, 

problem in the social sciences: the fact  that individuals who 

hold one extreme belief tend to harbor other  extreme ones 

(Wood et al., 2012). In a striking example, individuals who 

believe in one conspiracy theory (i.e., “Princess Diana faked 

her own death to escape the Crown”) were  also found to 

believe in other, incompatible ones (i.e., “Princess Diana 

was murdered by the Crown”).  

It is highly unlikely that multiple radical  beliefs 

spontaneously arise within a single person, as individuals 

Instead, extreme beliefs likely spread from person to person 

across social networks. This hypothesis is confirmed by the 

fact that the widespread use of social media in first-world 

countries, which amplify the reach and exposure of 

information, has been linked to increased partisanship, 

radicalization, and the spreading of fake news (Bail et al., 

2018). In our results, entropy within a single agent likely 

tracks entropy in belief systems, and the rise of entropy in 

proportion to the polarization of narratives is consistent with 

such findings.  

Finally, the finding that the network structure affects the 

inconsistency of beliefs has important applications for 

balancing policy and regulation of social media.  The 

cognitive perspective may yield insights that are hard-gotten 

otherwise--understanding the micro-structure of the 

dynamics of social change, e.g., information operation 

campaigns and public health messaging, may provide the 

levers needed for beneficial social change. 
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