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Abstract 
Skill reuse is a commonly accepted aspect of human 
cognition but it has been difficult to translate to 
cognitive architectures. We developed the skill-based 
approach which enables modelers to create models 
composed of skills created for other tasks but it does not 
(yet) support fully reusable skills. We will discuss three 
factors that prevent full reusability: inflexible WM, 
rigid goal selection and all-or-nothing condition 
checking. The factors are discussed in the context of the 
architecture PRIMs but they also apply to many other 
cognitive architectures. Finally, we discuss possible 
solutions to alleviate these issues.  
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Many tasks share considerable overlap in the cognitive 
elements required to complete it (Lee & Anderson, 
2001). This cognitive overlap is one of the key 
fundamental principles underneath the attempt of 
cognitive architectures to arrive at a unified theory of 
cognition. In cognitive architectures the overlap in 
cognitive elements is put into practice by defining the 
blank slate cognitive system (i.e., the architecture) 
consisting of modules and buffers that underlies all 
behavior (Anderson et al., 2004). This approach has 
led to successful modeling of a wide range of tasks and 
paradigms; however, a crucial additional consequence 
of the cognitive overlap between tasks has never 
received much attention. Not only can the same 
architecture be used to complete many tasks, this 
architecture can also very often be used in the same 
way (i.e., with the same procedural knowledge). 
Incorporating this into cognitive architectures would 
take into account the fact that huge proportions of our 
capabilities have been acquired through a long process 
of development and learning while currently only the 
innate aspects of cognition are considered. In order to 
bring this idea into practice, we have developed the 
skill-based approach to cognitive modeling. 
    This approach can be valuable for multiple reasons. 
Firstly, models will mirror human behavior more 
closely which will improve model fit (Stearns & Laird, 

2018). Secondly, reusing procedural knowledge is a 
large contributor to the flexibility people possess in 
executing various tasks. Incorporating it into cognitive 
modeling and AI could strongly improve flexibility 
and robustness (Taatgen, Huss, Dickison, & Anderson, 
2008). Finally, the large range of models created in the 
different fields of cognitive science can be integrated 
more easily if they all draw from one pool of basic 
building blocks. 

PRIMs 
We have explored the idea of skill reuse in the 
cognitive architecture PRIMs (Taatgen, 2013). We 
will give a short introduction to PRIMs here and in the 
relevant sections further down the paper. (See Taatgen 
(2013) for a complete introduction). PRIMs is based 
on ACT-R and inherits many of its properties. It is a 
cognitive architecture built up from distinct cognitive 
modules whose actions are controlled by “production-
rules” (operators in PRIMs) and it contains a similarly 
functioning declarative memory system. An important 
distinction between the two architectures is that the 
operators in PRIMs are built up from smaller units than 
ACT-R’s production rules. These smaller units are the 
primitive information processing elements (PRIMs). 
PRIMs are considered the basic elements of cognition 
and are only capable of either moving or comparing 
pieces of information in the workspace. Although a 
single PRIM is not very powerful, combinations of 
PRIMs (i.e., operators) are able to execute complex 
cognition on the same level as ACT-R. These primitive 
operations are assumed to be universally applicable to 
any task and therefore can provide low-level 
mechanisms of transfer. They are also relatively easy 
to implement in neural architectures (Stocco, Lebiere, 
& Anderson, 2010). The central concept of the skill-
based approach, a skill, is one level above an operator. 
A skill is a reusable collection of operators that 
perform a part of a task. Although a skill is larger than 
an operator, carrying out a skill still only takes a small 
amount of time in the order of one second or less.  
    The low-level transfer combined with the higher-
level concept of a skill make PRIMs well-suited for 



 

 

exploring the skill-based approach although (most of) 
its principles can be implemented in other cognitive 
architectures as well.   

The Skill-Based Approach 
The central idea of the skill-based approach is to 
construct models of tasks in the same way humans 
would approach a new task. When people are 
confronted with a new task, they do not need to figure 
out from scratch how to complete this task but instead 
can rely on previously learned knowledge which has 
proven successful (Salvucci, 2013). A good example 
of this are the experimental tasks typical of cognitive 
psychology. Participants have usually never 
encountered these tasks before, yet they are quickly 
able to figure out what to do. Since they do not have 
time to learn new procedural knowledge specific to 
this task, it suggests that they reuse existing procedural 
knowledge. Concretely, the skill-based approach 
assumes that learning (almost) any new task merely 
means composing it from already existing skills.  
    A fundamental challenge to emulating this human-
like flexible behavior in cognitive models is balancing 
generalizability with accuracy. Different tasks come 
with different contexts and the model needs to be 
general enough to function in all these contexts but 
also specific enough to produce the same result 
regardless of that context. The common solution to this 
challenge is to allow for dynamic variable binding 
(Greff, van Steenkiste, & Schmidhuber, 2020); that is, 
allow variables to take on different values depending 
on the context. Although this solution is commonly 
adopted across different types of AI, there is no 
consensus on how it should be implemented (Feldman, 
2013). The solution adopted by PRIMs is variable 
instantiation; a skill is created with general variable 
names which are only defined (instantiated) when the 
skill is used in a new context. However, there is no 
principled way in which this mechanism is 
implemented in the architecture. 
    More exact details can be found in our previous 
publications on the skill-based approach in which we 
propose the method (Hoekstra, Martens, & Taatgen, 
2020) and test the validity of its predictions (Hoekstra, 
Martens, & Taatgen, 2022), but in short the skill-based 
approach works as follows. The first step of the skill-
based approach is determining which basic skills are 
responsible for performing the modeled task based on 
previous literature. This step comes forth out of the 
fundamental principle of the skill-based approach that 
every task is a composition of basic processing steps 
that have been done (many times) before. For example, 
in the attentional blink (Martens & Wyble, 2010) 
model we have constructed (Hoekstra et al., 2020), the 
four basic skills we included were ‘visual search’, 
‘consolidation’, ‘retrieval’, and ‘response’. Skills that 
were reused from other models. This first step 
increases the generalizability of a model because the 
ubiquity of its basic building blocks allows it to be 
easily linked to other models and theories. The second 

step involves creating and testing the validity of the 
basic skills. In this step, other models which include 
(some of) the basic skills are built and these models are 
compared with human data. In our attentional blink 
model, we completed this step by creating a model of 
a simple visual discrimination task and two working 
memory tasks (a simple working memory task and a 
complex working memory task). This step is necessary 
to create the basic skills and it provides evidence for 
the accuracy of these skills. The final step involves 
adapting the basic skills to the context of the task of 
interest. In PRIMs, the cognitive architecture we used, 
this is done by instantiating the skills. 
     Following this method, we succeeded in 
constructing a model of the attentional blink (AB) that 
consisted of elements (skills) that worked in both the 
original task (e.g., the complex working memory task) 
as well as the AB task. This shows that it is possible to 
create cognitive models out of elements created for 
other tasks and that models can be created by merely 
assembling already existing procedural knowledge. 
However, the process of creating these skills was quite 
laborious and it often required making modifications 
to the basic skills that seemed too “AB-specific” to be 
part of general basic skills (Hoekstra et al., 2020). In 
short, we succeeded in creating a model with reused 
skills but not with fully reusable skills. That is, we 
managed to create an AB model out of skills that are 
also parts of other models (and are therefore reused) 
but these skills cannot be freely reused in every other 
task that includes the same basic skill (i.e., they are not 
fully reusable). However, this is crucial; making the 
step from reused skills to reusable skills would realize 
the full potential of the skill-based approach. It would 
standardize the knowledge used in cognitive models as 
well as increasing the ease with which skill-reuse can 
be implemented during model building. 

Current paper 
In the current paper, we will discuss which factors 
cause the difficulties in creating fully reusable skills. 
We will describe three open questions that complicate 
the implementation of the skill-based approach, 
specifically in PRIMs but some also apply to ACT-R. 
Although these open questions demonstrate practical 
problems in implementing the skill-based approach, 
they also point to fundamental unanswered questions 
about how flexibility should be balanced with 
cognitive plausibility as well as learnability. The 
questions will be illustrated by challenges we 
encountered while using the skill-based approach to 
model the updating tasks described by Miyake and 
colleagues (Miyake et al., 2000). 

Inflexible Working Memory 
In PRIMs and ACT-R the main purpose of working 
memory (WM) is to keep relevant information quickly 
available and to support the building of new chunks. 
WM in ACT-R does not consist of one dedicated 
system but instead consists of two modules that 



 

 

together function as WM: declarative memory and the 
problem state (Nijboer, Borst, van Rijn, & Taatgen, 
2016). Declarative memory is responsible for storing 
chunks while the problem state takes care of keeping 
the chunks immediately available and is capable of 
creating new chunks. 
    In PRIMs, WM does consist of a single dedicated 
module responsible for keeping information readily 
available and for creating new (long-term) memory 
chunks. This module is called the imaginal buffer; 
however, it is often referred to as the WM-buffer and, 
for clarity, we will follow that convention. The WM-
buffer in PRIMs works as any other buffer in the 
architecture in the sense that it has slots in which 
information can be placed and retrieved without any 
penalty. The slots function independently of one 
another and are numbered starting with one. 
Information is placed in and withdrawn from WM by 
a PRIM. For example, placing information presented 
on the screen in WM can be done by the PRIM V1 -> 
WM1 and information can be taken out from WM by a 
PRIM such as WM1 -> AC2. Information can also be 
moved around within WM, for example WM4 -> 
WM1. The use of numbered slots in WM makes it 
much easier to reuse skills and operators compared to 
using named slots such as in ACT-R. However, it is 
not flexible enough to facilitate full reusability because 
the numbered slots are often still too rigid. 
    The inflexible working memory causes two main 
issues. The first is that the slots that will be used by the 
skills in the separate tasks need to be calibrated to work 
together. This requires a lot of effort from the modeler 
and although it is manageable for smaller and 
homogenous models, it quickly becomes unwieldy 
when the model involves many skills and different 
types of tasks. This is not a fundamental limitation, but 
it does present an obstacle to the adoption of the skill-
based approach, especially when skill reuse is only a 
secondary interest. The second issue is more 
fundamental. Reusability of skills depends on the 
availability of the WM slots used in the original task. 
When these slots are not available in a different task, 
the skill cannot be reused. For example, the ‘read’ skill 
in our updating model stores the newly presented item 
in WM5 because the first four slots are used to keep 
track of the previously presented items. This might 
become problematic if the model would move on to a 
five-item memory task because the WM5 slot will be 
used to keep track of the fifth item. This illustrates that 
WM is not flexible enough unless a skill is designed 
while keeping every possible combination of tasks in 
mind and that full reusability is not yet possible. 

Besides causing practical difficulties in using the 
skill-based approach, the issues with WM also point to 
a more fundamental question of how WM should be 
implemented in a cognitive architecture. The challenge 
is that WM needs to be extremely flexible on the one 
hand, but also consistent with the limitations that have 
been identified in the literature on working memory.  

The buffer-based design of PRIMs’ WM has the 
advantage of being relatively flexible. It can be used in 
many types of tasks and it can store many types of 
information, additionally it provides a means of 
keeping information readily available. However, it 
lacks some plausibility because it assumes perfect 
(decay-free) storage of its contents which is not fully 
in line with the WM literature. 

The alternative to using a buffer for WM is to store 
items in declarative memory. This is an attractive 
option, because it puts no hard limit on the number of 
items, but it still imposes a soft limit through memory 
decay. However, using declarative memory as WM 
also has a strong limitation in the sense that the 
information is not readily available, and has to be 
retrieved first. Given that items can only be retrieved 
one at a time, it is impossible to interrelate two or more 
items, which is a necessity for almost all tasks. 

In conclusion, the practical issues we encountered 
while exploring the skill-based approach not only 
point to implementation issues but also to fundamental 
questions of how flexibility and plausibility should be 
balanced in WM. 

Rigid Goal Selection 
The goal module plays a central role in determining 
which production will fire in both ACT-R and PRIMs. 
Although the goal buffer plays a similar role in both 
architectures it does not work in the same way. In 
ACT-R the goal buffer influences production selection 
through the goal-state chunk present in the goal buffer 
and exerts its influence in a very explicit manner. Only 
production-rules which condition side matches the 
pattern in the goal-state chunk will be considered for 
selection. This way, the goal module is largely 
responsible for guiding the model towards firing the 
right productions at the right time. 
    The goal module in PRIMs has the same general 
role and also is responsible for the broad strokes 
‘supervision’ of the model through a task. However, 
the goal module in PRIMs executes its role in a 
different and less explicit way. Operator selection in 
PRIMs is determined by the activity of the operators in 
memory. The most active operator gets selected first 
and its conditions are compared to the current context, 
if the conditions match the context the operator will 
fire. If the conditions do not match, the next most 
active operator will be retrieved and its conditions 
tested. This process repeats until an operator with 
matching conditions is found which will then fire. The 
goal buffer has a large influence on this process by 
spreading activation to operators that are associated 
with the current goal. This biases the selection process 
towards selecting operators that match the goal 
without guaranteeing that such operators will fire 
(noise or non-matching conditions can still prevent it). 
The subtle but forceful influence the PRIMs goal 
module exerts allows for organized behavior while still 
allowing for flexibility within a task and, importantly, 
between tasks. The limitation related to the goal 



 

 

module is not how the goal module impacts operator 
selection but instead in how the goal itself is selected. 
    As is the case with all exchanges of information in 
PRIMs, goals are also determined by a PRIM. A new 
goal becomes active by a PRIM updating the value in 
G1 (the first slot of the goal-buffer). Although it is also 
possible to create situations in which multiple goals 
are active, for simplicity sake we will focus on a 
situation with one active goal. Goals are defined by 
symbols (similar to ACT-R) and therefore setting 
‘respond’ as the goal can be done by the PRIM respond 
-> G1, if there is a skill with that same name. There 
are no rules about when or how the goal-determining 
PRIM needs to fire, however the architecture is 
designed in such a way that the most logical place for 
such a PRIM is in the final operator of a skill. This is 
very useful for simple models because it allows for an 
easy to understand (and flexible) way in which the 
model moves from one goal to the next. However, it 
becomes limiting in more complex models, especially 
in tasks in which the order of the goals is not always 
the same. 
    Determining the next skill within the previous skill 
essentially means that the next goal is decided by the 
previous goal. This severely limits full reusability of a 
skill because the role of a skill differs depending on the 
task. In some tasks, a certain skill might only be used 
at the end of a task (and therefore would not even 
require a next-skill operator) while in a different task 
the same skill might be a central part of the task and be 
used multiple times within a single trial. Switching 
skills gets further complicated by condition checking 
(which will be discussed in the next section) because 
different conditions might require the same skill to be 
performed next and, therefore, require separate 
operators. Often these limitations lead to a large array 
of different operators whose only function is switching 
to the next skill in different situations. For example, 
the ‘update-WM’ skill required four different 
operators only for switching between skills in the three 
tasks we modeled due to its centrality in those tasks. 
Extending the ‘update-WM’ skill to more tasks would 
only introduce more of such operators even though the 
basic procedural knowledge of updating WM would 
remain the same. This puts the cognitive plausibility of 
this way of switching skills into question, because it 
implies that every skill includes many operators that 
are only responsible for switching to the next skill. 
    This exposes two core limitations that are present in 
the current conception of PRIMs (and also ACT-R). 
Firstly, skills take care of two separate aspects of 
cognition: they perform the cognitive processing steps 
and are responsible for goal selection. That is, they are 
responsible for both selecting the goals and ensuring 
that they are achieved. This makes skill reuse difficult 
because, as our example shows, the basic procedural 
knowledge (which takes care of achieving a certain 
goal) might remain stable in most situations but the 
goal selection process might be different. Separating 
goal selection from goal execution will make skill 

reuse much easier. The second limitation is related to 
the type of information on which goal selection is 
based. Currently, goals are purely selected based on 
declarative knowledge. At the start of a task, by 
creating the goal-switching operators a ‘plan’ for the 
task is laid out and the model is practically incapable 
of deviating from this path. This way of goal selection 
is too rigid and overlooks the fact that people select 
goals based on a plan combined with their perception 
of the current situation (Altmann & Trafton, 2002). 
    Our modeling suggests that goal selection should be 
separated from execution and be made more flexible. 
However, this is not an easy task. The basic 
assumptions of PRIMs do not consider goal selection 
a special case of cognition and posit that it should be 
accomplished by a PRIM. Furthermore, increasing the 
flexibility of goal selection leads to questions of how 
this flexibility can be balanced with reliability since a 
more flexible model will also be more unpredictable. 

Condition checking 
The final factor limiting the creation of fully reusable 
skills we will discuss here is related to a fundamental 
aspect of both ACT-R and PRIMs, namely condition 
checking. In both architectures, productions consist of 
a condition side (left-hand side) and an action side 
(right-hand side). The conditions are compared to the 
content of the buffers before the action side is 
executed. In ACT-R, the conditions of all productions 
are evaluated in parallel and when multiple 
productions match the current contents of the buffer 
the production with the highest utility factor will be 
chosen. In PRIMs, condition checking occurs serially 
starting with the first condition of the most active 
operator. When one of the conditions does not match, 
the next active operator will be tested until a matching 
operator is found. This takes a certain amount of time 
at first, but after a while most conditions will be 
compiled into one execution cycle and the most active 
matching operator will usually be picked without any 
time cost (comparable to ACT-R). 
    Conditions are thought to be a fundamental part of 
procedural knowledge in both architectures. 
Therefore, full skill reusability means that both the 
action as well as the condition side need to be reused. 
Although the action side usually works in both tasks, 
the condition side is more problematic. After all, a 
different task usually means a different context to 
which the conditions will be matched. This often 
means that the condition side of an operator needs to 
be adapted to the new task which hinders reusability. 
Conditions that are especially challenging are those 
that are related to specific situations in a certain task. 
For example, in one of the updating models WM 
needed to be updated based on information in the 
visual buffer while in a different model it had to be 
updated based on information in WM itself. In this 
situation the action PRIMs (the right-hand side) were 
identical, but a different operator still needed to be 
created to accommodate the difference in conditions. 



 

 

    This leads to the question to which extent conditions 
are reused. The quick learning displayed by humans 
suggests that some previously learned condition-action 
associations are retained when a new task is 
performed, however our modeling implies that this 
does not apply to all of them. Take for example the 
operator depicted below.  
 
 operator respond-value-WM1 { 
 V1 = *report-instructions 
 WM1 <> nil 
 ==> 
 *action -> AC1 
 WM1 -> AC2 
 } 
 
This operator gives the response (stored in WM1) at 
the end of a trial by performing an action (e.g., 
pressing a key on a keyboard). In this case, the second 
condition can be retained without problem because 
reporting WM1 would always require WM1 to not be 
empty. However, the other condition which tests 
whether the report instructions are currently on-screen 
should probably not be retained because it depends on 
the task.  
    The example suggests that not all conditions are 
created equal and that some conditions should not be 
reused. Especially conditions aimed at representing a 
task-specific situation hinder skill reuse suggesting 
that conditions might not be the best way to represent 
task-specific context.  

Potential solutions 
The three limitations we discussed impede the 
practical usefulness of the skill-based approach but we 
believe that they will not present a fundamental 
roadblock to fully reusable skills. The limitations we 
discussed are largely consequences of the reliance of 
cognitive models on the input of task-specific details 
from the modeler. Therefore, these issues might be 
alleviated by implementing learning mechanisms with 
which the model can figure out task-specific details 
independently or by providing more principled ways 
in which the modeler can specify such details. 
    The first limitation we discussed involved WM. The 
key issue here is that the inflexible WM demands a lot 
of coordination from the modeler because the model is 
not aware of the identity of the WM contents. A 
possible way to alleviate this would be to store the to-
be remembered value together with its meaning (e.g., 
store the value “four” together with “current-
stimulus”). This cannot be done in the current 
conception of the WM; however, the DM module does 
possess the required properties. By storing chunks in 
the DM (such as depicted below) the model would be 
aware of the value as well as the identity.  
 
ISA fact 
SLOT1 binding-fact 
SLOT2 current-stimulus 
SLOT3 four 
 

In this situation, the current PRIMs imaginal buffer 
(i.e., the WM buffer) would be used almost exclusively 
to facilitate the creation of new chunks and as a 
problem-state (Borst, Taatgen, & van Rijn, 2010). 
Importantly, in order to keep the high flexibility of a 
buffer-based WM, these chunks should be accessible 
without the need of an explicit retrieval request but 
instead through means of a PRIM. For example, by 
allowing a PRIM to directly create bindings (e.g., four 
-> *current-stimulus).  
    This way of organizing WM provides a better 
balance of flexibility and plausibility, because chunks 
are subject to decay and retrieval times, however the 
information in WM is still easily accessible because it 
can be directly done by a PRIM. Furthermore, this 
design of the short-term memory would also provide a 
mechanism for the variable binding problem discussed 
earlier in the introduction. The dynamic bindings 
required to facilitate flexible model behavior could be 
stored in this same manner. Ideally, the model would 
create these flexible binding chunks independently 
(e.g., when ‘reading’ the instructions) which would 
tremendously improve skill reusability as well as 
model autonomy. 
    The second limitation we discussed involved the 
manner in which the next skill is selected in PRIMs. 
This issue boils down to how the next goal is placed in 
the goal buffer. In the current situation, the previous 
skill usually places the next skill in the goal buffer but 
this method creates a large amount of procedural 
knowledge only aimed at switching between skills. 
    There is a possible solution that fits the PRIMs 
philosophy. Instead of having one active skill, two 
skills can be active: one skill for execution, and one 
skill for planning. The execution skill carries out the 
actions required to achieve a particular subtask, and 
then terminates itself. The planning skill is then 
responsible for selecting a next skill.  
    This would be a big improvement over the current 
situation because it allows for goal switching separate 
from goal execution based on both a pre-made plan as 
well as the current context. Additionally, it allows for 
a flexible representation of task-specific information 
without the need to include such information in the 
general skills. 
    The final limitation we discussed concerned 
condition-checking. The limitation to skill reusability 
associated with condition-checking is that every task 
has a different context which makes it likely that the 
original conditions will not apply. Additionally, our 
modeling showed an important distinction between 
generally applicable conditions and task-specific 
conditions and raised the question whether conditions 
are the best way to represent task-specific context. 
    Testing conditions is one way to establish a 
mapping between the current state of the cognitive 
system and the action to be taken, but not the only one. 
Neural network approaches to modeling operators 
often use inspiration from the basal ganglia. The basal 
ganglia are considered to be central to forming 



 

 

context-action mappings and recent modeling efforts 
have created models capable of creating such 
mappings. These mappings provided reusable context-
action associations while retaining flexibility by 
means of small changes to the connection weights in 
the network (Stewart, Bekolay, & Eliasmith, 2012; 
Taatgen, 2020).  
    Such functionality could be incorporated in 
production-based architectures by specifying (or 
learning) connections between certain items in the 
workspace and operators. For example, the first 
condition of the previously mentioned example could 
be replaced by specifying a positive connection 
(through spreading activation) between the report-
instructions and this operator. This would make it 
more likely that it gets picked when such instructions 
are on the screen but it does not prevent the operator 
from firing when they are absent. This functionality is 
already possible in PRIMs but it might be helpful to 
explicitly make it part of an operator definition (in 
addition to conditions) which is not only practical but 
also highlights that these connections are reused. 

Conclusion 
The skill-based approach is a promising addition to the 
arsenal of a cognitive modeler; however, the previous 
discussion has shown that there are still some 
important limitations. The inflexible WM demands a 
lot of coordination from this modeler, the unnatural 
goal selection requires a large amount of inefficient 
procedural knowledge and the all-or-nothing condition 
checking severely hampers the versatility of operators. 
Resolving these issues will require some substantial 
modifications to the cognitive architecture we 
employed and to production-system architectures in 
general. We proposed some solutions in this paper 
which we will explore in a subsequent study.  
    The current paper resulted from attempting to apply 
the skill-based approach to a series of basic tasks that 
make use of skills that are widely used. The difficulties 
we experienced show that current cognitive 
architectures do not support the creation of fully 
reusable skills. This does not mean, however, that the 
skill-based approach is completely ineffective, current 
architectures do support the use of reused skills and 
capitalizing on this characteristic will already result in 
more valid and generalizable models. 
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