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Abstract 

Despite of strong historical connections between information 
theory and the study of perceptual independence and 
separability, few modern approaches take advantage of these 
connections. We revive Garner and Morton’s (1969) classic 
Mutual Uncertainty Analysis (MUA), complement it with 
Partial Information Decomposition (PID, Williams & Beer, 
2010), and apply both to a sample of data from contemporary 
studies. While existing theories can dissociate between 
perceptual and decisional separability and identify 
dependencies at the level of individual stimuli, MUA and PID 
can provide diagnostics for identifying other types of 
perceptual dependencies, decompose them into their 
constituents, and provide a measure for their strength. 

Keywords: perceptual independence; perceptual separability; 
information theory; mutual uncertainty analysis; partial 
information decomposition; general recognition theory 

Introduction 

Originating in studies of selective attention (Stroop, 1935) 

and building on Garner’s (1974) speeded classification 
paradigm, the study of perceptual independence and 

separability has become a field of its own (see Algom & 

Fitousi, 2016, for a review). Over the recent decades, articles 

and book chapters on Garner interference have come to be 

dominated by roughly two kinds of modeling approaches: 

multidimensional, signal-detection-based theories, such as 

general recognition theory (GRT, Ashby & Townsend, 

1986), and similarity- or distance-based approaches, such as 

the similarity choice model (Luce, 1963; Shepard, 1957) and 

its further extensions (e.g. Nosofsky, 1985). 

    Regardless of the modeling approach used, assessments of 

perceptual independence are typically made based on 
confusion matrix data from identification experiments, and 

build on the assumption that the distribution of response 

errors is diagnostic of types of violations of perceptual 

independence. 

As Algom and Fitousi (2016) note, despite of the strong 

connections that Garner’s (1962) early work on perceptual 

independence has to information theory, and of the usefulness 

of information theory in quantifying types of dependencies, 

it has seldom been used in the field. 

To help cover this gap and to investigate whether and how 

information theory could be used, we will (1) re-introduce 
Garner & Morton’s (1969) classic mutual uncertainty 

analysis (MUA), along with information-theoretic 

preliminaries, (2) extend it with Partial Information 

Decomposition (PID, Williams & Beer, 2010), (3) apply both 

to identification experiment data from contemporary studies  

 
1 Unless otherwise noted, the definitions used in this chapter are 

borrowed from Garner (1962) and McGill (1954). 

and compare the results to existing, more commonly applied 

diagnostics (GRT), and (4) provide tentative psychological 

interpretations for the terms associated with PID. 

Throughout the paper, we will highlight some of the formal 

connections between MUA, PID, and GRT. Due to limited 

space, this analysis will be illustratory rather than axiomatic. 

Terminology 

In this paper, ‘perceptual independence’ will be used to refer 
to the existence of statistical independence between the 

perceptual effects of (orthogonal) stimulus components. This 

is in line with Garner and Morton’s (1969) use of the term 

and the definition of perceptual independence used in GRT. 

‘Perceptual separability’, on the other hand, will be used to 

refer to perceptual separability as defined by GRT. 

Preliminaries: Entropy, Conditional Entropy, 

and Mutual Information1 

As McGill (1954) and Garner (1962) note, mutual 

information is an efficient tool for assessing statistical 

independence between two or more random variables. Unlike 

uncorrelation, the lack of mutual information implies 

statistical independence, and mutual information can capture 

complex (e.g. nonlinear) dependencies between variables.  

    Let pi, i ∈ [1, …, n], and pj, j ∈ [1, …, m], denote the 
probability associated with each of n, m outcomes of a 

discrete random variable x, y, respectively. The Shannon 

(1948) entropy of x is  
 

𝑈(𝑥) = − ∑ 𝑝𝑖 𝑙𝑜𝑔2
𝑛
𝑖=1 (𝑝𝑖),       (1) 

 

the joint entropy of x and y is 
 

𝑈(𝑥, 𝑦) = − ∑ ∑ 𝑝𝑖𝑗
𝑚
𝑗=1

𝑛
𝑖=1 𝑙𝑜𝑔2(𝑝𝑖𝑗),        (2) 

 

and the conditional entropy of x given y is 
 

𝑈𝑦(𝑥) = 𝑈(𝑥, 𝑦) − 𝑈(𝑦).              (3) 
 

    The mutual information2 between x and y is 
 

𝑈(𝑥: 𝑦) = 𝑈(𝑥) + 𝑈(𝑦) − 𝑈(𝑥, 𝑦),      (4) 
 

the mutual information between x and two discrete random 
variables y, z, or three discrete random variables y, z, w, is 
 

𝑈(𝑥: 𝑦, 𝑧) = 𝑈(𝑥) + 𝑈(𝑦, 𝑧) − 𝑈(𝑥, 𝑦, 𝑧)        (5) 
 

𝑈(𝑥: 𝑦, 𝑧, 𝑤) = 𝑈(𝑥) + 𝑈(𝑦, 𝑧, 𝑤) − 𝑈(𝑥, 𝑦, 𝑧, 𝑤)       (6) 

2 Also referred to as partial contingent uncertainty (Garner, 1962; 
Garner & Morton, 1969) or transmitted information (McGill, 1954). 



and the conditional mutual information between x and y given 

z, or given z and w, is  
 

𝑈𝑧(𝑥: 𝑦) = 𝑈(𝑥: 𝑦, 𝑧) − 𝑈(𝑥: 𝑧)         (7) 
 

𝑈𝑧𝑤(𝑥: 𝑦) = 𝑈(𝑥: 𝑦,  𝑧,  𝑤) − 𝑈(𝑥: 𝑧, 𝑤).        (8) 
 

    Mutual information is a symmetric measure of association: 

it is 0 if and only if x and y are statistically independent, and 

it can be expressed as the Kullback-Leibler (1961) 

divergence of the joint distribution (x, y) from the product of 
their marginal distributions 
 

𝑈(𝑥: 𝑦) = ∑ ∑ 𝑝𝑖𝑗
𝑚
𝑗=1

𝑛
𝑖=1 𝑙𝑜𝑔2 (

𝑝𝑖𝑗

𝑝𝑖𝑝𝑗
).      (9) 

 

    The mutual information between a target variable x and 

two source variables y, z can also be defined as 
 

𝑈(𝑥: 𝑦, 𝑧) = 𝑈(𝑥: 𝑦) + 𝑈(𝑥: 𝑧) + 𝑈(𝑥𝑦𝑧)       (10) 
 

where 𝑈(𝑥𝑦𝑧) denotes interaction information. Interaction 

information is a symmetric measure 
 

𝑈(𝑥𝑦𝑧) = 𝑈𝑥(𝑦: 𝑧) − 𝑈(𝑦: 𝑧)   

               = 𝑈𝑦(𝑥: 𝑧) − 𝑈(𝑥: 𝑧)   

= 𝑈𝑧(𝑦: 𝑧) − 𝑈(𝑦: 𝑧)                   (11) 
 

and can be interpreted as a measure of effect size. 

Mutual Uncertainty Analysis (MUA) 

Garner and Morton (1969) decompose the mutual 

information between two stimulus components A, B (e.g. 

shape and color) and two response variables a, b into 
 

𝑈(𝑎,  𝑏: 𝐴,  𝐵) = 𝑈(𝑎: 𝑏: 𝐴: 𝐵) − 𝑈(𝑎: 𝑏)        (12) 
 

𝑈(𝑎: 𝑏: 𝐴: 𝐵) = 𝑈(𝐴: 𝐵) + 𝑈(𝑎: 𝐴) + 𝑈(𝑏: 𝐵)              
+𝑈𝐴(𝑎: 𝐵) + 𝑈𝐵(𝑏: 𝐴) + 𝑈𝐴𝐵(𝑎: 𝑏)         (13) 

 

where 𝑈(𝐴: 𝐵) = 0 for orthogonally varied components, 

𝑈(𝑎: 𝐴) and 𝑈(𝑏: 𝐵) measure the accuracy of responses on 

each component (𝑈(𝑎: 𝐴) = 𝑈(𝐴) and 𝑈(𝑏: 𝐵) = 𝑈(𝐵) for 
maximum accuracy), and perceptual independence is 

violated if 𝑈𝐴(𝑎: 𝐵) ≠ 0, 𝑈𝐵(𝑏: 𝐴) ≠ 0, or 𝑈𝐴𝐵(𝑎: 𝑏) ≠ 0. 

According to Garner and Morton, 𝑈𝐴(𝑎: 𝐵) ≠ 0 and 

𝑈𝐵(𝑏: 𝐴) ≠ 0 reflect a crossing over from one perceptual 

channel to the other, whereas 𝑈𝐴𝐵(𝑎: 𝑏) ≠ 0 measures error 

correlation, which can be due to perceptual or response 

processes. Error correlation can reflect state correlation, i.e. 

variation in responses across trials caused by changes in the 
state of the observer relative to the processing channels. 

𝑈(𝑎: 𝑏), on the other hand, reflects response correlation. 

These terms are illustrated in Figure 1. 

 
3 PID could also be applied to decompose the sole influence of A 

and B on a or b (𝑈(𝑎: 𝐴, 𝐵) and 𝑈(𝑏: 𝐴, 𝐵)), but this would yield 

Partial Information Decomposition (PID) 

Partial Information Decomposition (Williams & Beer, 2010) 

decomposes the interaction information between one target 

variable and two or more source variables into redundant and 

synergistic components, which, intuitively speaking, reflect 

the information shared by the sources for predicting the target 
(analogous to an AND gate), and unique combinations of the 

sources for predicting the target (analogous to a XOR gate). 

Formally, the information shared between target x and 

sources y, z can be broken into 
 

𝑈(𝑥: 𝑦, 𝑧) = 𝑈(𝑥: 𝑦) + 𝑈(𝑥: 𝑧) + 𝑈(𝑥𝑦𝑧) 

= 𝑈(𝑥: 𝑦) + 𝑈(𝑥: 𝑧) + 𝑈(𝑥: {𝑦𝑧}) − 𝑈(𝑥: {𝑦}{𝑧})  

= 𝑈(𝑥: {𝑦}) + 𝑈(𝑥: {𝑧}) + 𝑈(𝑥: {𝑦𝑧}) + 𝑈(𝑥: {𝑦}{𝑧}) (14) 
 

where 𝑈(𝑥: {𝑦}) and 𝑈(𝑥: {𝑧}) denote unique information 

contributed by each of the sources, 𝑈(𝑥: {𝑦}{𝑧}) denotes 

redundant information, and 𝑈(𝑥: {𝑦𝑧}) denotes synergistic 

information. 𝑈(𝑥: {𝑦}{𝑧}) = 𝑈𝑚𝑖𝑛(𝑥: {𝑦, 𝑧}), the minimum 

amount of information shared by y and z for predicting x, and 

𝑈(𝑥: 𝑦) = 𝑈(𝑥: {𝑦}) + 𝑈(𝑥: {𝑦}{𝑧}). This partitioning is 

illustrated in Figure 2 and can be further extended to any 

number of source variables. Figure 3 illustrates the case for 

three source variables and one target variable. 

 
 

Figure 1: Illustration of the terms used by Garner and 

Morton (1969) in mutual uncertainty analysis. 

PID for Identification Experiment Data 

Identification experiment data typically involves as many 
response dimensions as stimulus dimensions, whereas PID 

has been developed to predict only one target. Due to this, 

PID needs to be applied separately to each response 

dimension. Because a majority of identification experiments 

consist of only two dimensions, this is relatively 

straightforward, and provides insight on asymmetric 

dependencies between the response dimensions. 

    Applying PID to predict response variable a yields3 

less information and neglect interactions between the response 
dimensions. 



𝑈(𝑎: 𝑏, 𝐴, 𝐵) 

= 𝑈(𝑎: {𝑏}) + 𝑈(𝑎: {𝐴}) + 𝑈(𝑎: {𝐵}) + 

𝑈(𝑎: {𝑏}{𝐴}) + 𝑈(𝑎: {𝑏}{𝐵}) + 𝑈(𝑎: {𝐴}{𝐵}) +
𝑈(𝑎: {𝑏}{𝐴}{𝐵}) + 𝑈(𝑎: {𝑏𝐴}) + 𝑈(𝑎: {𝑏𝐵}) +
𝑈(𝑎: {𝐴𝐵}) + 𝑈(𝑎: {𝑏𝐴𝐵}) + 𝑈(𝑎: {𝑏}{𝐴𝐵}) +

𝑈(𝑎: {𝑏𝐴}{𝐵}) + 𝑈(𝑎: {𝑏𝐵}{𝐴}) + 𝑈(𝑎: {𝑏𝐴}{𝑏𝐵}) +
𝑈(𝑎: {𝑏𝐴}{𝐴𝐵}) + 𝑈(𝑎: {𝑏𝐵}{𝐴𝐵}) + 𝑈(𝑎: {𝑏𝐴}{𝑏𝐵}{𝐴𝐵}) 

(15) 
 

which consists of all possible combinations of unique, 

redundant, and synergistic information contributed by each 

source alone or together. Applying PID to predict response 

variable b yields an analogous partitioning with 𝑈(𝑏: 𝑎, 𝐴, 𝐵). 

Connection between MUA and PID 

Using PID, the terms of MUA can be decomposed into their 

constituents. 𝑈(𝑎: 𝐴) (or, analogously, 𝑈(𝑏: 𝐵)) can be 

decomposed into 
 

𝑈(𝑎: 𝐴) = 𝑈(𝑎: {𝐴}) + 𝑈(𝑎: {𝑏}{𝐴}) + 𝑈(𝑎: {𝐴}{𝐵}) + 

𝑈(𝑎: {𝑏}{𝐴}{𝐵}) + 𝑈(𝑎: {𝐴}{𝑏𝐵})               (16) 
 

where 𝑈(𝑎: {𝐴}) is indicative of unique information from A, 

and the remaining terms reflect the redundant information 

shared by A and different combinations of b and B. 
Psychologically, the unique information contributed by A 

can be interpreted as the direct and unique perceptual 

influence of A on a, i.e. the part of A that is accurately 

reflected in a responses, not influenced by B, and not shared 

with b. 𝑈(𝑎: {𝑏}{𝐴}) and 𝑈(𝑎: {𝑏}{𝐴}{𝐵}) reflect correlation 

between a and b that is informed by A or A and B. 

𝑈(𝑎: {𝐴}{𝐵}) measures the redundant information in A and B 

that is reflected in response a, which should be 0 for 

orthogonal stimulus dimensions. Finally, 𝑈(𝑎: {𝐴}{𝑏𝐵}) 

reflects trials in which response a correlates with A and b is 
informed by an interaction of A and B. 

Decomposing 𝑈𝐴(𝑎: 𝐵) (or, analogously, 𝑈𝐵(𝑏: 𝐴)) yields 
 

𝑈𝐴(𝑎: 𝐵) = 𝑈(𝑎: {𝐵}) + 𝑈(𝑎: {𝐴𝐵}) 

+ 𝑈(𝑎: {𝑏}{𝐵}) +  𝑈(𝑎: {𝑏}{𝐴𝐵}) +  𝑈(𝑎: {𝑏𝐴}{𝐵}) 

+ 𝑈(𝑎: {𝑏𝐵}{𝐴𝐵}) +  𝑈(𝑎: {𝑏𝐴}{𝐴𝐵}) 

+ 𝑈(𝑎: {𝑏𝐴}{𝑏𝐵}{𝐴𝐵})                         (17) 
 

where 𝑈(𝑎: {𝐵}) is indicative of pure crossing over across 

perceptual channels, 𝑈(𝑎: {𝐴𝐵}) reflects the synergistic 

influence of A and B on a, 𝑈(𝑎: {𝑏}{𝐵}) reflects response 

correlation informed by B, 𝑈(𝑎: {𝑏}{𝐴𝐵}) reflects response 

correlation informed by synergistic combinations of A and B, 

and the remaining terms reflect types of state correlation. 

    The decomposition of error correlation, 𝑈𝐴𝐵(𝑎: 𝑏), yields 
 

𝑈𝐴𝐵(𝑎: 𝑏) = 𝑈(𝑎: {𝑏}) + 𝑈(𝑎: {𝑏𝐴}) +  𝑈(𝑎: {𝑏𝐵}) 

               + 𝑈(𝑎: {𝑏𝐴𝐵}) + 𝑈(𝑎: {𝑏𝐴}{𝑏𝐵})        (18) 
 

where 𝑈(𝑎: {𝑏}) reflects unique information shared by a and 

b (due to pure response correlation, e.g. bias), and the 

remaining terms reflect different types of state correlation: 

𝑈(𝑎: {𝑏𝐴}) reflects cases in which the perception of A is 

enhanced (or impaired) by a certain state relative to B, 

𝑈(𝑎: {𝑏𝐵}) reflects cases in which B leaks into the perception 

of a when the observer is in a certain state relative to B, 

𝑈(𝑎: {𝑏𝐴}{𝑏𝐵}) reflects the redundant information shared by 

these cases, and  𝑈(𝑎: {𝑏𝐴𝐵}) reflects cases in which 

synergistic information from A and B interacts with the state 

of the observer, producing error correlation. Hence, under 

PID, 𝑈(𝑎: {𝑏𝐴𝐵}) is the term that corresponds most closely 

to Garner and Morton’s interpretation of 𝑈𝐴𝐵(𝑎: 𝑏). 

    Finally, response correlation, 𝑈(𝑎: 𝑏), can be decomposed 

into 
 

𝑈(𝑎: 𝑏) = 𝑈(𝑎: {𝑏}) + 𝑈(𝑎: {𝑏}{𝐴}) + 𝑈(𝑎: {𝑏}{𝐵}) 

+ 𝑈(𝑎: {𝑏}{𝐴𝐵}) + 𝑈(𝑎: {𝑏}{𝐴}{𝐵})         (19) 
 

where 𝑈(𝑎: {𝑏}) is shared with 𝑈𝐴𝐵(𝑎: 𝑏), 𝑈(𝑎: {𝑏}{𝐴}) and 

𝑈(𝑎: {𝑏}{𝐴}{𝐵}) are shared with 𝑈(𝑎: 𝐴), and 𝑈(𝑎: {𝑏}{𝐵}) 

and 𝑈(𝑎: {𝑏}{𝐴𝐵}) are shared with 𝑈𝐴(𝑎: 𝐵). 

 
 

Figure 2: Partial Information Decomposition for one 

target variable x and two source variables y, z. Based on 

Figure 1 in Williams & Beer (2010).  

 
 

Figure 3: Partial Information Decomposition for one 

target variable x and three source variables y, z, w. Based on 

Figure S2 in Williams & Beer (2010). 



Example Application: GRT 

General Recognition Theory (GRT, Ashby & Townsend, 

1986) is a multidimensional extension of signal detection 

theory, which presumes that perceptions of the stimulus 

components are influenced by normally distributed noise, and 

that response probabilities are determined by the location of 
choice boundaries in the perceptual space. GRT dissociates 

between perceptual separability, decisional separability, and 

perceptual independence, summarized in Figure 4, and uses a 

combination of probabilistic diagnostic tests to assess 

whether they have been violated. 

    According to GRT, perceptual separability holds if the 

perceptual distribution of a stimulus component (e.g. A1) is 

uninfluenced by variation in the value of the other component 

(B1 or B2), decisional separability holds if the probability of 

responding e.g. a1 given the perceptual distributions of A1 and 

A2 is uninfluenced by the value of B (i.e. the decision 

boundary is parallel to the B-axis), perceptual independence 
holds at the stimulus level if the perceptual distribution of e.g. 

A1 in A1B1 is uncorrelated with the perceptual distribution of 

B1, and perceptual independence holds at the marginal level 

if it is not violated for any stimulus. 

 

 

Figure 4: Postulates of GRT.  Figure adapted from Ashby 

& Soto (2015). 
 

Figure 5: Some of the diagnostic tests of GRT. Figures 

adapted from Ashby & Soto (2015). 

 
4 McGill (1954) shows that if 𝑛𝑖𝑗𝑚 = (𝑛𝑖𝑗𝑛𝑖𝑚) 𝑛𝑖⁄  for the 

observed frequencies ni, nj, and nm of the random variables u, v, and 

y, respectively, then 𝑈𝑢(𝑣: 𝑦) = 0. Similarly, if 𝑛𝑖𝑗𝑘𝑚 =

The diagnostic tests of GRT that are relevant for our 

purposes are marginal response invariance and sampling 

independence, summarized in Figure 5. In GRT, marginal 

response invariance is used as an indicator of a violation of 

perceptual or decisional separability, whereas sampling 

independence is used to assess violations of perceptual 

independence. GRT also employs various other statistical and 

signal-detection-based measures, which for the sake of space 

and relevance will not be reviewed here. An interested reader 

can consult Ashby & Soto (2015) for an illustrative review. 

Formal Connections: GRT and MUA 

Earlier on, it has been shown that if perceptual and decisional 

separability hold, marginal response invariance holds, and 

𝑈𝐴(𝑎: 𝐵) = 𝑈𝐵(𝑏: 𝐴) = 0 (Theorem 6, Ashby & Townsend, 

1986). Conversely, if 𝑈𝐴(𝑎: 𝐵) ≠ 0 or 𝑈𝐵(𝑏: 𝐴) ≠ 0, 

marginal response invariance is violated, and either 

perceptual or decisional separability is violated. 

Analogously, it can be shown4 that if sampling 

independence holds, 𝑈𝐴𝐵(𝑎: 𝑏) = 0 (and, conversely, if 

𝑈𝐴𝐵(𝑎: 𝑏) ≠ 0, sampling independence is violated). 

Given that Ashby & Townsend (1986, Theorem 1) show 

that if (and only if) decisional separability holds, a violation 
of sampling independence implies a violation of perceptual 

independence (and vice versa), this means that if decisional 

separability holds, 𝑈𝐴𝐵(𝑎: 𝑏) ≠ 0 indicates a violation of 

perceptual independence at the stimulus level. 

Taken together, when 𝑈𝐴(𝑎: 𝐵) ≠ 0 or 𝑈𝐵(𝑏: 𝐴) ≠ 0, 

perceptual or decisional separability is violated, and when 

𝑈𝐴𝐵(𝑎: 𝑏) ≠ 0 and decisional separability holds, perceptual 

independence (in the GRT sense) is violated. Hence, MUA 

cannot dissociate between violations of perceptual and 

decisional separability or prove that perceptual independence 
(in the GRT sense) has been violated; however, MUA can 

provide diagnostics for other types of violations of perceptual 

independence. 

Empirical Results: GRT, MUA, and PID 

Figure 6 shows examples of GRT, MUA, and PID applied to 

three kinds of identification experiment data: data from one 

participant in a line perception study (Townsend, Hu, & 

Ashby, 1981), simulated data (Ashby & Soto, 2015), and data 
from four participants in a facial feature perception study 

(Thomas, 2001b). In each data set, A and B are varied in two 

levels, yielding a 4x4 confusion matrix of every possible 

combination of A and B and their respective responses. 

    As predicted by the formal results, when GRT indicates a 

violation of perceptual or decisional separability, the 

respective term in MUA (𝑈𝐴(𝑎: 𝐵) for A and 𝑈𝐵(𝑏: 𝐴) for B) 

deviates significantly from zero in every case except for 

𝑈𝐴(𝑎: 𝐵) in the Townsend, Hu, and Ashby (1981) data, which 

is only significant at the p < 0.10 or  p < 0.25 level (depending 
on the correction method used). Similarly, when GRT’s 

(𝑛𝑖𝑗𝑘𝑛𝑖𝑘𝑚) 𝑛𝑖𝑘⁄ , where nk refers to the observed frequencies of 

another random variable x, then 𝑈𝑢𝑥(𝑣: 𝑦) = 0. 



perceptual independence is violated, 𝑈𝐴𝐵(𝑎: 𝑏) deviates 

significantly from zero in all data sets, except for observer 4 

in Thomas (2001b) where a very high accuracy for A pulls 

almost all interactional terms to zero. In all cases, the 
magnitudes of the MUA terms reflect the severity and/or 

number (for perceptual independence) of GRT violations. 

    As for the results of PID, it appears that, throughout all data 

sets, certain components in the decompositions of MUA 

terms are present very often, whereas others are seldom or 

never present. For example, 𝑈(𝑎: 𝐴) (and conversely 

𝑈(𝑏: 𝐵)) is decomposed into a nonzero 𝑈(𝑎: {𝐴}) (or 

𝑈(𝑏: {𝐵})) and 𝑈(𝑎: {𝑏}{𝐴}) (𝑈(𝑏: {𝑎}{𝐵})) in nearly every 

data set, indicating a unique contribution from A to a (B to b) 

and a response correlation between a and b informed by A 

(B). The only data sets lacking 𝑈(𝑎: {𝐴}) (or 𝑈(𝑏: {𝐵})) are 
Ashby and Soto (2015), where the failure of perceptual 

separability in A drives 𝑈(𝑏: {𝐵}) into 𝑈(𝑏: {𝑎}{𝐵}) and 

𝑈(𝑏: {𝐵}{𝑎𝐴}), i.e. all information from B is also shared with 

a, and observer 1 in Thomas (2001b), where 𝑈(𝑎: {𝐴}) is zero 

due to a very low accuracy in A. 

    Some of the data sets include a nonzero 𝑈(𝑎: {𝑏}{𝐴}{𝐵}) 

(or 𝑈(𝑎: {𝑏}{𝐴}{𝐵})), reflecting a crossing over in perceptual 

channels together with correlated responses. When both of 

these terms occur, the results of GRT are symmetric, whereas 

when only one of them occurs also GRT reflects an 

asymmetricity in processing. For instance, in the Ashby and 

Soto (2015) data, only 𝑈(𝑎: {𝑏}{𝐴}{𝐵}) is nonzero and 

perceptual separability is violated for A (reflecting a 

difference in processing across levels of B), whereas for 

observer 1 in Thomas (2001b) only 𝑈(𝑎: {𝑏}{𝐴}{𝐵}) is again 

nonzero and perceptual independence fails at only one level 

of B. In addition, either 𝑈(𝑎: {𝐴}{𝑏𝐵}) or 𝑈(𝑏: {𝐵}{𝑎𝐴}) is 

nonzero in four of the six data sets, which would appear to 

reflect a violation of perceptual separability in the Ashby and 

Soto (2015) data set but is harder to explain in the Thomas 

(2001b, observers 2, 3, and 4) data sets. Finally, as expected 

with orthogonal stimulus components, 𝑈(𝑎: {𝐴}{𝐵}) (or 

𝑈(𝑏: {𝐴}{𝐵})) is always zero. 

    As mentioned earlier, 𝑈𝐴(𝑎: 𝐵) and 𝑈𝐵(𝑏: 𝐴) deviate 

significantly from zero only in data sets in which decisional 

or perceptual separability is violated. In the first case 

(Townsend, Hu, & Ashby, 1981), 𝑈𝐴(𝑎: 𝐵) and 𝑈𝐵(𝑏: 𝐴) are 

decomposed into 𝑈(𝑎: {𝐴𝐵}) and 𝑈(𝑎: {𝑏𝐴}{𝐴𝐵}), and 

𝑈(𝑏: {𝐴𝐵}) and 𝑈(𝑏: {𝑎𝐵}{𝐴𝐵})), whereas in the second 

case (Ashby & Soto, 2015), 𝑈𝐴(𝑎: 𝐵) consists of 

𝑈(𝑎: {𝑏𝐴}{𝐴𝐵}) alone. This suggests that perceptual and 

decisional separability could have different signatures in 

PID; however, the sample of data sets used here is too small 

to draw further conclusions on this. 

    In all data sets, 𝑈𝐴𝐵(𝑎: 𝑏) is decomposed into nonzero 

𝑈(𝑎: {𝑏𝐴𝐵}) and 𝑈(𝑏: {𝑎𝐴𝐵}), four of the six data sets also 

have nonzero 𝑈(𝑎: {𝑏𝐴}) and 𝑈(𝑏: {𝑎𝐵}), and one of the data 

sets (Ashby & Soto, 2015) has a nonzero 𝑈(𝑏: {𝑎𝐴}{𝑎𝐵}). 

This matches with Garner and Morton’s error correlation 

𝑈𝐴𝐵(𝑎: 𝑏) being primarily reflected in 𝑈(𝑎: {𝑏𝐴𝐵}) and 

𝑈(𝑏: {𝑎𝐴𝐵}). The additional terms found reflect the 

enhanced (or impaired) perception of one dimension 

depending on the state of the observer relative to the value on 

the other, which would (together with error correlation) 

appear to be reflected in GRT as a stimulus-level perceptual 

dependency. In one of the data sets (Thomas 2001b, observer 

1), the partitioning of 𝑈𝐴𝐵(𝑎: 𝑏) is asymmetric, with nonzero 

𝑈(𝑎: {𝑏𝐵}) and 𝑈(𝑏: {𝑎𝐵}), possibly reflecting the fact that 

perceptual independence is only violated at one level of B. 

    Finally, as for 𝑈(𝑎: 𝑏), across all data sets only the terms 

shared with 𝑈(𝑎: 𝐴) or 𝑈(𝑏: 𝐵) are nonzero, indicating that 

response correlation always reflects information that is 

correct in one dimension (i.e. is never based on a relation 

between a and b alone, or informed by purely synergistic 

information from A and B). 

Conclusions 

To summarize, the purpose of this paper was to reintroduce 

MUA, to complement it with PID, to compare the results 

gained with MUA and PID to the results of GRT, and to 

provide tentative interpretations for the terms of PID. It was 

briefly noted that certain GRT diagnostics have MUA 

equivalents, and that these equivalents can be further 

decomposed using PID, which was illustrated in a small 

sample of simulated and experimental data. 

The results concerning MUA and GRT are mostly in line 
with earlier work by Fitousi (2013), who analyzed 

correlations between GRT parameters and MUA terms in a 

simulated data set, and reanalyzed three face perception data 

sets (Thomas, 2001a, 2001b, and Richler et al., 2008). The 

novel contribution of this paper, along with formal 

connections between sampling independence and 𝑈𝐴𝐵(𝑎: 𝑏), 

is the extension of MUA with PID and its potential 

psychological implications. 

Suggestions for Future Work 

Analogously to this paper, the results of PID could be 

compared to other existing approaches and extended to data 

sets with non-orthogonal stimulus dimensions, or to stimuli 

that are known to be perceptually integral. The statistical 

foundations underlying connections between GRT and PID 

would also merit further elaboration, and, like GRT, PID 

could be used to analyze stimulus-level information. 

Methodological Notes 

The MUA terms reported in this paper were computed from 

identification experiment data using (1) – (13) implemented 

in a Python program, and the PID terms presented were 

computed using Timme et al.’s (2014) MATLAB package. 

Statistical significance tests for MUA terms were executed 

using a chi squared approximation method described in 

Attneave (1959) and McGill (1954), and a correction method 

described in Miller and Madow (1954). The results of GRT 

were borrowed from the respective papers. 
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Figure 6: Examples of data sets analyzed using GRT, MUA, and PID. The figures illustrating GRT are adapted from Kadlec and 

Townsend (1992), Ashby & Soto (2015), and Thomas (2001b), respectively. Statistically significant MUA terms (p < 0.05) and their 

PID constituents are in black, whereas nonsignificant terms and their PID constituents are in grey. Corresponding MUA and PID 

terms can differ slightly due to rounding. 
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