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Abstract

As the study of individual differences becomes more
widespread, questions arise about the reasons that a particular
individual might adopt a particular strategy. Using both the
behavioral and functional neuroimaging data of healthy adults
from Human Connectome Project (HCP) we examined
decision making in an incentive processing task (Delgado et
al. 2000). A pair of distinct ACT-R models, representing a
Declarative strategy and a Procedural strategy, were used to
classify subjects as either Declarative or Procedural decision
makers based on their behavioral data. A machine learning
Lasso analysis was performed on each subject’s resting state
functional connectivity, and was able to match the ACT-R
model classifications to a high degree of accuracy. This
suggests that the strength of connections between brain
regions may play an important role in shaping the decision
making process of a given individual.
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Introduction

It has been argued that, to be effective, computational
cognitive models need to switch from nomothetic,
group-level descriptions to idiographic, individual-level
ones (Zhou et al., 2021). A promising framework in this
sense was proposed by Ritter and Gobet (2000), who argued
that an architecture can be used to successfully capture the
invariant part of the mind, while different parameter values
can be used to model variations across individuals. This
approach was tested successfully by Daily and Lovett
(2001), who succeeded in capturing individual differences in
working memory through a single parameter in the ACT-R
architecture (spreading activation 1¥), and more recently, by
Xu and Stocco (2021) using behavioral data. Recent work
has also shown that individual parameter values are
associated with different signatures of neural activity in
EEG data (Zhou et al., 2021) and fMRI (Rice & Stocco, in
press). These neural signatures were identified from
“resting-state” recordings, that is, task-free sessions in
which participants are not asked to do anything in particular,
and which offer the opportunity to observe spontaneous but
highly organized brain activity (Fox et al., 2005). The fact
that parameter values that capture individual differences are

reflected in resting state imaging data suggests a biological
underpinning for these parameters.

Despite its successes, the approach of identifying
individual differences with parameter values still runs into
conceptual roadblocks. While a cognitive architecture can
be assumed to reflect an invariant, innate blueprint (Taatgen,
2020), participants are typically measured when performing
a specific task, and, even with the same architecture,
participants might perform the same tasks in the same way.
For example, simple association learning tasks can be
modeled using two strategies, a procedural-based
reinforcement learning strategy and a memory-based,
decision-by-sampling or instance-based learning strategy.
Haile et al. (2020) showed that different participants are best
fit by different strategies. This implies that attempts to
measure single parameters across participants is ultimately
doomed to fail: it does not make sense to estimate learning
rate (a reinforcement learning parameter) from participants
who rely on memory, and it does not make sense to measure
rate of forgetting (a successfully decodable parameter) from
individuals who follow a memory-less, procedural learning
strategy.

Through computational models, it is possible to make
inferences about which strategy a participant is using (Haile
et al., 2020). But what makes participants prefer a strategy
over another? In principle, strategy selection could be a
function of personal preference, habit, or cost-benefit
analysis (Payne, Bettman, & Johnson, 1993). One enticing
possibility is that strategy selection might reflect bounded
rationality (Lewis et al., 2014): individuals choose the
strategy that plays to their strengths, yielding the best results
given the computational costs involved. If this is the case,
then it follows that preference for a strategy over another
would also ultimately depend on identifiable stable
characteristics of their brain activity.

To test this hypothesis, we analyzed a dataset including
almost 200 participants for whom performance on a simple
decision-making task and resting-state fMRI data were
available. Computational models implementing alternative
strategies were fit to individual behavioral data to determine
the most likely strategy used by each participant. Machine
learning techniques were then employed to identify the



facets of spontaneous neural activity that best predict which
strategy will be used by each individual. We expected to
find that decision-making strategies associated with the use
of memory resources (such as retrieving the previous
success history of an option) would be associated with
increased functional connectivity in fronto-parietal regions
responsible for cognitive control. Conversely, we expected
that decision-making strategies associated with habitual and
reward-based learning would be associated with increased
functional connectivity in sensorimotor cortices responsible
for automatic stimulus-response behaviors and with the
basal ganglia circuit responsible for feedback-driven
learning (Yin & Knowlton, 2006).

Methods

This study analyzed both behavioral and neuroimaging
data obtained from the Human Connectome Project (HCP)
dataset (Van Essen et al., 2013). A total of 199 participants
(111 females, 85 males, and 3 did not disclose) who
completed both sessions of the task-based fMRI gambling
game were included in this study. All participants were
healthy adults with no neurodevelopmental or
neuropsychiatric disorders. The experimental protocol,
subject recruitment procedures, and consent to share
de-identified information were approved by the Institutional
Review Board at Washington University.

The Incentive Processing Task in the HCP

This incentive decision making task was adapted from the
gambling paradigm developed by Delgado and Fiez (2000).
Participants were asked to guess if the number on a mystery
card (represented by a “?”, and ranging from 1-9) was more
or less than 5. After making a guess, participants were given
feedback, which could take one of three forms, Reward (a
green up arrow and $1), Loss (a red down arrow and
-$0.50), or Neutral (a gray double headed arrow and the
number 5). The feedback did not depend on the subject’s
response, but was determined in advance; the sequence of
pre-defined feedback was identical for all participants. The
task was presented in two runs, each of which contains 64
trials divided into eight blocks. Blocks could be Mostly Loss
(6 loss trials pseudo-randomly interleaved with either 1
neutral and 1 reward trial, 2 neutral trials, or 2 reward trials)
or Mostly Reward (6 reward trials pseudo randomly
interleaved with either 1 neutral and 1 loss trial, 2 neutral
trials, or 2 loss trials). In each of the two runs, there were
two Mostly Reward and two Mostly Loss blocks,
interleaved with 4 fixation blocks (15 seconds each).

Resting-State fMRI Analysis

This study employed the “minimally preprocessed”
version of resting-state fMRI data, which has already
undergone a minimal number of standard preprocessing
steps  including artifact removal, motion correction,
normalization, and registration to the standard MNI
ICBM152 template. Additional preprocessing steps were
performed using the AFNI software (Cox RW, 1996),

including despiking, spatial smoothing with an isotropic
Gaussian 3D filter FWHM of 8 mm, and removal of linear
components related to the six motion parameters and their
first-order derivatives.

Functional connectivity measures were constructed from
the HCP resting-state data using Power et al. (2011)’s whole
brain parcellation. This parcellation was used to construct a
264 Region of Interest (ROI) functional atlas, with each
ROI containing 81 voxels. This parcellation atlas is defined
in the MNI space and was applied to all participants in HCP
dataset. The extraction of the time series and calculation of
the connectivity matrices was performed using R (RStudio
Team, 2016) and Python. Pearson correlation coefficients
and partial correlation coefficients between the time series
of each brain region were calculated for each participant,
resulting in a 264 x 264 symmetric connectivity matrix for
each session for each subject. The averaged correlation
coefficients across subjects were calculated by first
transforming each r value into a z-value, and then
retransforming the average z value back into an equivalent r
value using the hyperbolic tangent transformation (Silver &
Dunlap, 1987).

Response Switch Analysis

Because in the Incentive Processing task the feedback is
scheduled in advance and does not depend on actions taken
by participants, it is impossible to define participant’s
performance in terms of either accuracy or learning. This
poses a challenge when trying to determine if participants
are responding to feedback. The most meaningful way to
check whether participants change their behavior in
response to feedback is through analyzing their Win-Stay,
Lose-Shift (WSLS) probabilities. Thus, our main dependent
variable was the tendency to switch responses after a Loss
feedback and after a Reward feedback. This response switch
is coded as 0 if the current response is the same as the next
response, and coded as 1 if the current response is not the
same as the next response. Because the response switch is a
binary variable, the analysis was conducted with logistic
mixed-effects models using orthogonal contrast coding as
implemented in the “Ime4” package in R. Given that Neutral
trials make up only a small proportion of total trials, they
were excluded in statistical tests. In the mixed-effect model,
Block Type (Reward or Loss) and Trial Type (Reward or
Loss) were treated as fixed effects, and individual
participants were treated as random effects. The parameters
were estimated based on the maximum likelihood.

On the group-level, there is no significant effect of
feedback nor Block Type on the probability of switching
responses. However, and critically for this study, on an
individual-level, individuals do exhibit different behavioral
response profiles. Figure 1 demonstrates the mean
probability of response switching as a function of Trial Type
(feedback received) and Block Type.
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Figure 1: The mean probability of response switching as
a function of feedback and block type. Each color dot and
grey line represents the mean probability of response
switching of a single participant, and the black dot
represents the mean and 95% confidence interval across
participants.

We also examined whether the response times change as a
function of previous feedback (the Trial Type of the
previous trial) and Block Type. Excluding neutral trials in
the statistical analysis, on average, participants tend to take
longer when making decisions in Mostly Reward blocks
than in Mostly Loss blocks (B= 15.21, SE = 6.39, p =
0.017), regardless of previous feedback. Figure 2 shows the
mean response time (RT) as a function of Previous
Feedback and Block Type. Compared to the probability of
response switching, however, the pattern of RTs was found
to be noisier and less consistent across individuals, and was
therefore not included in the following modeling analysis.
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Figure 2: Mean response time as a function of previous
trial feedback and block type. Each colored dot and
grey line represents the RT of an individual, and the
black dot represents the mean and confidence interval
(95%) of RT across participants.

ACT-R Model Design

While the behavioral data does not reveal major effects
across subjects, it offers an exciting opportunity from a
modeling perspective. There exist two competing
explanations of how decision making occurs in a repeated
choice paradigm, one based on episodic memory of previous
choices (Gonzalez et al., 2003) and one based on
reinforcement learning (Daw et al., 2011). Each explanation

is dependent on different mechanisms, and, ultimately,
reliant on different strategies. Both explanations were
implemented as two computational models in the ACT-R
cognitive architecture (Anderson, 2007): as a Declarative
Model, reliant on memory retrieval, and a Procedural
Model, which makes use of reinforcement learning.

Declarative Model The Declarative Model relies on the
declarative module to retrieve a memory of prior actions and
their corresponding feedback. When presented with a
mystery card, the model selects an action, LESS or MORE,
for evaluation, and makes a retrieval of the prior history of
feedback associated with that action. If the retrieved history
contains a WIN result of the chosen action, it will execute
that action, but if the history contains a LOSE or
NEUTRAL result, the model will execute the alternate
action. If no history is retrieved, an action will be executed
at random. After making a guess, the model is presented
with feedback, which is encoded as a new memory chunk
associated with the selected action. In ACT-R, memory
chunks are retrieved based on their activation, calculated
with a base-level learning function that reflects the degree to
which a chunk matches the context of the retrieval request,
and the recency of prior retrievals (Eq 1). If the activation
surpasses a specified threshold, the chunk is possible to
retrieve and if multiple chunks meet this threshold, the
chunk with the greatest activation will be selected. The
model functions by remembering the results of previous
actions to guide future actions.

A =

n
In(Y ¢t + e (1)

i =1 j

Procedural Model By contrast, the Procedural Model
represents the possible actions of the decision-making
processes as competing rules, and reinforcement learning is
used to increase the use of the rule that leads to the best
outcomes. Instead of encoding each trial as a memory of an
action and associated feedback, the model has two
competing production rules that execute the MORE and
LESS actions.When presented with the mystery card, the
model will choose one of the rules to execute based on their
utility. Initially, both rules have equal utility, and one will be
chosen at random. After making a guess, the model is
presented with a WIN, LOSE, or NEUTRAL response, and
this feedback is encoded as an adjustment to the utility of
the selected production rule (+1 for a WIN result, -1 for a
LOSE result, and no change for a NEUTRAL result). At any
time point ¢, the utility U of production p is calculated using
Eq 2, where a indicates the learning rate, Rt is the reward

the production received for at time 7. Previous rewards will
encourage the model to repeat the associated action, while a
pattern of losses will decrease the utility of the action and
encourage the selection of the alternate action.

u=0_,+ a(Rt - Ut—l) + s 2)



Individual Fit and Model Evaluation

To examine the predictions of our model, we used a
grid-search approach to find the best possible parameters
within the parameter space shown in Table 1. Each model
simulates 64 trials, the same as the experimental paradigm
for participants, repeated over 50 runs. The simulated
stimuli were presented in the same order as the real
experimental stimuli to avoid any potential noise from
sequence effects in the simulation. Following the six
conditions (Reward, Loss, Neutral trials in Mostly Reward
Block and Reward, Loss, Neutral trials in Mostly Loss
Block), the mean probability of response switching,
P(Switch), and its standard deviation are computed.

Table 1: Model parameter space in the simulations.

Models Parameter Value Meaning
Declarative € 0-0.5 activation
noise
d 0.2-0.85 memory
decay
Procedural s 0-0.5 utility noise
0.05-0.5 learning rate

In order to evaluate the goodness-of-fit for individual
fitting, we estimated maximum Log-Likelihood across the
parameter space. The likelihood function of a particular
model with parameters 6, L(m, 6| x), is the probability that,
given the parameterized model and set of observed data to
fit, the model would produce that data:= L(m, 8] x) =
P(x|m, 8). Here, mand 0 refers to the model and its
parameters, and x refers to the observations. Common
comparison metrics, such as the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion
(BIC), are both based on likelihood, but rely on closed-form
likelihood functions. While it is possible to derive such
functions for simple models (such as logistic models or
linear models), they can be incredibly difficult to derive for
more complex models and impossible for arbitrarily
complex models based on ACT-R and other high level
architectures. Some attempts have been made to evaluate
complex models with basic likelihood metrics: Stocco and
Haile (2018), Prat and Stocco (2020), and Yang and Stocco
(2019) have all used BIC to compare competing ACT-R
models. However, the equation used to estimate BIC is a
closed-form approximation that is based on Residual Sum of
Squares and was originally derived for linear models; as
such, it does not necessarily hold for ACT-R.

In this paper, we followed the computationally expensive
but more accurate solution of empirically calculating the
likelihood function by simulating each model and set of
parameters multiple times, and calculating the empirical
probability distribution of each set of results (Yang, Karmol,
Stocco, in press). Knowing the mean and standard deviation
of this distribution, the value of P(x| m, 6) can then be
calculated directly. If a model is designed to predict n data
points  (corresponding, for instance, to different
experimental conditions), its likelihood can be expressed as

the joint probability that any of those data points can be
produced. For simplicity, and assuming independence, this
can be expressed as the product of the probability of
observing each individual data point in the empirical data,
ie., L(m, 0 | x|, x,, ... x,) =[[; L(m, 0| x;). Finally, to avoid
computational problems with vanishing small probabilities,
it is common the express this value in terms of log
likelihood:

log L=1og P(x | m, 6) = Z log Z[(xl_ - xl_m) /O'im] 3)

Results

Decision-Making Strategy Identification

By excluding participants who did not complete the
gambling task and two sessions of resting state fMRI
scanning, a total of 199 participants were fit by ACT-R
models. Of these, 127 (63.82%) were best fit by the
Declarative Model, and thus were identified as Declarative
decision makers. The remaining 72 (36.18%) individuals
were best fit by the Procedural Model, and identified as
Procedural decision makers. The logistic mixed-effects
model was conducted using orthogonal contrast coding as
implemented in the Ime4 package in R. ACT-R Model Type
(Declarative vs. Procedural), Block Type (Mostly Reward
vs. Mostly Loss), and Feedback (Reward vs. Loss) were
treated as fixed effects, and individual subjects were treated
as random effects. Full statistical results are shown in Table
2. In contrast to the lack of significant effects across the
behavioral data, the probability of response switching was
found to be statistically different between the two groups
identified as either Declarative decision makers or
Procedural decision makers (z = -6.11, p < 0.001),
supporting the validity of the ACT-R model identification.

Table 2: Results of the Logistic Mixed Effects Model of
the Probability of Response Switch

Statistical Test odds se z D
ratio

(Intercept) 0.88* 0.05 -2.30 0.022

Model Group 0.71***  0.04 -6.11  <0.001

Block Type 0.98 0.03  -0.80 0.423

Trial Type 1.08** 0.03 2.84 0.005

Model Group by 1.07* 0.03 2.46 0.014

Block Type

Model Group by 0.8*** 0.02 -8.10 <0.001

Trial Type

Block Type by 1.02 0.03 0.78 0.434

Trial Type

Model Group by 1.10***  0.03 3.47 0.001

Block Type by

Trial Type

Random Effect

o 3.29

icc 0.12
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Figure 3. (Top) Counts of individuals identified by ACT-R
models. The red bar represents the number of participants
best fit by the Declarative model; the blue bar represents the
number of participants best fit by the Procedural Model.
(Bottom) The probability of response switching by two
groups of individuals identified as either Declarative or
Procedural decision makers.

Supervised Classification with Logistic Model

To explore if the behavioral differences between
Declarative and Procedural decision makers are indicated by
an individual’s underlying brain structure, we trained a
Logistic Regression model using resting state functional
connectivity as its variable, and predicted the probability of
a participant being labeled as either Declarative-based or
Procedural-based decision maker by the ACT-R model
classification. In order to handle an imbalanced dataset with
unequal target labels, upsampling was applied by randomly
adding data from the minority class. Having 69,696 (264
ROI x 264 ROI) connections, we want to select only the
most important connections contributing to the prediction,
therefore, Lasso regularization was applied to the Logistic
Model. Lasso is a machine learning regression analysis
technique that performs both variable selection and
regularization in order to improve the prediction accuracy
and interpretability of the computational model. It can
reduce model complexity by penalizing large numbers of
coefficients and also prevents overfitting which may result
from simple linear regression. Lasso minimization is
calculated using Eq 4, where the tuning parameter A controls
the degree of penalty: for greater values of A, more
coefficients are forced to become 0.
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To account for the large disparity between the number of
participants and the number of predictors, we performed a
Grid search in sklearn (Pedregosa et al., 2011) with 20-fold
cross-validation to determine the best fit hyper-parameter A
(6.73). To maximize the penalty to coefficients, the highest
value of A with validation accuracy with one standard error
of the maximum accuracy was chosen (as recommended by
Krstajic et al (2014). Instead of splitting the entire dataset
into training and testing sets, we refit the model using
Leave-one-out (LOO) cross validation. The model is trained
on all samples except one and the prediction is made on that
one sample, then the process is repeated across the full
dataset. The mean score (accuracy), true positive rate(TPR),
true negative rate (TNR), false positive rate (FPR), false
negative rate (FNR) are calculated across all folds to
evaluate the performance of the model. By definition, the
receiver operating characteristic curve (ROC) demonstrates
the performance of a classification model by plotting the
relationship between TPR vs. FPR at different classification
thresholds. We calculated the AUC (Area under the curve),
which is one of the most important metrics for evaluating a
classification model’s performance; as the AUC of a model
approaches 1, the model approximates an ideal, perfect
classifier. It provides information about how well a
classification model is capable of distinguishing between
classes. The overall classification accuracy is 0.88 and the
ROC-AUC is 0.94, indicating that predicting from an
individual's resting state functional connectivity, the Lasso
Logistic model is capable of matching ACT-R’s prediction
about whether an individual is a Declarative-based or
Procedural-based decision maker.

Connectivity Map

With Lasso regularization, approximately 1.4% of (3
estimates in the Logistic model are not zero, suggesting a
relatively sparse neuro functional connectivity of the resting
brain. In a 264 X 264 B coefficients matrix, the Bijvalue

indicates the weight of connectivity between the i-th and the
J-th region in classifying whether the human subject is a
Declarative decision maker or a Procedural decision maker
from the resting state functional connectivity. The ultimate
effect of B on the predicted group assignment depends on
the polarity of the underlying functional connectivity. A
positive B value has different implications if applied to a
positive or negative partial correlation between two regions.
To make the interpretation of the values unambiguous, we
multiplied the fmatrix with the averaged partial correlation
coefficient matrix A, obtaining a group-level weighted
averaged correlation matrix W. Figure 4 demonstrates the
brain connectivity map of W, thresholded so that only the
most predictive 68 connections (corresponding to 0.01% of
the initial pool of regressors) are shown. In this figure, red
lines represent functional connections that are predictive of



a Declarative decision maker, and blue lines represent
functional connections that are predictive of a Procedural
decision maker. Color shades suggest the strength of
redictability.

Figure 4. The group-level weighted averaged brain
connectivity plot.

As we anticipated, the results show a dissociation
between the types of connectivity associated with
Declarative or Procedural strategies. Using the Power et al
(2011) functional classification of these regions as a
guideline, the results show that the use of a Declarative
strategy was mostly associated with increased functional
connectivity in the networks of regions associated with task
control (fronto-parietal networks and attention networks)
and episodic memory (default mode network and memory
retrieval network), while the use of Procedural strategy was
mostly linked to increased functional connectivity in
sensorimotor and subcortical networks.

Discussion

This paper shows that individual preferences for using a
declarative or a procedural strategy can be decoded from
patterns of resting state functional connectivity data. The
specific connectivity values suggest that an individual’s
preference for a particular strategy might be adaptive and
rational. Specifically, individuals exhibiting a stronger
fronto-parietal connectivity play to their strengths, and tend
to use declarative strategies that are more reliant on
controlled memory retrieval, while individuals with stronger
sensorimotor connectivity tend to use procedural strategies.
In general, the patterns of functional connectivity are
compatible with ACT-R’s regions.

Although our results are encouraging, a number of
limitations must be acknowledged. First, the Declarative vs.
Procedural classification of individuals’ probability of
switching is based on a log-likelihood model fitting
procedure, and thus, no ground-truth labels were available.
Moreover, the optimal parameter was searched from a finite
grid, and determined by the highest log-likelihood value
compared to empirical data. Second, the task is highly
unusual, in that it provides no real opportunity for learning
from feedback. Further study could model the learning
effect and investigate whether different learning
mechanisms could also be predicted by the neuro-functional
connectivity.

These limitations notwithstanding, we believe that our
results have some important implications. First, they
provide a new and deeper way to connect individual
differences in task performance with individual

neurobiology, showing how the latter might provide
constraints on the specific strategies that are selected.

Second, they have implications for ACT-R. Procedural
knowledge has been traditionally associated, in ACT-R,
with the function of the basal ganglia. While the role of the
basal ganglia in learning procedural knowledge is well
supported (Knowlton et al., 2006 etc.), it is not clear that the
basal ganglia are also the ultimate seat of procedural
knowledge. In fact, both modeling work (Stocco, Lebiere, &
Anderson, 2010) and experimental work using
neurostimulation (Rice & Stocco, 2019) point to procedural
knowledge being ultimately encoded in a set of
cortico-cortical connections that directly link
stimulus-response  associations. This interpretation is
compatible with our findings that find greater likelihood of
using procedural strategies in individuals with stronger
perceptuo-motor connectivity.
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