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Abstract

Multitasking is a challenging cognitive task, and there are
many factors driving which strategy participants use to com-
plete tasks concurrently. We utilized a model comparison
approach to evaluate how participants decide which task to
switch to next using the Air Force Multiple Attribute Bat-
tery (AF-MATB). We used the cognitive architecture, Adaptive
Control of Thought – Rational (ACT-R), to simulate multitask-
ing in the AF-MATB. We varied how the model decided which
task to attend to next by comparing a purely top-down strategy,
a purely reactive, bottom-up selection strategy, and mixtures of
the two. We compared simulations of the model to data from
Bowers, Christensen, and Eggemeier (2014). The best com-
bination involved a mixture of top-down and bottom-up se-
lection. Neither the purely top-down nor bottom-up selection
models performed well. These results suggest that participants
use a complex mixture of strategies to multitasking. The use
of a top-down strategy suggests participants could develop ef-
ficient strategies to multitask successfully, and that participants
may be using a more effortful serial search in the AF-MATB,
as indicated by the model’s serial processing implementation.

Keywords: ACT-R; AF-MATB; multitasking; cognitive archi-
tecture

Introduction
In our daily and professional lives, we often perform mul-
tiple concurrent tasks, such as eating while driving, listen-
ing to a coworker while reading an email, or piloting air-
craft while monitoring numerous instruments. How individ-
uals are able to multitask is an old and ongoing question in
research because there is a vast space of human and environ-
mental factors that impact one’s ability to multitask (Meyer &
Kieras, 1997; Koch, Poljac, Müller, & Kiesel, 2018; Fischer
& Plessow, 2015). Multitasking is interesting from a theoreti-
cal perspective because it requires multiple cognitive systems
to work together in service of a common goal and to adapt
to changing circumstances. Moreover, the space of strategies
one could use to accomplish multitasking can be quite large
(Salvucci, Taatgen, & Borst, 2009; Smith et al., 2008).

There are different aspects of multitasking where strategies
may manifest. For example, many studies have examined in-
dividuals’ decision strategies to stop one task and switch to
another, which could be serial without interruptions, when a
sufficient amount of time has passed (Kushleyeva, Salvucci,
& Lee, 2005), or when there are diminishing benefits of
the currently attended task (Payne, Duggan, & Neth, 2007).
Here, we are interested in the strategy that determines which
task to switch to next. Individuals may search by top-down
factors, such as serially moving attention from task to task,

“urgency” (Salvucci, Kushleyeva, & Lee, 2004), or activation
(Altmann & Trafton, 2002), or by bottom-up factors, such as
selective attention (Patsenko & Altmann, 2010). The contin-
uum from a purely top-down strategy to a purely bottom-up
selection strategy represents one slice of the problem space
of how individuals decide where to allocate attention next.
Determining which strategies participants use has theoretical
and practical implications in training, the design of realistic
simulations of human behavior, and in the development of
instruments that could facilitate multitasking.

We used the Adaptive Control of Thought – Rational
(ACT-R) cognitive architecture (Anderson et al., 2004) to ex-
amine multitasking strategies. One of the primary benefits of
using a cognitive architecture such as ACT-R is that it pro-
vides a formal framework for developing and testing strat-
egy use in multitasking. We simulated the Air Force Multi-
Attribute Task Battery (AF-MATB, Miller 2010), which is a
commonly used multitasking environment that has been used
to explore different aspects of multitasking, such as the hys-
teresis effect (Bowers et al., 2014; Kim, House, Yun, & Nam,
2019) and the relationship between performance and physio-
logical measures (Splawn & Miller, 2013). We compared a
continuum of models ranging from a purely serial top-down
strategy to a purely ballistic strategy driven by bottom-up at-
tention to a combination of the two. When comparing our
simulation with behavioral data (Bowers et al., 2014), we
found that the best fitting models used a mixture of top-down
and bottom-up strategies.

Methods
Participants
We tested our model against behavioral data from Bowers
et al. (2014). Sixteen participants (11 male, 5 female, ages
18 to 28) from neighboring universities (Air Force Institute
of Technology, Wright State University, University of Day-
ton, and Wright Site Junior Force Council) participated in the
study. Participants were unfamiliar with the task and com-
pleted informed consent prior to participation. The study was
approved by Air Force Research Laboratory Institutional Re-
view Board.

AF-MATB Task Description
The AF-MATB is a laboratory environment designed to in-
vestigate multitasking behavior in tasks similar to some of



those encountered while operating aircraft. Full details re-
garding the AF-MATB can be found in Miller et al. (2010;
2014). Participants monitored subtasks for scripted events
and responded to those events with keyboard presses and a
joystick. In Bowers et al. (2014), the subtasks included Sys-
tem Monitoring, Tracking, Communications, and Resource
Management. In the System Monitoring subtasks, partici-
pants had a limited time (3 and 6 seconds) to press a key
on the keyboard when a Light (color change) or Gauge (ex-
ceeding a y-axis threshold) malfunctioned, respectively. In
the Tracking subtask, participants used a joystick to adjust
the position of a randomly moving reticle. In the Communi-
cations subtask, participants listened for audio files, adjusted
and submitted the frequency and channel if the audio matched
the participant’s callsign. In the Resource Management sub-
task, participants monitored fluid levels in two tanks and ad-
justed the state of 8 pumps to control the fluid levels.

Parameters underlying these events and the frequency of
these events were controlled by the experimenter. Events
were distributed pseudorandomly, such that the same events
could not overlap. Events from other subtasks could occur
concurrently. Difficulty was primarily determined by increas-
ing the frequency of events, which was the case in Bowers et
al. (2014), resulting in greater overlap between events for the
Hard difficulty compared to the Easy difficulty.

ACT-R Model
The ACT-R architecture consists of discrete modules (e.g.,
visual, auditory) that are acted upon by production rules (if-
then statements) that control behavior. Cognition manifests
as information flows between the different modules.

Our model was designed to detect and respond to events in
the AF-MATB task environment. The model interacted with
a custom built version of the AF-MATB in Python, which had
reduced visual fidelity but the same timing and visual prop-
erties as the AF-MATB. We designed the simplest model that
was similar to human behavior, given that a more complex
model designed specifically to fit the data would theoretically
be less generalizable. The structure described below is the
core version of the model used in all of the simulations.

Core Model The core model selected subtasks in a strictly
serial (i.e., top-down) manner. The model responded to the
subtasks primarily through ACT-R productions, given that
participants generally receive training in the AF-MATB prior
to participation (i.e., participants completed six training ses-
sions at 2 hours each in Bowers et al. 2014), which suggests
that the rules for detecting and responding were well-learned
and practiced. See Figure 1 for a high-level overview of how
the model works.

First, the model turned on pumps (in this case, pumps 1 to
6) in the Resource Management subtask, which every partic-
ipant did in Bowers et al. (2014). Next, the model searched
for subtasks serially (in this case, clockwise) using two pro-
ductions: (1) find a visual-location to attend to and (2) move
visual attention to that location. This serial search was the

Figure 1: A high-level diagram of how the ACT-R model
interacts with the AF-MATB task. The colored boxes cor-
respond to productions for the subtasks. Green = Re-
source Management (Res. Man.), Yellow = Communications
(Comm), Orange = Tracking, Blue = System Monitoring,
Boxes = processes, Diamonds = decision points.

main loop that brought the model’s attention to each subtask.
If the model was attending to one of the Lights or Gauges in

the System Monitoring subtask and there was a malfunction,
then the model responded by pressing the appropriate key on
the keyboard with the left hand index finger.

If the model attended the Tracking subtask reticle, then the
model moved the cursor towards the reticle, with the cursor
simulating the behavior of a joystick by adding a constant x
and y value in the direction of the center of the tracking panel
to the reticle. The model’s right hand was kept on the mouse.

If the model attended to one of the tank levels in the Re-
source Management subtask and the tank level was either too
high or too low (i.e. 100 L), then the model cycled attention
through the pumps with the intention of turning on pumps if
the level was too low or turning off pumps if the level was
too high. If too high, then the model checked and turned off
pump 2 or 4 to slowly decrease the tank level. If too low, then
the model checked and turned on pumps 1, 5, then 2 or 3, 6,
then 4 to increase the level.

While attending to the above subtasks, the model listened
for audio. If audio was played and started with the correct
callsign, then the model stored the upcoming channel and fre-
quency information in declarative memory. The next model
production attempted to retrieve the channel and frequency
from declarative memory. Successful retrieval of this mem-
ory switched the model’s attention towards the Communica-
tions subtask and moved the model’s left hand to the left-
arrow key such that the model could reach the relevant keys.
If necessary, the model first adjusted the channel using the
up arrow key. Then, if necessary, the model adjusted the fre-
quency using the left and right arrow keys. Once the fre-
quency was correct, the model pressed the return key to sub-
mit the response and moved the left hand back to the 5 key to



be able to reach keys for the System Monitoring and Resource
Management subtasks.

Errors manifested in a few different ways. In the System
Monitoring and Resource Management subtasks, errors could
occur in two ways: (1) when the model initiated the produc-
tion to press the key as the malfunction returned to normal au-
tomatically (3 seconds for Lights and 6 seconds for Gauges)
and (2) there was motor noise (see below) such that the model
could press the wrong key. If the model pressed the incorrect
key, then the attended subtask would still be in a malfunc-
tioned state and the model would attempt to press the correct
key again. In the Tracking subtask, we assumed there was
noise in the motor movements, which was modeled by acti-
vating the ACT-R cursor-noise parameter. In the Communica-
tion subtask, the model could fail to retrieve the stored chunk
corresponding to the channel and frequency if the declarative
memory was not sufficiently activated during retrieval.

Model Parameters
The majority of the ACT-R model parameters were kept at
their default level. We enabled subsymbolic (:esc = t) and
full base level learning computations (:ol = nil). Given that
malfunctions maintained in their state until corrected, we set
the visual-onset-span parameter to 3.0 seconds, which repre-
sented the model being able to detect the malfunction after it
had occurred in the model’s peripheral vision.

For the Communications subtask, the model stored and re-
trieved from declarative memory. We set base-level learning
(bll) to the recommended level (0.5). To achieve a retrieval
rate that was approximately the same average as the behav-
ioral data in Bowers et al. (2014) (approximately 92%), we
altered the activation noise (ans = 0.2), base-level constant
(blc = 2), and retrieval threshold (rt = 2.9) based on a grid-
based search of a partial dataset from one of the participants
in Bowers et al. (2014).

In simulating the Tracking subtask, we activated the
incremental-mouse-moves parameter to more realistically
capture joystick behavior. In addition, we activated the
cursor-noise parameter to add motor movement noise. In sim-
ulating the joystick, the mouse cursor position in Cartesian
coordinates were converted into Polar coordinates. The ra-
dius was multiplied by 0.125, then converted back into Carte-
sian coordinates. The resulting x and y values were capped at
10 pixels given physical limitations in joystick movements.
The x and y were added to the Cartesian coordinates of the
reticle each update.

Given the false alarm rate in System Monitoring (4.4% in
Bowers et al.) and the percentage of times participants turned
on/off pumps that took the fluid level away from the intended
direction (9.2%), the model randomly pressed a key (F1-F6
and 1-8) on 5.0% of responses when responding to System
Monitoring and Resource Management subtasks.

Strategy Space
Here, we introduce reactive, event-driven strategies driven by
bottom-up selection. In these models, the sequential selec-

tion process was interrupted if the model noticed a malfunc-
tion. That is, instead of the next subtask in the sequence deter-
mined by clockwise position, the model would attend to a dif-
ferent subtask. Each variant allowed interruption from a spe-
cific subset of the subtasks. Finally, we included a purely re-
active variant of the model that only responded to tasks when
malfunctions were passively noticed.

The different variants were referred to by which subtask
had bottom-up selection (L = Lights and G = Gauges in Sys-
tem Monitoring, R = Resource, T = Tracking, N/A = for no
bottom-up selection, and Only LGRT for only bottom-up se-
lection and no top-down strategy)1. In total, there were 17
different variants (N/A, L, G, R, T, LG, LR, LT, GR, GT, RT,
LGR, LGT, LRT, GRT, LGRT, and Only LGRT).

Bottom-up Selection Simulation We simulated bottom-up
selection by using an ACT-R feature called “buffer stuffing”,
which is when the visual-location buffer is automatically pop-
ulated with the location of a new stimulus instead of the
model needing to search for a stimulus to add to the visual-
location buffer (i.e., skipping the ”find location” production
in Figure 1). Note that following bottom-up selection, the
next subtask would continue clockwise from the currently at-
tended subtask and not from the previous subtask.

For the System Monitoring subtasks, “buffer stuffing” oc-
curred any time there was a malfunction. For the Tracking
subtask, “buffer stuffing” occurred when the tracking object
was 27.5 pixels away from the origin. For the Resource Man-
agement subtask, “buffer stuffing” occurred when the tank
levels were 700 L above or below the middle of the tank.
These thresholds were tested on partial datasets to ensure they
improved performance for that subtask.

Overall, as intended, each subtask had improved perfor-
mance when that subtask had bottom-up selection (Table 1),
indicating that the bottom-up selection was prioritizing that
subtask.

Table 1: Average measures with and without bottom-up se-
lection when that subtask has bottom-up selection active for
all of the trials. Sys. Mon. = System Monitoring

Subtask With Without
Sys. Mon. Accuracy 0.76 0.66
Sys. Mon. RT 1.76 2.51
Tracking 36.06 46.73
Resource 181.74 230.73

Performance Measures
Trial Simulation We simulated the same number of partic-
ipants (n = 16) and trials (t = 12) in Bowers et al. (2014).
We used the same event lists generated from the participants,
given that the event numbers differed between participants in

1There was no bottom-up selection for the Communication sub-
task since the model already switches to that task as soon as it can



the Hard difficulty. The transitions from Easy to Hard (6 tri-
als) and Hard to Easy (6 trials) were counterbalanced. Two
of the participants did not fully complete a trial, so the to-
tal number of simulations was 190 trials for each of the 17
different variants.

Performance Evaluation We evaluated the model variants
by calculating accuracy (accuracy = correct / total) and re-
action time for correct responses in the System Monitoring
and Communications subtasks. For the Tracking subtask, we
averaged the Euclidean distance of the reticle to center across
the trial. For the Resource Management subtask, we averaged
the deviations of both tank levels across the trial.

In our model comparison to select the best model, we ac-
counted for the difference in scales in the dependent measures
from each subtask, n, by computing a mean normalized root
mean square errors (NRMSE):

NRMSE =
1
n

n

∑
i=1

√
(x̂i − x̄i)2

x̄i

with x̂ being the mean predicted measure, x̄ being the mean
observed DV, and i being the index for subtask. Given the
division of the RMSE by the mean from the behavioral data,
values closer to 0 indicate less error between the model and
behavioral data.

After selecting the best model using NRMSE, we con-
ducted a Bayesian repeated measures ANOVA using JASP
(JASP Team, 2022) to analyze the effect of difficulty (Easy
vs Hard) for the model and the behavioral data (Bx) to deter-
mine if the model is qualitatively showing the same effect of
difficulty as the participants. Then, we conducted a Bayesian
mixed factors ANOVA with difficulty (repeated: Easy vs.
Hard) and group (Model vs. Bx) to see if the effect of dif-
ficulty was the same for the model and behavioral data.

Results
We evaluated the model’s performance for the dependent
measures. In the figures below, the ordering of the model
variants is based on ascending NRMSE. Based on NRMSE,
the best models included bottom-up selection for one of the
System Monitoring subtasks (Light or Gauge) and Resource
Management subtasks. Specifically, the LR (NRMSE: 0.054)
and R (NRMSE: 0.11), and GR (NRMSE: 0.14) models per-
formed best.

The purely top-down model (N/A, NRMSE: 0.17) per-
formed better than the model with solely bottom-up selection
(Only LGRT, NRMSE: 0.37). This difference was largely
driven by the very poor performance in the Resource Man-
agement subtask for the Only LGRT model, which was likely
because the interruptions in the other subtasks took attention
away from the Resource Management subtask.

There was a wide range of System Monitoring perfor-
mance (see Figure 2). As indicated above, including either
Light or Gauge bottom-up selection increased System Moni-
toring subtask accuracy and decreased reaction time. The LG

(NRMSE: 0.33) variant had the closest System Monitoring
accuracy to the behavioral data, which was expected given
that the model attended more frequently to the System Moni-
toring subtask, but was a poor fit otherwise.
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Figure 2: Simulation of the System Monitoring subtask for
the different models (y-axis) and behavioral data (Bx, in red).
System Mon. = System Monitoring

The Communications subtask simulation had the least
amount of variability (see Figure 3). This was expected given
there is no bottom-up selection to affect performance and
once in the Commmunication subtask, the model was not in-
terrupted by other subtasks. Some of the variance in the be-
havioral data suggests that some participants may have inter-
leaved this subtask with other subtasks.
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Figure 3: Simulation of the Communications subtask for the
different models (y-axis) and behavioral data (Bx, in red).
Comm. = Communications

Tracking performance tended to be precise (see Figure 4
Left), even without bottom-up selection. If there was bottom-
up selection in the Resource Management but not Tracking
subtask, then the Tracking performance was significantly less
precise but closer to the behavioral data. This likely occurred
because of the clockwise search pattern of the model, which
could effectively skip the Tracking subtask if the model at-
tended to the Resource Management subtask.

The model tended to be imprecise in the Resource Man-
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Figure 4: Simulation of the Tracking (Left) and Resource
Management (Right) subtasks for the different models (y-
axis) and behavioral data (Bx, in red). Px = Pixels

agement subtask (see Figure 4 Right). This may be due to
the specific strategy of the current model. For example, par-
ticipants tended to change the status of the pumps on average
53.7 times (sd = 12.3), whereas the model ranged from 40.7
(LR, best fit) to 27 (LGT, worst fit) changes.

The Effect of Task Difficulty
We evaluated the best fitting model’s (LR) ability to show the
task difficulty effect found in Bowers et al. (2014). In Ta-
ble 2, we show descriptive results for the effect of difficulty
and the Bayes Factor when difficulty was added to the null
model. There was decisive evidence for the inclusion of diffi-
culty in the model and behavioral comparisons (BF > 421.6)
except for the following: for Communications subtask accu-
racy, there was moderate evidence for not including difficulty
for the model (BF = 0.436) and moderate evidence for includ-
ing difficulty for the behavioral data (BF = 2.6), and there
was anecdotal evidence for including difficulty for Resource
Management subtask (BF = 5.2). These results overall show
the model captured the qualitative worsening of performance
when the task became more difficult.

When quantitatively comparing the model to the behavioral
data and the effect of difficulty using Bayesian mixed factor
ANOVAs, there was decisive evidence for the effect of dif-
ficulty (BF > 1.1e+ 4) except for Communications subtask
accuracy (BF = 0.43), which was expected given the lack of
a difference in Table 2. Evidence was leaning towards the
null hypothesis for the effect of group (BF < 0.69) except
for anecdotal and decisive evidence for the effect of group in
System Monitoring subtask accuracy (BF = 1.9) and reaction
time (BF =5.1e+ 2), respectively. This was expected given
the minimal error between the best fitting model and the be-
havioral data. Interestingly, there tended to be decisive evi-
dence for an interaction term (BF > 231.9) except for Com-
munication subtask reaction time (BF = 58.1) and accuracy
(BF = 2.4), which had very strong and anecdotal evidence re-
spectively. These results suggest that the predicted magnitude
of the effect of difficulty differed from that of the participants.

Visual inspection of the table suggests that the model tended
to be more accurate and faster on the Easy difficulty and less
accurate and slower on the Hard difficulty.

Table 2: Average values for Easy and Hard difficulty for
the model (M) and behavioral data (Bx). The Bayes Fac-
tor (BF) for including difficulty in a Bayesian repeated mea-
sures ANOVA is also shown, with higher values indicating
evidence for the difficulty factor.

Subtask Easy(m, sd) Hard(m, sd) BF
M: SysMon. Acc. 0.96(0.01) 0.68(0.03) 2.7e23
Bx: SysMon. Acc. 0.93(0.06) 0.79(0.1) 4.9e5
M: SysMon. RT 1.63(0.05) 2.28(0.05) 2.4e23
Bx: SysMon. RT 1.57(0.2) 1.98(0.1) 1.3e10
M: Comm. Acc. 0.92(0.06) 0.94(0.02) 0.463
Bx: Comm. Acc. 0.97(0.1) 0.92(0.1) 2.6
M: Comm. RT 8.4(0.11) 8.7(0.07) 5.4e6
Bx: Comm. RT 8.32(1.0) 9.21(1.2) 421.6

M: Tracking 26.1(2.3) 93.2(23.7) 2.1e10
Bx: Tracking 42.4(13) 81.8(17.8) 2.1e9
M: ResMan 85.5(4.9) 306(53.8) 3.6e14
Bx: ResMan 173.1(72) 221(97.0) 5.2

General Discussion
Multitasking has captured the interest of researchers because
it provides a rich environment for understanding the strate-
gies people use to manage and prioritize multiple compet-
ing goals. We contributed to the understanding of strategy
use in multitasking by comparing a continuum of strategies
ranging from purely top-down (i.e. selecting tasks in a fixed
order) to purely bottom-up (i.e., only selecting tasks that mal-
functioned or changed). These strategies were instantiated in
the ACT-R cognitive architecture in order to test their predic-
tions quantitatively. Overall, we found that the best fitting
model was neither using a strict top-down nor bottom-up se-
lection strategy. Instead, the best model used a mixture of
the two. That is, the model serially searched, but the serial
search could be interrupted if a malfunction was detected in
the model’s peripheral vision.

Our simulation suggests a few things. First, these results
indicate that task switching in the AF-MATB was largely
driven by top-down strategies. While the best fitting model
had bottom-up selection for two of the subtasks, the major-
ity of the models we simulated with top-down strategies per-
formed adequately in capturing the behavioral data. These
findings corroborate other findings in the literature that sug-
gest top-down factors, such as task instruction (Lehle &
Hübner, 2009), affect and alter task performance, which high-
lights the needs for a better understanding of strategy use in
multitasking. A better understanding of how strategies affect
performance could result in the development of strategies and
instruments that improve multitasking performance.



Second, it suggests that a model in which tasks are com-
pleted in a serial fashion provides a satisfactory account of
multitasking in the AF-MATB. This is consistent with prior
work in which individuals opt for an effortful, serial strat-
egy instead of a parallel approach to improve performance
on some tasks (Lehle, Steinhauser, & Hübner, 2009). It
is possible that an account in which task processing over-
laps to a greater degree (e.g. Salvucci and Taatgen, 2008)
could also provide a satisfactory account. Further research is
needed to determine the extent to which concurrent process-
ing is needed to account for performance in the AF-MATB
and whether the AF-MATB is sensitive enough to distinguish
these accounts.

There were limitations. First, the magnitude of the effect of
difficulty was significantly different from the behavioral data.
One explanation is that participants may be switching their
strategy when the task became more difficult, such as using a
bottom-up selection strategy when the task was difficult and a
top-down strategy when the task was easy. Second, strategies
likely differ between participant. It may be that some partic-
ipants only serially searched while others only used bottom-
up selection. There is likely not enough data in Bowers et al.
(2014) to determine if this is the case or not.
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parallel processing in dual tasks: What is more effortful?
Psychophysiology, 46(3), 502–509.

Meyer, D. E., & Kieras, D. E. (1997). A computational theory
of executive cognitive processes and multiple-task perfor-
mance: Part i. basic mechanisms. Psychological review,
104(1), 3.

Miller, W. D. (2010). The us air force-developed adapta-
tion of the multi-attribute task battery for the assessment of
human operator workload and strategic behavior. (Tech.
Rep. No. AFRL-RH-WP- TR-2010-0133). Retrieved
from the Defense Technical Information Center website:
http://apps.dtic.mil/dtic/tr/fulltext/u2/a537547.pdf.

Miller, W. D., Schmidt, K. D., Estepp, J. R., Bowers,
M., & Davis, I. (2014). An updated version of
the us air force multi-attribute task battery (af-matb).
(Tech. Rep. No. AFRL-RH-WP-SR-2014-0001). Retrieved
from the Defense Technical Information Center website:
https://apps.dtic.mil/sti/pdfs/ADA611870.pdf.

Patsenko, E. G., & Altmann, E. M. (2010). How planful
is routine behavior? a selective-attention model of perfor-
mance in the tower of hanoi. Journal of Experimental Psy-
chology: General, 139(1), 95.

Payne, S. J., Duggan, G. B., & Neth, H. (2007). Discretionary
task interleaving: heuristics for time allocation in cognitive
foraging. Journal of Experimental Psychology: General,
136(3), 370.

Salvucci, D. D., Kushleyeva, Y., & Lee, F. J. (2004). Toward
an act-r general executive for human multitasking. In Iccm
(pp. 267–272).

Salvucci, D. D., & Taatgen, N. A. (2008). Threaded cogni-
tion: an integrated theory of concurrent multitasking. Psy-
chological review, 115(1), 101.

Salvucci, D. D., Taatgen, N. A., & Borst, J. P. (2009). To-
ward a unified theory of the multitasking continuum: From
concurrent performance to task switching, interruption, and
resumption. In Proceedings of the sigchi conference on hu-
man factors in computing systems (pp. 1819–1828).

Smith, M. R., Lewis, R. L., Howes, A., Chu, A., Green, C.,
& Vera, A. (2008). More than 8,192 ways to skin a cat:
Modeling behavior in multidimensional strategy spaces. In
Proceedings of the 30th annual conference of the cognitive
science society (pp. 1441–1446).

Splawn, J. M., & Miller, M. E. (2013). Prediction of per-
ceived workload from task performance and heart rate mea-
sures. In Proceedings of the human factors and ergonomics
society annual meeting (Vol. 57, pp. 778–782).


