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While modern machine learning techniques based on deep
artificial neural networks (ANNs) have an impressive ability
to process data to uncover patterns, they do not typically
model high-level cognition or more than a single task. If an
ANN is trained on a series of tasks, catastrophic interference
occurs, with each new task causing the ANN to forget
all previously learned tasks (McCloskey & Cohen, 1989).
Conversely, symbolic cognitive architectures can capture the
complexities of high-level cognition but scale poorly to the
naturalistic, non-symbolic data of sensory perception (e.g.,
images) or to big datasets necessary for modelling learning
over a lifetime (e.g., corpora with hundreds of millions of
words). Is it possible to provide a theory that bridges ANNs
and symbolic models, a reduction of the symbolic to the
neural, while retaining the strengths and capabilities of each?

We propose a cognitive architecture that is built on two
biologically plausible, neural models: neural generative
coding (NGC; Ororbia, Mali, Giles, & Kifer, 2020) and
holographic memory (Kelly, Arora, West, & Reitter, 2020).
By combining the two, we create a model of cognition
that has the power of modern machine learning techniques
while retaining long-term memory, single-trial learning,
transfer-learning, and other cognitive capacities associated
with high-level cognition. Our intent is to advance
towards a cognitive architecture capable of capturing human
performance at all scales of learning, from the half-hour lab
experiment to skills acquired gradually over a lifetime.

Since Newell (1973) first argued that good empirical work
and piecemeal theoretical work are insufficient to understand
the mind, researchers in cognitive science have sought to
develop functional, testable theories of cognition as a whole.
Cognitive architectures serve as both unified theories of
cognition and as computational frameworks for implementing
models of specific experimental tasks. Forty years of research
has developed hundreds of cognitive architectures with strong
commonalities to each other (Kotseruba & Tsotsos, 2018)
suggesting an emerging consensus on the basic principles of
cognition, on the basis of which Laird et al. (2017) propose
a Common Model of Cognition, a high-level theory of the
modules of the mind and how they interact (see Fig. 1).

The Common Model of Cognition consists of perceptual
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Figure 1: Common Model of Cognition (Laird et al., 2017),
associated brain areas (Stocco et al., 2021), and our approach
to modelling each module. Solid arrows are data passing.
Dashed arrows indicate modulation of a data passing path.

and motor modules that interact with the agent’s environment,
working memory to hold the active data in the agent’s mind, a
declarative memory that holds the agent’s world knowledge,
and a procedural memory that controls information and
evaluates possible actions. An evaluation of fMRI data from
200 participants across tasks found correlations in patterns
of activity across brain areas consistent with the Common
Model of Cognition’s modules (Stocco et al., 2021).

Proposed Architecture
Neural Generative Coding (NGC) is a scalable
instantiation of predictive processing brain theory
(Clark, 2015) yielding an efficient, robust form of
predict-then-correct learning.

Neural Generative Sensory Cortices use NGC for
processing a specific modality of data. In Ororbia et al.
(2020), we show that NGC learns a good density estimator
of data (from which new samples can be sampled or
“fantasized”), in conjunction with desired target functionality
(e.g., classification, regression), in not only the cases of static
input but also in cases of time-varying data series.

Neural Generative Motor Cortex In Ororbia and Mali
(2021), we generalize NGC to the case of action-driven tasks,
i.e., active NGC (ANGC), common in reinforcement learning
(RL), providing evidence that NGC can be used to build a



coupled generative model and controller system that solves
RL problems, particularly those when the reward signal is
sparse or non-existent. ANGC will serve as the motor cortex.

Neural Generative Basal Ganglia In Ororbia, Mali, Kifer,
and Giles (2019), we model the functionality of the basal
ganglia in suppressing/inhibiting neural activity for the
purpose of action selection and task switching (Cameron,
Watanabe, Pari, & Munoz, 2010), a behavior we argue is
critical in facilitating effective continual learning without
catastrophic interference. This task selection model, which
learns through competitive Hebbian learning, will serve as the
basis for part of the basal ganglia in our architecture, acting to
coordinate the exchange of information between the working
memory and the sensory and long-term memory cortices.

Holographic memory (Plate, 1995) is a formalism for
capturing the capacity for humans to learn and recall
arbitrarily complex associations between stimuli in the
environment. Holographic memory is immune to the
catastrophic interference typical of more conventional ANNs
(Mannering & Jones, 2021), allowing it to be used to
construct models that handle multiple, unrelated tasks
(Cheung, Terekhov, Chen, Agrawal, & Olshausen, 2019).

Working Memory Each buffer in working memory is a
holographic vector. Holographic memory vectors have an
established ability to account for memory phenomena such
as serial and free recall of lists (Franklin & Mewhort, 2015).

Declarative Memory is the composition of many
individual holographic vectors (each representing a distinct
concept). Our model accounts for human performance in
recall, probability judgement, decision-making (Kelly, Arora,
et al., 2020), and learning the meaning and part-of-speech of
words (Kelly, Ghafurian, West, & Reitter, 2020).

Conclusions and Future Research

Humans are capable of continual learning, deep expertise,
single-trial learning and agile adaptation to dynamic
environments, and transfer learning across multiple tasks.
Conventional ANNs struggle to replicate these abilities.
Solving the problem of lifelong learning will aid us both
in understanding the human mind and in the development
of intelligent agents that are better able to generalize to
real world environments. Our proposed implementation
of the Common Model of Cognition is composed of
neuro-cognitively plausible components, i.e., holographic
memory, predictive processing circuits, and competitive
learning. A promising research direction is the application
of our architecture to where the challenge of catastrophic
interference is most prevalent: reinforcement learning across
lengthy, diverse streams of tasks where knowledge retrieval,
transfer, and composition are absolutely critical.
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