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Abstract 

I describe a novel model-based theory of how individuals 
reason deductively about temporal relations. It posits that 
temporal assertions refer to mental models -- iconic 
representations of possibilities -- of events. In line with recent 
accounts of spatial reasoning, the theory posits that individuals 
tend to build a single preferred model of a temporal 
description. The more models necessary to yield a correct 
answer, the harder that problem is. The theory is implemented 
in a computer program, mReasoner, which draws temporal 
deductions by building models. It varies three parameters 
governing separate factors in the process: the size of a model, 
the typicality of its contents, and the propensity to search for 
alternative models. Two experiments corroborate the 
predictions of the theory and its computational 
implementation. I conclude by discussing temporal and 
relational inference more broadly. 

Keywords: temporal reasoning; events; mental models; 
reasoning; simulation 

Introduction 
People make temporal inferences when they schedule 

future events, reconcile past experiences, and attempt to 
understand ongoing scenarios. For instance, consider this 
description: 

 

1. The car hit a pothole during the road trip. 
The car broke down after the road trip. 
Does it follow that the car hit a pothole before it 
broke down? 

 

The words during and after are temporal relations – they 
describe how events and outcomes relate to one another – and 
reasoners have no difficulty inferring the correct answer 
(“yes”) from the premises in (1). Indeed, English and other 
natural languages encode tense and aspect into every 
utterance, and so they provide abundant cues for drawing 
temporal conclusions. But some inferences are systematically 
easier than others. Contrast the example above with this 
problem (adapted from Schaeken et al., 1996): 
 

2. The car hit a pothole before the road trip. 
The car’s radio broke before the road trip. 
The car’s windshield cracked when it hit a pothole. 
The car’s headlights fused while on the road trip. 
Does it follow that the car’s windshield cracked before 
its radio broke? 

 

The correct answer – “no” – seems more difficult to infer 
compared to (1). Why? Many factors distinguish (2) from (1): 
it has more premises, and describes more events; it uses more 
temporal relations – before, when, and while; and its correct 

answer is negative instead of affirmative. Yet these factors 
don’t provide an adequate explanation of the mental 
representations and processes humans use to reason about 
time. And no computational cognitive theory exists that’s 
robust enough to simulate why (1) is an easy inference to 
make; why (2) is more difficult (though cf. the computer 
model described in Schaeken et al., 1996); and how people 
generate rational responses to even difficult temporal 
reasoning problems. 

In what follows, I briefly summarize previous 
computational treatments of temporal deduction, and show 
how they are psychologically implausible. Next, I synthesize 
a theory of temporal reasoning based on how humans 
simulate the passage of time. I argue that to reason about 
time, humans can construct a mental timeline of events, i.e., 
an event model. These event models are easy to process when 
humans build and maintain just one in memory, but difficult 
to process when they need to maintain multiple event models. 
I describe a computational implementation of the theory and 
the predictions it makes, as well as a series of studies 
designed to test those predictions. And I show how the 
computational implementation fits data from those studies, 
and how it can model additional forms of temporal inference. 
I conclude by contrasting the theory with alternative 
proposals. 

The logic of temporal reasoning 
Systems of symbolic logic are designed to generate the 

correct answers to problems such as (1) and (2). Temporal 
logics, such as Prior’s (1967) tense logic and Allen’s (1983) 
interval calculus, treat each premise as a formula describing 
a temporal relation between events, and can be written as, 
e.g., during(X,Y) where X can stand in place for any 
proposition, such as hitAPothole(car). Many systems of 
temporal logic in AI (e.g., Allen, 1991; Freksa, 1992; 
Øhrstrøm & Hasle,1995; see also Fischer, Gabbay, & Vila, 
2005; Goranko, Montanari, & Sciavicco, 2004 for reviews) 
posit primitive temporal relations that do not map into simple 
everyday English (Knauff, 1999) or other natural language 
expressions, and likewise, many temporal relations in natural 
language are flexible in ways AI systems cannot characterize. 
For instance, AI systems often neglect Reichenbach’s (1947) 
distinction between different points of reference in natural 
language, and so they are insensitive to the distinction 
between, e.g., “I had done it” (past perfect tense) versus “I 
did it” (past tense). For many AI applications, these 
distinctions are irrelevant – but they ensure that such systems 
cannot interface with the full range of natural language 
capabilities (see, e.g., Khemlani & Johnson-Laird, 2019).  



Event calculi (see, e.g., Kowalski & Sergot, 1986) may be 
more psychologically plausible, because they describe 
inference rules and axioms between two or more temporal 
relations, so they abide by the constraints of logic-based 
cognitive accounts of reasoning (e.g., Rips, 1994; see also 
Bringsjord & Govindarajulu, 2020). But, a limitation 
common to all temporal logics and event calculi are that they 
describe only valid deductions: they have no capacity of 
explaining what happens when reasoners err. And so they 
cannot explain why (1) is easy and why (2) is hard. For that, 
we turn to a psychological theory of temporal reasoning.  

Mental models of events 
The theory of temporal deduction I present is based on the 

tenets of mental model theory – the “model” theory for short 
(Johnson-Laird, 2006). The theory states that when people 
reason, they use language observation, and imagination to 
construct and mentally manipulate possibilities. The theory is 
based on several fundamental principles: 

 

• Mental models are iconic representations of 
possibilities. That is, the structure of a mental model 
corresponds to the structure of what it represents as far as 
possible (Peirce, 1931-1958, Vol. 4). Models of temporal 
relations can use space to represent time by constructing 
mental timelines in which tokens represent events 
(Schaeken et al., 1996), or they can represent sequences 
of events as they unfold in time (Khemlani et al., 2013). 
 

• Models represent durations as discrete episodes. 
Reasoners encode durations and intervals by representing 
episodes that mark the starts and ends of events 
(Khemlani et al., 2015a). By default, people do not 
maintain representations of metric time. To comprehend 
specific intervals, as in, the meeting lasted 2 hours, 
individuals tag events with ancillary information, and then 
reason arithmetically. 
 

• The principle of emergent consequences. Logical 
relations are emergent consequences of iconic structure of 
models – and so no special logical rules, operations on 
formulas, or syntactic transformations are necessary for 
individuals to reason logically (Goodwin & Johnson-
Laird, 2005). 
 

• Inferences are easier with one model; multiple models 
yield errors. Human reasoning is based on two 
interacting sets of processes: one system produces rapid, 
intuitive inferences by building a single model. Hence, 
people are faster and make fewer errors when considering 
descriptions that yield only one model. When descriptions 
yield multiple models, i.e., when an initial model doesn’t 
suffice, reasoners are more prone to errors (Khemlani & 
Johnson-Laird, 2017) and they take longer (Schaeken & 
Johnson-Laird, 2000). 

 

The model theory posits that to simulate relations between 
events, people have two options: first, they can simulate a 
series of events in the same order as they would unfold. For 
example, to represent an individual’s meals over the course 

of a day, you might simulate the individual eating breakfast, 
then lunch, then dinner, focusing only on each single meal at 
a time. By doing so, reasoners build kinematic mental 
models, i.e., they use time to represent time (Khemlani et al., 
2013).  Kinematic models may be particularly useful when 
following complex narratives, e.g., during discourse 
comprehension (Cain & Oakhill, 1999; Garnham, 2013; 
Graesser, Millis, & Zwaan, 1997; Zwaan & Rapp, 2006), 
though they can obscure the temporal relations between 
simultaneous events and events with durations. To reason 
directly about such relations, people can use space to 
represent time (Schaeken et al., 1996, 2000), e.g., they can 
construct a mental model for (1) in a way that can be depicted 
in the following diagram: 
 

        [   road-trip   ]   broke-down 
           hit-pothole  
 

The diagram represents the events iconically, i.e., with words 
that stand in place of mental simulations of the event itself. 
Its spatial layout presents the events in chronological order, 
from earliest to latest (see Kelly & Khemlani, 2020, under 
review). And it uses markers to designate the initiation ([) 
and conclusion (]) of a durative event, namely to depict that 
hitting a pothole occurred in the time between when the road 
trip started and ended (Kelly, Khemlani, & Johnson-Laird, 
2020). The logical consequences emerge from the model’s 
structure – by scanning it, reasoners can draw many different 
valid conclusions, e.g., 
 

the road trip happened before the car broke down; 
the car hit a pothole before the breakdown; 
the road trip ended after the car hit a pot-hole; 
the road trip started before the breakdown; 

 

and so on. Hence, the model serves as a compact, efficient 
representation to facilitate reasoning. 

Models predict difficulty, because inferences that require 
multiple models place a higher demand on working memory 
resources. So, what makes (2) difficult is not just that it has 
more premises, or more relations. Rather, it’s difficult 
because the description yields multiple models. This model 
satisfies the premises: 
 

 hit-pothole    radio-broke   [    road-trip     ]    
 windshield                     fused-headlight 
 

but so does this one: 
 

 radio-broke    hit-pothole   [    road-trip     ]    
                windshield      fused-headlight 
 

Hence, the conclusion in (2) doesn’t follow necessarily. To 
get the correct answer, reasoners must either initially build 
the second model above, or else keep both models in mind 
and compare the two. The theory accordingly predicts that all 
other things being equal, inferences that demand more 
models should be more difficult – they should produce more 
errors. I turn next to describe a computational implementation 
of the theory. 



Temporal reasoning in mReasoner 
mReasoner is a computational cognitive reasoning engine 

that implements the core tenets of the model theory 
(Khemlani & Johnson-Laird, 2022). The system is equipped 
with a small grammar that parses and builds iconic mental 
models for assertions concerning quantity (e.g., “Most of the 
potholes are large”), causality (e.g., “Hitting the pothole 
caused the breakdown”), and sentential inference (e.g., “The 
windshield cracked or else the headlights fused”), and it 
mimics patterns of human reasoning in all these domains 
(Briggs & Khemlani, 2019; Khemlani et al., 2015b, 2018).  
Updates to its components permitted it to reason about 
temporal relations. Figure 1 depicts a schematic of the system 
and shows how it draws the correct conclusion for (1). I 
review each updated component and their functionality in 
turn. 

Building integrated models 
The first component parses premises from natural language 

into intensions, which serve as blueprints for building 
models. Intensions provide a modal semantics for the 
meaning of an assertion. The system parses a variety of 
different temporal assertions, e.g., those describing 
connectives such as before, after, while, and during. The 
intensions of each assertion specify how to construct an initial 
model, as well as serve as a guide to the space of possible 
revisions on the model (see Khemlani & Johnson-Laird, 
2022). The semantics is as follows: 

 

A happened before B.  → A < B 
A happened after B. → A > B 
A happened while B. → A = B 
A happened during B.  → A ⊆	B	

 

mReasoner builds temporal models by integrating multiple 
temporal intensions, e.g., it builds an initial model of the first 
assertion in (1), and then updates that model with information 
about the second assertion, yielding an integrated model of 
the two relations. One subtlety of this procedure is that it is 
sensitive to the order in which it processes premises in that, 
by default, the system treats events in premises as punctate – 
but when necessary, it converts a punctate event into a 
durative one. This example illustrates the phenomenon: 

 

The meeting happened before the conference. 
The sale happened during the conference. 

 

As in all temporal assertions, the events (the meeting, the 
conference) can be treated as single points or multiple points 
on a timeline. The system starts by building a model of the 
first premise: 

 

          meeting     conference 
 

(such that the sale is contained within an interval), 
mReasoner breaks the punctate event into two markers 
because the second premise treats the conference as durative 
by explicitly represent its start and end, e.g., 
 

          meeting   [ conference ] 
                        sale 

 

 
 
Figure 1. Four components of the mReasoner computational cognitive 
model that generate conclusions given temporal premises. The system parses 
premises into intensions; builds an initial model from those intensions; scans 
the model to locate events in a given premise; and validates a relation 
between those located events. If its deliberative system is engaged, 
mReasoner can engage a search for counterexamples to decide whether its 
initial conclusion necessarily follows, and it can modify the conclusion if 
necessary (see Khemlani & Johnson-Laird, 2022).  
 

Another subtlety of the model-building component 
concerns how to construct indeterminate descriptions. 
Consider this set of premises: 

 

The ceremony happened before the storm. 
The newscast happened before the storm. 

 

By default, mReasoner constructs and reasons with a single 
model at a time. But the description above is consistent with 
several different models, e.g., one in which the sale happens 
before the meeting, another in which the sale happens after 
the meeting, a third in which the meeting happens during the 
sale, and so forth. To build an initial model from 
indeterminate descriptions, mReasoner adopts heuristic 
strategies for constructing models initially developed for a 
theory of spatial reasoning (see Ragni & Knauff, 2013, p. 
567). That is, by default mReasoner inserts new events at the 
first available location: 
 

  ceremony  storm  →  newscast  ceremony  storm 
 

but it can also insert events so that they occur in a way that 
“spreads apart” existing events in the model, as in: 
 

  ceremony  storm  →  ceremony  newscast  storm 
 

These two strategies are governed by a probabilistic 
typicality parameter that ranges from 0 to 1, and controls 
the probability of engaging in the latter strategy (see Johnson-
Laird et al., 2015; Khemlani & Johnson-Laird, 2022 for 
additional information on this parameter). In this way, the 
system mimics the variation in humans’ construction of 
temporal models. 

Parse premise

“The car hit a pothole during the road trip.” 
“The car broke down after the road trip.” 
“Does it follow that: the car hit a pothole 
  before it broke down?”

[   road-trip   ]   broke-down 
   hit-pothole 

hit-pothole < broke-down

hit-pothole ⊆ road-trip  
broke-down > road-trip

Build model

Scan model

Validate conclusion

Conclude “Yes.”

mReasoner output

[   road-trip   ]   broke-down 
   hit-pothole 



Scanning models, drawing conclusions, and 
searching for counterexamples 

To draw conclusions, mReasoner scans an integrated 
model with respect to a given temporal conclusion. For 
example, it scans an integrated model of (2) above for the two 
events specified in the conclusion (i.e., the windshield 
cracking and the reading breaking). If the events are 
represented in the model, the system generates an intension 
that describes their temporal relation, and converts that 
intension back into natural language – and if that relation 
happens to match the prompt (the windshield cracked before 
the radio broke) then the system responds affirmatively. In 
all other cases, including those in which it cannot locate an 
event in the model, the system responds negatively. 

As previous investigations of temporal reasoning reveal, 
humans are able to reason about extraordinarily complex 
temporal descriptions. Hence, descriptions that concern 
multiple mental models may pose difficulties for reasoners, 
but many reasoners are skilled in their ability to overcome 
such difficulties. A viable theory of temporal reasoning must 
explain, not just why some problems are more difficult, but 
how certain individuals manage to provide correct responses 
despite such difficulties. The model theory proposes – and 
mReasoner implements – the idea that rational responses 
often depend on the interrogation of initial responses: people 
recognize, for instance, that descriptions are consistent with 
multiple models, and so they attempt to build those models. 
Their attempts may result in a model in which the premises 
are true but their initial conclusion is false – i.e., a 
“counterexample”.  The model theory further proposes that 
the search for counterexamples is not a sampling procedure 
(pace Phillips, Morris, & Cushman, 2019). Instead, the theory 
posits that reasoners make incremental changes to the events 
represented in their initial model. Evidence supporting such 
a procedure comes from the fact that difficult problems are 
easier when they require counterexamples that have a smaller 
“edit distance” to the initial model (Ragni, Khemlani, & 
Johnson-Laird, 2014). 

For temporal reasoning, counterexample search depends 
on some combination of the following 5 strategies: i) shifting 
an event earlier in time; ii) shifting an event later in time; iii) 
converting a punctate event into a durative one; iv) 
converting a durative event into a punctate one; v) expanding 
a durative event, i.e., shifting a token representing its start to 
an earlier time and a token representing its end to a later time. 
The system attempts each strategy in turn in a recursive 
fashion, and stops when it discovers a counterexample. But, 
its ability to search for counterexamples in the first place is 
not turned on by default. It is governed by a search parameter 
(see Khemlani & Johnson-Laird, 2022) that controls the 
probability of engaging in a search for counterexamples. 

These augmentations to the mReasoner computational 
model provide it with the means to mimick human temporal 
reasoning. The next section describes experiments designed 
to test the theory’s prediction that one-model problems are 
easier than multiple-model problems; and the section that 
follows describes mReasoner’s fit to the resulting data. 

Experiments 1 and 2 
We conducted two experiments to test the computational 

model described in the previous section. Each experiment 
presented participants with the same 8 reasoning problems, 
though the contents of the premises were randomized. Here 
is an example problem: 

 

The suspect set up surveillance before he closed his bank account. 
The suspect destroyed the laptop after he closed his bank account. 
The suspect hired the lawyer while he set up surveillance. 
 

The model theory predicts that the problem should be easy, 
since the premises in Experiment 1 are consistent with only 
one model, this one: 
 

  surveillance   closed-account   destroyed-laptop 
  hired-lawyer 
 

Half of the problems were consistent with one model, and the 
other half were consistent with multiple models. In all other 
respects, namely, the specific contents, the number of 
premises, the events in the premises, and the number and type 
of temporal relation, the 4 one-model problems and 4 
multiple-model problems were matched. 

Participants in Experiment 1 were given three separate 
conclusions: a valid conclusion, a foil, and a null conclusion, 
i.e., “there's not enough information to conclude anything”. 
Participants in Experiment 2 carried out the same problems, 
but instead generated their own responses to questions of the 
form: 

 

What is the relationship between when the subject hired the 
lawyer and when he destroyed the laptop? 

 

Participants’ natural responses were coded for accuracy.  

Method 
Participants. A total of 61 participants (31 in Experiment 1 
and 30 in Experiment 2) were recruited through Amazon 
Mechanical Turk. Participants who failed to answer attention 
checks, misunderstood the task, or performed the entire study 
under 2 minutes were dropped from analysis. This resulted in 
data from 56 participants (28 in Experiment 1 and another 28 
in Experiment 2). 
 
Design, procedure, and materials. Each participant was 
presented with 10 three-premise causal inference problems: 4 
were predicted to be one-model problems and 4 that were 
multiple-model. The other 2 were practice problems that also 
served as attention checks, and were discarded from analysis. 
Each problem consisted of three premises describing 
temporal relations that were randomly selected from a pool 
of events that described the activities of a criminal suspect, 
e.g., “shredded the documents”, “transferred the drug funds”, 
“build the explosive”, and so on. Each premise consisted of a 
pair of activities linked by 1 of 4 temporal connectives 
(before, after, during, and while). The activities were chosen 
such that they could be interpreted as durative or punctate 
(see Kelly et al., 2020), and yield a coherent narrative no 
matter how they were ordered (e.g., in the example above, the 



narrative would be coherent even if the suspect hired a lawyer 
before he transferred the drug funds). The order in which the 
participants carried out the 10 problems was randomized, as 
was the assignment of the contents of the premises. 
 
Task. Experiment 1 provided participants with three response 
options: a valid conclusion, an invalid conclusion, and a null 
conclusion. In Experiment 2, participants typed out their 
responses to a question relating two events in the problem, 
i.e., “What is the relationship between __ and __?” I coded 
their responses for accuracy blind to the specific condition. 
 
Open science. Data, materials, experimental code, 
mReasoner code, and synthetic data derived from 
computational simulations are available at 
https://osf.io/26ckg/. 

Results 
Both experiments showed that participants were more 
accurate for one-model problems than multiple-model 
problems (in Experiment 1, one- vs. multiple-model: 70% vs. 
37%; Wilcoxon test, z = 5.08, p < .001, Cliff’s δ = .33; in 
Experiment 2, one- vs. multiple-model: 78% vs. 44%; 
Wilcoxon test, z = 5.25, p < .001, Cliff’s δ = .35). The results 
corroborate the model theory of temporal reasoning. In 
addition, Experiment 2 captured the response time between 
when participants read the three premises and when they 
began to type out a response. Analysis of Winsorized 
response times revealed that participants were faster to 
respond to one-model problems (51.77 s) than multiple-
model problems (60.01 s; Wilcoxon test, z = 3.15, p = .002, 
Cliff’s δ = .19). These results, too, corroborate the model 
theory’s difficulty prediction. For brevity, I omit further 
analyses of the data in favor of describing the mReasoner’s 
simulations of the two studies. 

Simulation of Experiments 1 and 2 
To simulate the 8 problems in Experiments 1 and 2, 

mReasoner generated datasets by systematically varying the 
settings of two of its parameters (Busemeyer & Diederich, 
2010), i.e., the atypicality and search parameters 
described above, along with a size parameter that 
stochastically limited the size of each model. The parameter 
settings were quantized to span their ranges as follows: 

 

       size: 2.0, 2.5, 3.0, 3.5, 4.0, 4.5*, 5.0** 
atypicality: 0.0, 0.2, 0.4, 0.6, 0.8, 1.0  
     search: 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 
 

                                 * Exp 1   ** Exp 2 
 

Hence, the system generated 7 × 6 × 6 = 252 separate 
simulated datasets. The system carried out the 8 problems 
100 times for each of the 252 parameter settings. A grid 
search was used to locate the best fitting parameter settings 
for the data for Experiments 1 and 2. The grid search 
depended on minimizing the root mean squared error 
(RMSE) between the dataset and the proportions of responses 
in each simulated dataset across the 8 problems. Once the grid 
search located the best-fitting parameter settings (which were 
quite similar, and bolded above), the parameters were fixed 
and mReasoner carried out the 8 problems 1000 times each. 
Figure 2 plots the computational modeling simulations 
against the results from each dataset. 

The computational model yielded a close fit to the data (r 
= .95, RMSE = .22 for Experiment 1; r = .93, RMSE = .20). 
And the optimizing parameter values located from by the grid 
search were sensible: the computational model fit the data 
when the size of the models was large (> 4), when the system 
considered atypical models 40% of the time, and when the 
system never engaged in a search for counterexamples. 
Searching for counterexamples is demanding, and most of the 
time, particularly for complex problems, reasoners appear to 
satisfice and base their inferences on the first model they 
construct. 

 

 
Figure 2. The proportions of correct responses to the 8 problems in Experiments 1 and 2, along with the proportions of correct responses generated by 
mReasoner’s best-fitting simulations (rs = .95 and .93 for Experiments 1 and 2, respectively). The 8 problems in the two experiments are provided using 
schematic formulas in place of the natural language sentences participants received, e.g., participants saw premises akin to, “The suspect destroyed the laptop 
after he closed his bank account” instead of after(y,x). Participants’ evaluated a given response – denoted by the question mark – in Experiment 1, and 
specified the relation between two events in Experiment 2. 
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General discussion 
Human reasoning about time is complex: events can be 

punctate or stretch across other events; they can be cyclical, 
as in the passage of seasons; and they can endure across fixed 
units that can be enumerated. Nevertheless, humans must 
make rapid inferences about relations to understand 
narratives and plan for future scenarios. I describe a theory of 
temporal cognition that relies on the construction, 
maintenance, and manipulation of event models. The theory 
accounts for how people represent durations and what makes 
reasoning about time difficult. The theory is embodied in 
mReasoner, a computational cognitive implementation of the 
model theory of thinking and reasoning (Khemlani & 
Johnson-Laird, 2022). In this paper, I described innovations 
to the system that can predict which temporal reasoning 
problems prompt reasoners to make errors; I described 
experiments designed to test the theory’s central predictions; 
and I showed how the computational model fit the data from 
those studies. 

The computational model explains only a small subset of 
temporal reasoning phenomena: it doesn’t account for how 
people rapidly process and interpret tense and aspect, or how 
they cope with information about metric time. But, the theory 
does explain how people without any background in temporal 
logic can make valid deductions from temporal premises. 
Previous psychological accounts of reasoning have argued 
that people maintain axiom systems and build proofs to make 
temporal deductions (see, e.g., Rips, 1994). Meanwhile, 
probabilistic frameworks of reasoning either build off such 
logical frameworks, or else eschew any consideration of 
temporal inference whatsoever (see Knauff & Gazzo 
Castańeda, 2022). Neither approach can explain the 
systematic errors people make in Experiments 1 and 2. The 
system I describe therefore serves as a cognitive process 
model of temporal reasoning: it specifies both the structure of 
the mental simulations people build, as well as the algorithms 
they use to process those representations. 
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