Inferring a Cognitive Architecture from Multi-Task Neuroimaging Data: A
Data-Driven Test of the Common Model of Cognition Using Granger Causality

Holly S. Hake (hakehs@uw.edu)
Department of Psychology, University of Washington, Seattle, WA 98195 USA

Catherine Sibert (sibert@uw.edu)
Department of Psychology, University of Washington, Seattle, WA 98195 USA

Andrea Stocco (stocco@uw.edu)
Department of Psychology, University of Washington, Seattle, WA 98195 USA

Abstract

A common complaint levied at analyses based on cognitive
architectures is their lack of connection to observed
functional neuroimaging data, particularly for architectural
models that rely on high level, theoretical components of
cognition. Previous work has connected task-based
functional MRI data to the Common Model of Cognition
(CMC), using a top-down modeling approach. Here, a
bottom-up method, Granger Causality Modeling (GCM), is
applied to the same task-based data to infer a network of
causal connections between brain regions based on their
functional connectivity. The resulting network shares many
connections with those proposed by the Common Model,
and also suggests important additions to the Common
Model, likely related to the role of episodic memory in
control.
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Introduction

In the field of cognitive architectures, an important topic of
discussion is the relationship between the components of
an architecture and their relationship to the brain. Some
architectures, like SPAUN (Eliasmith et al., 2012), LISA
(Hummel & Holyoak, 2005), and Leabra (O’Reilly et al.,
2016), are designed to mimic the brain’s biological circuits
and rely on artificial neurons as their building blocks.
These systems take a circuit-level approach to cognitive
modeling, based on the notion that function arises from
form. An alternate, functional approach forms the basis of
another class of architectures, such as Soar (Laird, 2019),
or ACT-R (Anderson, 2007), whose building blocks are
more abstract and high-level cognitive components such as
perceptual systems and memory that have been then
mapped post-hoc to particular brain regions (e.g.,
Anderson, Fincham, Qin, & Stocco, 2008).

Ultimately, the success of both bottom-up and top-down
approaches depends on one fundamental aspect, that is, the
exact nature of the functional connections between the
assumed components, or the underlying brain’s
architecture. Surprisingly, the fields of systems-level
neuroscience and the fields of cognitive architectures have
rarely interacted in this domain. In this paper, we attempt
to resolve some of the tensions between the competing
methodologies by using Granger Causality Modeling

(GCM) of low-level functional brain activity to find causal
connections between brain regions associated with
high-level cognitive components. The networks produced
by these connections are then compared to existing
frameworks of theoretical architectures.

Functional Connectivity

Most research aimed at understanding brain architecture
has been done through the analysis of functional
connectivity, a data-driven and bottom-up method of
determining the degree of connection between brain
regions through statistical dependencies--typically, the
Pearson correlation between times series in different brain
regions (e.g., Fox et al., 2005). Through this method,
network neuroscientists have identified several distinct
networks of brain regions, such as the Default Mode
Network (Raichle et al., 2001). However, while functional
connectivity analysis can detect the presence of such
networks, it can be difficult to characterize the specific
function or role that they play in higher level cognition.
Furthermore, correlation coefficients have no directionality
attached to them, which makes it impossible to draw causal
conclusions about the role of different regions and the flow
of information along a network.

The Common Model of Cognition

A number of recent studies have tried to connect
architecture frameworks to functional brain activity in a
top-down fashion, by imposing architectural constraints on
a network of connected brain regions. In particular, these
studies have capitalized on the Common Model of
Cognition (CMC), an abstract description of the principles
common to multiple architectures (Laird, Lebiere, &
Rosenbloom, 2017). The CMC proposes that, at the highest
level, cognition arises from the interaction of five cognitive
components, corresponding to Perception, Action,
Long-Term Memory, Procedural Memory, and Working
Memory. These components can be associated with five
corresponding large-scale brain circuits, and a network of
directional connections can be drawn between them. Most
recently, Stocco et al. (2021) showed that the CMC
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outperforms a selection of six other architectures in fitting
data across six different task paradigms spanning seven
different domains, suggesting that it provides a reasonably
accurate  system-level description of the brain’s
architecture.

Unfortunately, all of the previous tests of the CMC
(Stocco et al., 2018; Steine-Hanson et al., 2018; Stocco et
al., 2021, have employed a top-down approach, comparing
the relative fit of different possible architectures. This
approach was partially constrained by the choice of one
particular method of the analysis of effective connectivity,
Dynamic Causal Modeling (DCM: Friston, Harrison, &
Penny, 2003). The authors justified the choice of DCM
because it allows for the distinguishing of the directionality
of connections, while the most commonly used functional
connectivity measures are based on partial correlations and
are non-directional. While DCM allows for directional
estimates, it relies on the top-down implementation of a
plausible architecture, and it also limits the use of a
bottom-up, data-driven approach. Because the space of
possible architectures, even when only five components are
considered, is extremely large, it is possible that a better
candidate architecture exists, but was simply not included
among those examined by Stocco et al. (2021).
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Figure 1: (A) The Common Model of Cognition (CMC);
(B) Proposed associations between components and
anatomical brain regions.

Granger Causality Modeling

In this paper, we re-analyze the data from the Stocco et al
(2021) paper using Granger Causality Modeling. In GCM,
the existence of a causal effect between two time series x
and y is established by comparing two models (Granger,
1969), one auto-regressive linear model in which the value
of y at times ¢ depends only on its past value at time #-1:

V(0= Bot Bry-1)

and an alternative model that includes the effect of the past
state of x:

V(@) = Bot Pry(t-1)+ Pox(z- 1)

If the second model is significantly better than the first,
then x is said to Granger-cause y. Although it was
originally developed and applied in the field of economics,
Granger causality has been successfully applied to

neuroimaging data (Roebreck et al., 2005; Deshpande et
al., 2008) and offers similar advantages and comparable
performance to DCM (Friston et al., 2012). In this paper,
we apply this method to test the existence of all possible
causal connections between the five components proposed
by the CMC.

Materials and Methods

Participants

The study presented herein consists of an extensive
analysis of a large sample (N = 200) of neuroimaging data
from the Human Connectome Project (HCP), the largest
existing repository of healthy young adult neuroimaging
data.

Task fMRI Data

The HCP task-fMRI data encompasses seven different
paradigms designed to capture a wide range of cognitive
capabilities. Of these paradigms, six were included in our
analysis (the seventh was a motor localization task). A full
description of these tasks and the rationale for their
selection can be found in the original HCP papers (Barch et
al., 2013; Van Essen et al., 2013).

Data Processing and Analysis

Image Acquisition and Preprocessing. MRI images were
acquired and minimally preprocessed according to HCP
guidelines (Barch et al., 2013; Van Essen et al., 2013).
Scans were taken on a 3T Siemens Skyra using a
32-channel head coil with acquisition parameters set at TR
=720 ms, TE = 33.1 ms, FA = 52°, FOV =208 x 180 mm.
Each image contained 72 2.0mm oblique slices with an
in-plane 2.0 x 2.0 mm resolution. Images were acquired
with a multi-band acceleration factor of 8X. These raw
images then underwent minimal preprocessing including
unwarping, motion realignment, and normalization to the
standard MNI template. From there, the images were then
smoothed with an isotropic 8.0 mm full-width half
maximum Gaussian kernel.

Regions of Interest Definition. Regions of Interest (ROIs)
for each task and participant were defined using the
method described in Stocco et al. (2021) and available on
the paper’s online repository. For each CMC component, a
group-level centroid was first identified by running a
canonical GLM analysis that compared the stimuli against
their task-specific baseline and then locating the peak of a
statistical parametric map within the general areas
associated with that CMC component (Figure 1). Because
all tasks show stronger activation in the left hemisphere
than in the right, all the group-level centroids were located
in the left hemisphere.

To account for individual-level variability in functional
neuroanatomy, the group-level coordinates were then used
as the starting point to search in 3D space for the closest
activation peak within each individual statistical parameter
map. Figure 2 illustrates the distribution of the individual
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coordinates of each region for each task, overlaid over a
corresponding group-level statistical map of task-related
activity (as in Stocco et al., 2021). Each individual
coordinate is represented by a point; the =200 points for
each region form a cloud that captures the spatial
variability in the distribution of the individual coordinates
for that region. Next, the individualized ROI coordinates
were used as the center of a spherical ROI with an 8mm
radius. All voxels within the sphere whose response was
significant at a minimal threshold of p < .50 (that is, a 50%
probability of showing a response) were included as part of
the ROL.

Finally, for each ROI of every participant in every task, a
representative time course of the BOLD signal was
extracted as the first principal component of the time series
of all of the voxels within the sphere. The resulting time
series, one per component, were then entered into a
Granger causality model.
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Figure 2: Location of ROI centroids across the six tasks of
the Human Connectome Project; variations account for
individual differences in functional anatomy.

Granger Causality Model

A multivariate Granger causality model was then set up, in
which the BOLD response at time ¢ across all regions, x(¢),
was modeled as the contribution of all of the regions
(including itself) at lags 1, 2, ... k:

X(0) = Bot By x(t-1) + .. + By x(t-k) (M

To determine the optimal lag value, ten models were
created by varying & from k=1 to k= 10, and the value of
k that gave rise to the model with the lowest Bayesian
Information Criterion was selected. Across all participants
and tasks, the maximum lag that was observed was k = 6,
and the modal was k = 2. Note that, when &k > 1, there are
multiple different parameter estimates that quantify the
directional effect of a region on another region, one for
each lag. To reduce the dimensionality of these estimates,
only the most significant lag (i.e., the one with the smallest
p-value) was selected.

For each participant, a subject-level inferred architecture
was then created by discretizing the matrix of connections
and maintaining only directed links with p <.05. To infer a
group-level architecture from the individual-level
architectures, the most likely directed links between
regions need to be inferred from the frequency of their
distribution in the sample of participants. To determine the
probability that each directed connection ¢ is part of the
group-level architecture, we modeled the probability of it
appearing across all participants as a binomial distribution,
with a prior probability of P =.50.

Results

Group level connection maps for each of the six tasks used
in the HCP dataset are shown in Figure 3. The figures
show a connectivity matrix representation of the inferred
architectures for each task, where the brightness of each
matrix cell reflects the probability that the corresponding
directional connection should be included in the
architecture.
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Figure 3: Task-specific connection grids for each of the six
HCP task paradigms. Each grid square represents a
potential causal connection between two regions, and the
brightness of the square reflects the probability of that link
at a group level.



The figure highlights the different connections utilized in
each task domain, as well as some commonalities shared
by all tasks (i.e., the preponderance of connections to and
from the WM component, corresponding to the PFC).

As pointed out by Stocco et al. (2021), however, an
efficient architecture should be stable and maintain its
functional characteristics across different tasks. Therefore,
to derive a general architecture from these six task-specific
ones, we considered each task as an independent
experiment to test these connections, and we used Fisher’s
(1932) method to combine the p-values from each task.
According to this method, the distribution of the log of
p-values from independent tests follows a y* distribution
with 2N degrees of freedom, and the p-value of each
connection can be calculated from the y* cumulative
distribution function as follows:

pglobal :p( XZZN > Ztask log ptask)

The results are shown in Figure 4, which represents the
connectivity matrix of an architecture inferred across
participants and domains.
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Figure 4: The connection grid for a general architecture
incorporating all six HCP tasks. Each grid square
represents a potential causal connection between regions,
and the brightness of the square reflects the probability of
that connection being present.
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Figure 5: (A) A visual representation of the architecture
inferred from the Granger causality model; (B) Proposed
associations between components and anatomical brain
regions. Arrows: dark blue, connections present in both
CMC and GM,; red, connections unique to Granger model.

The results support an architecture that is similar, but not
exactly identical, to the CMC. If a strict 95% threshold is
applied to the map of connections inferred from the GCM
analysis, 22 of the possible 25 connections are shared
between the human-derived network and the CMC (Fig. 5).

Comparing the Other Architectures

In the previous DCM based analysis of architecture
structures, Stocco et al. (2021) were not able to incorporate
data-driven inferences about connections. Instead, the
plausibility of the CMC was evaluated by comparing its
predictions against a set of representative alternative
architectures across tasks (Fig. 6). These architectures,
divided into two categories, or “families”, represent the
possible organizational structures of general purpose
architectures. All consist of the same five regions or
components present in the Common Model, but provide
differing accounts of the connections between them.

HUB, TEMP

Figure 6: (A) Three variations of Hub-and-Spoke (HUB)
models, and of (B) Hierarchical (HIER) models. Arrows:
dark blue, connections present in both CMC and alternate
models; red, connections unique to alternate models; and
dotted, connections present in CMC and absent in alternate
models.

The “Hub and Spoke” model family designates a single
region as the “Hub” of model activity, with bidirectional
connections between it and all other regions. These
“Spoke” regions, however, do not connect to one another,
and activity passing from one spoke region to another must
also pass through the hub. Of the five CMC components,
arguments can be made for each of the three memory
modules serving in the capacity of a hub: working memory
could drive activity from the prefrontal cortex (Hub PFC),
long term memory could drive activity from temporal
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regions (Hub Temporal), or procedural memory could
drive activity from the basal ganglia (Hub Procedural).

An alternate account of model structure is posed by
members of the “Hierarchical” family. In this account, the
architecture serves as a feed-forward system where activity
originates in the perception region, travels through the
successive memory regions, and culminates in the action
region. With the limited number of regions and the fixed
position of the perception and action regions, the potential
models in this family vary only in the order of the three
memory modules. An additional constraint, the assumption
that long term memory (LTM) will proceed working
memory (WM), leaves the position of procedural memory
as the only degree of freedom. It is either the first of the
three memory modules (Hierarchical 1), the middle module
(Hierarchical 2), or the final module before action
(Hierarchical 3).

To test whether the results of our Granger causality
model converge with those previously reported with DCM
(a test of convergent validity), we performed the same
comparison of architectures done by Stocco et. al (2021).
To do so, we first derived the theoretical network
architectures of the six alternate architectures examined in
that study for comparison against the network architecture
derived using GCM. These networks are represented in the
form of connectivity matrices in Figure 7.

Connectivity Matrix Representation
of the Different Architectures
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Figure 7: Connectivity matrix representations of the six
alternative architectures (Figure 6) and the CMC.

For each alternate architecture, as well as the CMC, we
examined the degree of similarity between the network of
connections suggested by the GCM analysis and the
connections theorized by the architecture. We considered
three metrics. The first is the correlation between the
predicted and observed directed connections in the vector
of 25 possible edges in the networks. The second is the
proportion of overlap between the two vectors, defined as
the proportion of exactly matched connectivity predictions
or, equivalently, the complement of the proportional
Hamming distance between the two vectors of connections.
The third and final metric is likelihood, defined as the
Z-scores of predicted vs. expected number of successes in a
binomial distribution of 25 connections. The results of each
of the three metrics are compared in Figure 8. For all
criteria, the CMC reflects the greatest similarity to the
network architecture uncovered by the GCM analysis.
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Figure 8: Comparison of the CMC (in red) and six
alternate architectures in terms of three measures of
similarity to the GCM network.

Discussion

In this paper, we have presented an analysis of Human
Connectome Data using the same ROIs as in Stocco et al
(2021), but employing Granger causality instead of DCM,
to analyze fMRI data. A replication of the original
comparison (Stocco et al., 2021) between the Common
Model of Cognition and six alternative architectures
largely confirmed the previous study’s findings, namely,
that the CMC performs better than the alternative



architectures at explaining effective connectivity within
and across all tasks.

Granger causality modeling, however, offers the unique
opportunity of deriving a new architecture from data. The
new architecture, represented in Figure 5, is a modified
version of the CMC with the addition of projections from
Perception and Action regions to the LTM component.

It is interesting to note that both connections are
unidirectional, i.e., Perception and Action feed to LTM but
do not receive projections back. Instead, bidirectional
connections exist between LTM and WM. This particular
connectivity structure seems to be best adapted to
implement a form of instance-based learning, whereby
successful episodic memories are formed by encoding
previous stimuli, and actions and outcomes are stored to be
later retrieved and guide behavior. In this case, direct
connections from Perception and Action to LTM would
support the encoding of stimuli and actions, respectively,
while the connectivity from WM to LTM could support the
encoding of evaluation of the outcome (performed by the
WM component). Previous episodes could be later
retrieved through the directed connection between LTM
and WM. Moreover, the existence of additional functional
links to LTM suggests that the large-scale brain
organization seems to contain multiple hubs of different
importance.

Limitations

However, these findings should be considered in light of
a number of potential limitations. The first is that, while we
ultimately aggregated the results into a single
task-independent network, a significant amount of
variability exists between the network architectures that
can be inferred from the specific tasks. While DCM is
intrinsically top-down and limited to examining the fit of
specific network models, GCM does not suffer such
limitation. Thus, the degree to which an task-independent
architecture could be derived from individual tasks is
debatable, and reflects the underlying assumption that, at a
very high level, brain activity showcases a common
invariant architecture. This hypothesis, of course, is not
universally accepted and should be examined
independently in future studies.

A second limitation is that the estimates of connectivity
obtained through Granger causality might change when a
larger set of component regions are included; thus, these
results cannot be considered stable until the exact number
of ROIs is considered canonical. It should be noted that,
however, this limitation is also common to DCM and thus
similarly affects previous work in this area (e.g.,
Steine-Hanson et al., 2019; Stocco et al., 2021).

Finally, it should be noted that, although these results do
suggest that a better architecture (depicted in Figure 5)
might outperform the original Common Model architecture
and the others tested by Stocco et al. (2021), they do not
necessarily imply so. This is because GCM is a different
method than DCM, it is entirely possible that the

architecture of Figure 5 would not perform as well when its
effective connectivity is measured within the DCM
framework. Therefore, possible future studies should
re-investigate the superiority of this new architecture using
the DCM-based comparison, as done in Stocco et al
(2021).

Implications for the Common Model of Cognition

These limitations notwithstanding, these results do
support credibility to the principles of the CMC. The
architecture that was identified through GCM differs only
minimally from the CMC, and the CMC remains the
architecture that most closely matches our results across
the set of potential architectures tested by Stocco et al.
(2021). Our new findings, however, suggest important
modifications to its structure. We consider these results as
an exciting starting point for the future examination of
large scale-connectivity of the brain.
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