

Obstacles to the Skill-Based Approach: Why is skill reuse so difficult for
cognitive architectures?

Corné Hoekstra (c.hoekstra@rug.nl)

Bernoulli Institute for Mathematics, Computer Science, and Artificial Intelligence
University of Groningen, Groningen, the Netherlands

Sander Martens (s.martens@umcg.nl)

Department of Biomedical Sciences of Cells and Systems
University Medical Center Groningen, University of Groningen, Groningen, the Netherlands

Niels A. Taatgen (n.a.taatgen@rug.nl)

Bernoulli Institute for Mathematics, Computer Science, and Artificial Intelligence
University of Groningen, Groningen, the Netherlands

Abstract
Skill reuse is a commonly accepted aspect of human
cognition but it has been difficult to translate to
cognitive architectures. We developed the skill-based
approach which enables modelers to create models
composed of skills created for other tasks but it does not
(yet) support fully reusable skills. We will discuss three
factors that prevent full reusability: inflexible WM,
rigid goal selection and all-or-nothing condition
checking. The factors are discussed in the context of the
architecture PRIMs but they also apply to many other
cognitive architectures. Finally, we discuss possible
solutions to alleviate these issues.

Keywords: cognitive modeling, PRIMs, ACT-R,
skill reuse, generalizability, cognitive architecture

Many tasks share considerable overlap in the cognitive
elements required to complete it (Lee & Anderson,
2001). This cognitive overlap is one of the key
fundamental principles underneath the attempt of
cognitive architectures to arrive at a unified theory of
cognition. In cognitive architectures the overlap in
cognitive elements is put into practice by defining the
blank slate cognitive system (i.e., the architecture)
consisting of modules and buffers that underlies all
behavior (Anderson et al., 2004). This approach has
led to successful modeling of a wide range of tasks and
paradigms; however, a crucial additional consequence
of the cognitive overlap between tasks has never
received much attention. Not only can the same
architecture be used to complete many tasks, this
architecture can also very often be used in the same
way (i.e., with the same procedural knowledge).
Incorporating this into cognitive architectures would
take into account the fact that huge proportions of our
capabilities have been acquired through a long process
of development and learning while currently only the
innate aspects of cognition are considered. In order to
bring this idea into practice, we have developed the
skill-based approach to cognitive modeling.
 This approach can be valuable for multiple reasons.
Firstly, models will mirror human behavior more
closely which will improve model fit (Stearns & Laird,

2018). Secondly, reusing procedural knowledge is a
large contributor to the flexibility people possess in
executing various tasks. Incorporating it into cognitive
modeling and AI could strongly improve flexibility
and robustness (Taatgen, Huss, Dickison, & Anderson,
2008). Finally, the large range of models created in the
different fields of cognitive science can be integrated
more easily if they all draw from one pool of basic
building blocks.

PRIMs
We have explored the idea of skill reuse in the
cognitive architecture PRIMs (Taatgen, 2013). We
will give a short introduction to PRIMs here and in the
relevant sections further down the paper. (See Taatgen
(2013) for a complete introduction). PRIMs is based
on ACT-R and inherits many of its properties. It is a
cognitive architecture built up from distinct cognitive
modules whose actions are controlled by “production-
rules” (operators in PRIMs) and it contains a similarly
functioning declarative memory system. An important
distinction between the two architectures is that the
operators in PRIMs are built up from smaller units than
ACT-R’s production rules. These smaller units are the
primitive information processing elements (PRIMs).
PRIMs are considered the basic elements of cognition
and are only capable of either moving or comparing
pieces of information in the workspace. Although a
single PRIM is not very powerful, combinations of
PRIMs (i.e., operators) are able to execute complex
cognition on the same level as ACT-R. These primitive
operations are assumed to be universally applicable to
any task and therefore can provide low-level
mechanisms of transfer. They are also relatively easy
to implement in neural architectures (Stocco, Lebiere,
& Anderson, 2010). The central concept of the skill-
based approach, a skill, is one level above an operator.
A skill is a reusable collection of operators that
perform a part of a task. Although a skill is larger than
an operator, carrying out a skill still only takes a small
amount of time in the order of one second or less.
 The low-level transfer combined with the higher-
level concept of a skill make PRIMs well-suited for

exploring the skill-based approach although (most of)
its principles can be implemented in other cognitive
architectures as well.

The Skill-Based Approach
The central idea of the skill-based approach is to
construct models of tasks in the same way humans
would approach a new task. When people are
confronted with a new task, they do not need to figure
out from scratch how to complete this task but instead
can rely on previously learned knowledge which has
proven successful (Salvucci, 2013). A good example
of this are the experimental tasks typical of cognitive
psychology. Participants have usually never
encountered these tasks before, yet they are quickly
able to figure out what to do. Since they do not have
time to learn new procedural knowledge specific to
this task, it suggests that they reuse existing procedural
knowledge. Concretely, the skill-based approach
assumes that learning (almost) any new task merely
means composing it from already existing skills.
 A fundamental challenge to emulating this human-
like flexible behavior in cognitive models is balancing
generalizability with accuracy. Different tasks come
with different contexts and the model needs to be
general enough to function in all these contexts but
also specific enough to produce the same result
regardless of that context. The common solution to this
challenge is to allow for dynamic variable binding
(Greff, van Steenkiste, & Schmidhuber, 2020); that is,
allow variables to take on different values depending
on the context. Although this solution is commonly
adopted across different types of AI, there is no
consensus on how it should be implemented (Feldman,
2013). The solution adopted by PRIMs is variable
instantiation; a skill is created with general variable
names which are only defined (instantiated) when the
skill is used in a new context. However, there is no
principled way in which this mechanism is
implemented in the architecture.
 More exact details can be found in our previous
publications on the skill-based approach in which we
propose the method (Hoekstra, Martens, & Taatgen,
2020) and test the validity of its predictions (Hoekstra,
Martens, & Taatgen, 2022), but in short the skill-based
approach works as follows. The first step of the skill-
based approach is determining which basic skills are
responsible for performing the modeled task based on
previous literature. This step comes forth out of the
fundamental principle of the skill-based approach that
every task is a composition of basic processing steps
that have been done (many times) before. For example,
in the attentional blink (Martens & Wyble, 2010)
model we have constructed (Hoekstra et al., 2020), the
four basic skills we included were ‘visual search’,
‘consolidation’, ‘retrieval’, and ‘response’. Skills that
were reused from other models. This first step
increases the generalizability of a model because the
ubiquity of its basic building blocks allows it to be
easily linked to other models and theories. The second

step involves creating and testing the validity of the
basic skills. In this step, other models which include
(some of) the basic skills are built and these models are
compared with human data. In our attentional blink
model, we completed this step by creating a model of
a simple visual discrimination task and two working
memory tasks (a simple working memory task and a
complex working memory task). This step is necessary
to create the basic skills and it provides evidence for
the accuracy of these skills. The final step involves
adapting the basic skills to the context of the task of
interest. In PRIMs, the cognitive architecture we used,
this is done by instantiating the skills.
 Following this method, we succeeded in
constructing a model of the attentional blink (AB) that
consisted of elements (skills) that worked in both the
original task (e.g., the complex working memory task)
as well as the AB task. This shows that it is possible to
create cognitive models out of elements created for
other tasks and that models can be created by merely
assembling already existing procedural knowledge.
However, the process of creating these skills was quite
laborious and it often required making modifications
to the basic skills that seemed too “AB-specific” to be
part of general basic skills (Hoekstra et al., 2020). In
short, we succeeded in creating a model with reused
skills but not with fully reusable skills. That is, we
managed to create an AB model out of skills that are
also parts of other models (and are therefore reused)
but these skills cannot be freely reused in every other
task that includes the same basic skill (i.e., they are not
fully reusable). However, this is crucial; making the
step from reused skills to reusable skills would realize
the full potential of the skill-based approach. It would
standardize the knowledge used in cognitive models as
well as increasing the ease with which skill-reuse can
be implemented during model building.

Current paper
In the current paper, we will discuss which factors
cause the difficulties in creating fully reusable skills.
We will describe three open questions that complicate
the implementation of the skill-based approach,
specifically in PRIMs but some also apply to ACT-R.
Although these open questions demonstrate practical
problems in implementing the skill-based approach,
they also point to fundamental unanswered questions
about how flexibility should be balanced with
cognitive plausibility as well as learnability. The
questions will be illustrated by challenges we
encountered while using the skill-based approach to
model the updating tasks described by Miyake and
colleagues (Miyake et al., 2000).

Inflexible Working Memory
In PRIMs and ACT-R the main purpose of working
memory (WM) is to keep relevant information quickly
available and to support the building of new chunks.
WM in ACT-R does not consist of one dedicated
system but instead consists of two modules that

together function as WM: declarative memory and the
problem state (Nijboer, Borst, van Rijn, & Taatgen,
2016). Declarative memory is responsible for storing
chunks while the problem state takes care of keeping
the chunks immediately available and is capable of
creating new chunks.
 In PRIMs, WM does consist of a single dedicated
module responsible for keeping information readily
available and for creating new (long-term) memory
chunks. This module is called the imaginal buffer;
however, it is often referred to as the WM-buffer and,
for clarity, we will follow that convention. The WM-
buffer in PRIMs works as any other buffer in the
architecture in the sense that it has slots in which
information can be placed and retrieved without any
penalty. The slots function independently of one
another and are numbered starting with one.
Information is placed in and withdrawn from WM by
a PRIM. For example, placing information presented
on the screen in WM can be done by the PRIM V1 ->
WM1 and information can be taken out from WM by a
PRIM such as WM1 -> AC2. Information can also be
moved around within WM, for example WM4 ->
WM1. The use of numbered slots in WM makes it
much easier to reuse skills and operators compared to
using named slots such as in ACT-R. However, it is
not flexible enough to facilitate full reusability because
the numbered slots are often still too rigid.
 The inflexible working memory causes two main
issues. The first is that the slots that will be used by the
skills in the separate tasks need to be calibrated to work
together. This requires a lot of effort from the modeler
and although it is manageable for smaller and
homogenous models, it quickly becomes unwieldy
when the model involves many skills and different
types of tasks. This is not a fundamental limitation, but
it does present an obstacle to the adoption of the skill-
based approach, especially when skill reuse is only a
secondary interest. The second issue is more
fundamental. Reusability of skills depends on the
availability of the WM slots used in the original task.
When these slots are not available in a different task,
the skill cannot be reused. For example, the ‘read’ skill
in our updating model stores the newly presented item
in WM5 because the first four slots are used to keep
track of the previously presented items. This might
become problematic if the model would move on to a
five-item memory task because the WM5 slot will be
used to keep track of the fifth item. This illustrates that
WM is not flexible enough unless a skill is designed
while keeping every possible combination of tasks in
mind and that full reusability is not yet possible.

Besides causing practical difficulties in using the
skill-based approach, the issues with WM also point to
a more fundamental question of how WM should be
implemented in a cognitive architecture. The challenge
is that WM needs to be extremely flexible on the one
hand, but also consistent with the limitations that have
been identified in the literature on working memory.

The buffer-based design of PRIMs’ WM has the
advantage of being relatively flexible. It can be used in
many types of tasks and it can store many types of
information, additionally it provides a means of
keeping information readily available. However, it
lacks some plausibility because it assumes perfect
(decay-free) storage of its contents which is not fully
in line with the WM literature.

The alternative to using a buffer for WM is to store
items in declarative memory. This is an attractive
option, because it puts no hard limit on the number of
items, but it still imposes a soft limit through memory
decay. However, using declarative memory as WM
also has a strong limitation in the sense that the
information is not readily available, and has to be
retrieved first. Given that items can only be retrieved
one at a time, it is impossible to interrelate two or more
items, which is a necessity for almost all tasks.

In conclusion, the practical issues we encountered
while exploring the skill-based approach not only
point to implementation issues but also to fundamental
questions of how flexibility and plausibility should be
balanced in WM.

Rigid Goal Selection
The goal module plays a central role in determining
which production will fire in both ACT-R and PRIMs.
Although the goal buffer plays a similar role in both
architectures it does not work in the same way. In
ACT-R the goal buffer influences production selection
through the goal-state chunk present in the goal buffer
and exerts its influence in a very explicit manner. Only
production-rules which condition side matches the
pattern in the goal-state chunk will be considered for
selection. This way, the goal module is largely
responsible for guiding the model towards firing the
right productions at the right time.
 The goal module in PRIMs has the same general
role and also is responsible for the broad strokes
‘supervision’ of the model through a task. However,
the goal module in PRIMs executes its role in a
different and less explicit way. Operator selection in
PRIMs is determined by the activity of the operators in
memory. The most active operator gets selected first
and its conditions are compared to the current context,
if the conditions match the context the operator will
fire. If the conditions do not match, the next most
active operator will be retrieved and its conditions
tested. This process repeats until an operator with
matching conditions is found which will then fire. The
goal buffer has a large influence on this process by
spreading activation to operators that are associated
with the current goal. This biases the selection process
towards selecting operators that match the goal
without guaranteeing that such operators will fire
(noise or non-matching conditions can still prevent it).
The subtle but forceful influence the PRIMs goal
module exerts allows for organized behavior while still
allowing for flexibility within a task and, importantly,
between tasks. The limitation related to the goal

module is not how the goal module impacts operator
selection but instead in how the goal itself is selected.
 As is the case with all exchanges of information in
PRIMs, goals are also determined by a PRIM. A new
goal becomes active by a PRIM updating the value in
G1 (the first slot of the goal-buffer). Although it is also
possible to create situations in which multiple goals
are active, for simplicity sake we will focus on a
situation with one active goal. Goals are defined by
symbols (similar to ACT-R) and therefore setting
‘respond’ as the goal can be done by the PRIM respond
-> G1, if there is a skill with that same name. There
are no rules about when or how the goal-determining
PRIM needs to fire, however the architecture is
designed in such a way that the most logical place for
such a PRIM is in the final operator of a skill. This is
very useful for simple models because it allows for an
easy to understand (and flexible) way in which the
model moves from one goal to the next. However, it
becomes limiting in more complex models, especially
in tasks in which the order of the goals is not always
the same.
 Determining the next skill within the previous skill
essentially means that the next goal is decided by the
previous goal. This severely limits full reusability of a
skill because the role of a skill differs depending on the
task. In some tasks, a certain skill might only be used
at the end of a task (and therefore would not even
require a next-skill operator) while in a different task
the same skill might be a central part of the task and be
used multiple times within a single trial. Switching
skills gets further complicated by condition checking
(which will be discussed in the next section) because
different conditions might require the same skill to be
performed next and, therefore, require separate
operators. Often these limitations lead to a large array
of different operators whose only function is switching
to the next skill in different situations. For example,
the ‘update-WM’ skill required four different
operators only for switching between skills in the three
tasks we modeled due to its centrality in those tasks.
Extending the ‘update-WM’ skill to more tasks would
only introduce more of such operators even though the
basic procedural knowledge of updating WM would
remain the same. This puts the cognitive plausibility of
this way of switching skills into question, because it
implies that every skill includes many operators that
are only responsible for switching to the next skill.
 This exposes two core limitations that are present in
the current conception of PRIMs (and also ACT-R).
Firstly, skills take care of two separate aspects of
cognition: they perform the cognitive processing steps
and are responsible for goal selection. That is, they are
responsible for both selecting the goals and ensuring
that they are achieved. This makes skill reuse difficult
because, as our example shows, the basic procedural
knowledge (which takes care of achieving a certain
goal) might remain stable in most situations but the
goal selection process might be different. Separating
goal selection from goal execution will make skill

reuse much easier. The second limitation is related to
the type of information on which goal selection is
based. Currently, goals are purely selected based on
declarative knowledge. At the start of a task, by
creating the goal-switching operators a ‘plan’ for the
task is laid out and the model is practically incapable
of deviating from this path. This way of goal selection
is too rigid and overlooks the fact that people select
goals based on a plan combined with their perception
of the current situation (Altmann & Trafton, 2002).
 Our modeling suggests that goal selection should be
separated from execution and be made more flexible.
However, this is not an easy task. The basic
assumptions of PRIMs do not consider goal selection
a special case of cognition and posit that it should be
accomplished by a PRIM. Furthermore, increasing the
flexibility of goal selection leads to questions of how
this flexibility can be balanced with reliability since a
more flexible model will also be more unpredictable.

Condition checking
The final factor limiting the creation of fully reusable
skills we will discuss here is related to a fundamental
aspect of both ACT-R and PRIMs, namely condition
checking. In both architectures, productions consist of
a condition side (left-hand side) and an action side
(right-hand side). The conditions are compared to the
content of the buffers before the action side is
executed. In ACT-R, the conditions of all productions
are evaluated in parallel and when multiple
productions match the current contents of the buffer
the production with the highest utility factor will be
chosen. In PRIMs, condition checking occurs serially
starting with the first condition of the most active
operator. When one of the conditions does not match,
the next active operator will be tested until a matching
operator is found. This takes a certain amount of time
at first, but after a while most conditions will be
compiled into one execution cycle and the most active
matching operator will usually be picked without any
time cost (comparable to ACT-R).
 Conditions are thought to be a fundamental part of
procedural knowledge in both architectures.
Therefore, full skill reusability means that both the
action as well as the condition side need to be reused.
Although the action side usually works in both tasks,
the condition side is more problematic. After all, a
different task usually means a different context to
which the conditions will be matched. This often
means that the condition side of an operator needs to
be adapted to the new task which hinders reusability.
Conditions that are especially challenging are those
that are related to specific situations in a certain task.
For example, in one of the updating models WM
needed to be updated based on information in the
visual buffer while in a different model it had to be
updated based on information in WM itself. In this
situation the action PRIMs (the right-hand side) were
identical, but a different operator still needed to be
created to accommodate the difference in conditions.

 This leads to the question to which extent conditions
are reused. The quick learning displayed by humans
suggests that some previously learned condition-action
associations are retained when a new task is
performed, however our modeling implies that this
does not apply to all of them. Take for example the
operator depicted below.

 operator respond-value-WM1 {
 V1 = *report-instructions
 WM1 <> nil
 ==>
 *action -> AC1
 WM1 -> AC2
 }

This operator gives the response (stored in WM1) at
the end of a trial by performing an action (e.g.,
pressing a key on a keyboard). In this case, the second
condition can be retained without problem because
reporting WM1 would always require WM1 to not be
empty. However, the other condition which tests
whether the report instructions are currently on-screen
should probably not be retained because it depends on
the task.
 The example suggests that not all conditions are
created equal and that some conditions should not be
reused. Especially conditions aimed at representing a
task-specific situation hinder skill reuse suggesting
that conditions might not be the best way to represent
task-specific context.

Potential solutions
The three limitations we discussed impede the
practical usefulness of the skill-based approach but we
believe that they will not present a fundamental
roadblock to fully reusable skills. The limitations we
discussed are largely consequences of the reliance of
cognitive models on the input of task-specific details
from the modeler. Therefore, these issues might be
alleviated by implementing learning mechanisms with
which the model can figure out task-specific details
independently or by providing more principled ways
in which the modeler can specify such details.
 The first limitation we discussed involved WM. The
key issue here is that the inflexible WM demands a lot
of coordination from the modeler because the model is
not aware of the identity of the WM contents. A
possible way to alleviate this would be to store the to-
be remembered value together with its meaning (e.g.,
store the value “four” together with “current-
stimulus”). This cannot be done in the current
conception of the WM; however, the DM module does
possess the required properties. By storing chunks in
the DM (such as depicted below) the model would be
aware of the value as well as the identity.

ISA fact
SLOT1 binding-fact
SLOT2 current-stimulus
SLOT3 four

In this situation, the current PRIMs imaginal buffer
(i.e., the WM buffer) would be used almost exclusively
to facilitate the creation of new chunks and as a
problem-state (Borst, Taatgen, & van Rijn, 2010).
Importantly, in order to keep the high flexibility of a
buffer-based WM, these chunks should be accessible
without the need of an explicit retrieval request but
instead through means of a PRIM. For example, by
allowing a PRIM to directly create bindings (e.g., four
-> *current-stimulus).
 This way of organizing WM provides a better
balance of flexibility and plausibility, because chunks
are subject to decay and retrieval times, however the
information in WM is still easily accessible because it
can be directly done by a PRIM. Furthermore, this
design of the short-term memory would also provide a
mechanism for the variable binding problem discussed
earlier in the introduction. The dynamic bindings
required to facilitate flexible model behavior could be
stored in this same manner. Ideally, the model would
create these flexible binding chunks independently
(e.g., when ‘reading’ the instructions) which would
tremendously improve skill reusability as well as
model autonomy.
 The second limitation we discussed involved the
manner in which the next skill is selected in PRIMs.
This issue boils down to how the next goal is placed in
the goal buffer. In the current situation, the previous
skill usually places the next skill in the goal buffer but
this method creates a large amount of procedural
knowledge only aimed at switching between skills.
 There is a possible solution that fits the PRIMs
philosophy. Instead of having one active skill, two
skills can be active: one skill for execution, and one
skill for planning. The execution skill carries out the
actions required to achieve a particular subtask, and
then terminates itself. The planning skill is then
responsible for selecting a next skill.
 This would be a big improvement over the current
situation because it allows for goal switching separate
from goal execution based on both a pre-made plan as
well as the current context. Additionally, it allows for
a flexible representation of task-specific information
without the need to include such information in the
general skills.
 The final limitation we discussed concerned
condition-checking. The limitation to skill reusability
associated with condition-checking is that every task
has a different context which makes it likely that the
original conditions will not apply. Additionally, our
modeling showed an important distinction between
generally applicable conditions and task-specific
conditions and raised the question whether conditions
are the best way to represent task-specific context.
 Testing conditions is one way to establish a
mapping between the current state of the cognitive
system and the action to be taken, but not the only one.
Neural network approaches to modeling operators
often use inspiration from the basal ganglia. The basal
ganglia are considered to be central to forming

context-action mappings and recent modeling efforts
have created models capable of creating such
mappings. These mappings provided reusable context-
action associations while retaining flexibility by
means of small changes to the connection weights in
the network (Stewart, Bekolay, & Eliasmith, 2012;
Taatgen, 2020).
 Such functionality could be incorporated in
production-based architectures by specifying (or
learning) connections between certain items in the
workspace and operators. For example, the first
condition of the previously mentioned example could
be replaced by specifying a positive connection
(through spreading activation) between the report-
instructions and this operator. This would make it
more likely that it gets picked when such instructions
are on the screen but it does not prevent the operator
from firing when they are absent. This functionality is
already possible in PRIMs but it might be helpful to
explicitly make it part of an operator definition (in
addition to conditions) which is not only practical but
also highlights that these connections are reused.

Conclusion
The skill-based approach is a promising addition to the
arsenal of a cognitive modeler; however, the previous
discussion has shown that there are still some
important limitations. The inflexible WM demands a
lot of coordination from this modeler, the unnatural
goal selection requires a large amount of inefficient
procedural knowledge and the all-or-nothing condition
checking severely hampers the versatility of operators.
Resolving these issues will require some substantial
modifications to the cognitive architecture we
employed and to production-system architectures in
general. We proposed some solutions in this paper
which we will explore in a subsequent study.
 The current paper resulted from attempting to apply
the skill-based approach to a series of basic tasks that
make use of skills that are widely used. The difficulties
we experienced show that current cognitive
architectures do not support the creation of fully
reusable skills. This does not mean, however, that the
skill-based approach is completely ineffective, current
architectures do support the use of reused skills and
capitalizing on this characteristic will already result in
more valid and generalizable models.

References
Altmann, E. M., & Trafton, J. G. (2002). Memory for

goals: an activation-based model. Cognitive Science,
26(1), 39–83.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass,
S., Lebiere, C., & Qin, Y. (2004). An integrated
theory of the mind. Psychological Review, 111(4),
1036–1060. https://doi.org/10.1037/0033-
295X.111.4.1036

Borst, J. P., Taatgen, N. A., & van Rijn, H. (2010). The
problem state: a cognitive bottleneck in multitasking.
Journal of Experimental Psychology. Learning,

Memory, and Cognition, 36(2), 363–382.
Feldman, J. (2013). The neural binding problem(s).

Cognitive Neurodynamics, 7(1), 1–11.
Greff, K., van Steenkiste, S., & Schmidhuber, J.

(2020). On the binding problem in artificial neural
networks. ArXiv Preprint ArXiv:2012.05208.

Hoekstra, C., Martens, S., & Taatgen, N. A. (2020). A
Skill-Based Approach to Modeling the Attentional
Blink. Topics in Cognitive Science, 12(3), 1030–
1045. https://doi.org/10.1111/tops.12514

Hoekstra, C., Martens, S., & Taatgen, N. A. (2022).
Testing the skill-based approach: Consolidation
strategy impacts attentional blink performance. Plos
One, 17(1), e0262350.

Lee, F. J., & Anderson, J. R. (2001). Does Learning a
Complex Task Have to Be Complex?: A Study in
Learning Decomposition. Cognitive Psychology,
42(3), 267–316.

Martens, S., & Wyble, B. (2010). The attentional
blink: past, present, and future of a blind spot in
perceptual awareness. Neuroscience and
Biobehavioral Reviews, 34(6), 947–957.
https://doi.org/10.1016/j.neubiorev.2009.12.005

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki,
A. H., Howerter, A., & Wager, T. D. (2000). The
unity and diversity of executive functions and their
contributions to complex “frontal lobe” tasks: A
latent variable analysis. Cognitive Psychology,
41(1), 49–100.

Nijboer, M., Borst, J., van Rijn, H., & Taatgen, N.
(2016). Contrasting single and multi-component
working-memory systems in dual tasking. Cognitive
Psychology, 86, 1–26.

Salvucci, D. D. (2013). Integration and reuse in
cognitive skill acquisition. Cognitive Science, 37(5),
829–860.

Stearns, B., & Laird, J. (2018). Modeling Instruction
Fetch in Procedural Learning. In Proceedings of the
16th international conference on cognitive
modeling.

Stewart, T. C., Bekolay, T., & Eliasmith, C. (2012).
Learning to select actions with spiking neurons in the
Basal Ganglia. Frontiers in Neuroscience, 6, 2.

Stocco, A., Lebiere, C., & Anderson, J. R. (2010).
Conditional routing of information to the cortex: a
model of the basal ganglia’s role in cognitive
coordination. Psychological Review, 117(2), 541–
574.

Taatgen, N. A. (2013). The nature and transfer of
cognitive skills. Psychological Review, 120(3), 439–
471. https://doi.org/10.1037/a0033138

Taatgen, N. A. (2020). A spiking neural architecture
that learns tasks. In Proceedings of ICCM 2019 -
17th International Conference on Cognitive
Modeling (pp. 253–258).

Taatgen, N. A., Huss, D., Dickison, D., & Anderson,
J. R. (2008). The acquisition of robust and flexible
cognitive skills. Journal of Experimental
Psychology. General, 137(3), 548–565.

